Preparation and Quality Evaluation of Honokiol Nanoparticles Using a New Polysaccharide Polymer as its Carrier

Page: [183 - 191] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Objective: To improve the solubility of Honokiol (HNK), Honokiol nanoparticles (HNK-NPs) were prepared using a new biodegradable polysaccharide polymer as its carrier.

Methods: HNK-NPs were prepared by hydrophilic polymer coagulation method, and the processing parameters were optimized according to average particle size and PDI by a single factor experiment. The morphology of the optimized nanoparticles was investigated by TEM, and the in vitro release was carried out to evaluate the optimized HNK-NPs.

Results: The encapsulation efficiency and drug loading of the HNK-NPs were 77.75 ± 2.63% and 13.46 ± 0.39%, respectively. The obtained nanoparticles of HNK-NPs were spherical-like under the electron microscope with a mean particle size of 198.50 ± 0.01 nm and a Zeta potential of −52.60 ± 1.00 mV. The in vitro release results showed that the cumulative release rates of nanoparticles were 48.28 ± 9.80% and 81.12 ± 4.35% within 2 h and 8 h, respectively, showing a stable release behavior. The average particle size and PDI of HNK-NPs solution prepared by the hydrophilic polymer condensation method had no obvious change at 72h.

Conclusion: HNK-NPs were successfully prepared by the phase separation method. This new polysaccharide polymer should be an ideal carrier to help improve the solubility of HNK.

Keywords: Honokiol, polymer nanoparticles, polysaccharide polymer, single factor investigation, solubility, stability

Graphical Abstract

[1]
Lee, Y.J.; Lee, Y.M.; Lee, C.K.; Jung, J.K.; Han, S.B.; Hong, J.T. Therapeutic applications of compounds in the Magnolia family. Pharmacol. Ther., 2011, 130(2), 157-176.
[http://dx.doi.org/10.1016/j.pharmthera.2011.01.010] [PMID: 21277893]
[2]
Rauf, A.; Patel, S.; Imran, M.; Maalik, A.; Arshad, M.U.; Saeed, F.; Mabkhot, Y.N.; Al-Showiman, S.S.; Ahmad, N.; Elsharkawy, E. Honokiol: An anticancer lignan. Biomed. Pharmacother., 2018, 107, 555-562.
[3]
Tsai, T.H.; Chou, C.J.; Lee, T.F.; Wang, L.C.H.; Chen, C.F. Pharmacokinetic and pharmacodynamic studies of magnolol after oral administration in rats. Pharm. Sci., 1996, 2, 191-193.
[4]
Luo, L.; Nong, Wang J.; Kong, L.D.; Jiang, Q.G.; Tan, R.X. Antidepressant effects of banxia houpu decoction, a traditional Chinese medicinal empirical formula. J. Ethnopharmacol., 2000, 73(1-2), 277-281.
[http://dx.doi.org/10.1016/S0378-8741(00)00242-7] [PMID: 11025166]
[5]
Poivre, M.; Duez, P. Biological activity and toxicity of the Chinese herb Magnolia Officinalis rehder & E. Wilson (Houpo) and its constituents. J. Zhejiang Univ. Sci. B, 2017, 18(3), 194-214.
[http://dx.doi.org/10.1631/jzus.B1600299] [PMID: 28271656]
[6]
Sarrica, A.; Kirika, N.; Romeo, M.; Salmona, M.; Diomede, L. Safety and toxicology of Magnolol and Honokiol. Planta Med., 2018, 84(16), 1151-1164.
[http://dx.doi.org/10.1055/a-0642-1966] [PMID: 29925102]
[7]
Pan, J.; Lee, Y.; Wang, Y.; You, M. Honokiol targets mitochondria to halt cancer progression and metastasis. Mol. Nutr. Food Res., 2016, 60(6), 1383-1395.
[http://dx.doi.org/10.1002/mnfr.201501007] [PMID: 27276215]
[8]
Banik, K.; Ranaware, A.M.; Deshpande, V.; Nalawade, S.P.; Padmavathi, G.; Bordoloi, D.; Sailo, B.L.; Shanmugam, M.K.; Fan, L.; Arfuso, F.; Sethi, G.; Kunnumakkara, A.B. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol. Res., 2019, 144, 192-209.
[http://dx.doi.org/10.1016/j.phrs.2019.04.004] [PMID: 31002949]
[9]
Ranaware, A.M.; Banik, K.; Deshpande, V.; Padmavathi, G.; Roy, N.K.; Sethi, G.; Fan, L.; Kumar, A.P.; Kunnumakkara, A.B. Magnolol: A Neolignan from the Magnolia Family for the prevention and treatment of cancer. Int. J. Mol. Sci., 2018, 19(8), E2362.
[http://dx.doi.org/10.3390/ijms19082362] [PMID: 30103472]
[10]
Wu, B.; Fu, S.H.; Tang, H.; Chen, K.; Zhang, Q.; Peng, A.H.; Ye, H.Y.; Cheng, X.J.; Lian, M.; Wang, Z.L.; Chen, L.J. Design, synthesis and antibacterial evaluation of honokiol derivatives. Bioorg. Med. Chem. Lett., 2018, 28(4), 834-838.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.022] [PMID: 29402745]
[11]
Chen, S.Z. Research progress in anticancer effects and molecular targets of honokiol in experimental therapy. Yao Xue Xue Bao, 2016, 51(2), 202-207.
[PMID: 29856535]
[12]
Guillermo-Lagae, R.; Santha, S.; Thomas, M.; Zoelle, E.; Stevens, J.; Kaushik, R.S.; Dwivedi, C. Antineoplastic effects of honokiol on melanoma. BioMed Res. Int., 2017, 2017, 5496398.
[http://dx.doi.org/10.1155/2017/5496398] [PMID: 28194418]
[13]
Shen, L.; Zhang, F.; Huang, R.; Yan, J.; Shen, B. Honokiol inhibits bladder cancer cell invasion through repressing SRC-3 expression and epithelial-mesenchymal transition. Oncol. Lett., 2017, 14(4), 4294-4300.
[http://dx.doi.org/10.3892/ol.2017.6665] [PMID: 28943942]
[14]
Liu, R-X.; Ren, W-Y.; Ma, Y.; Liao, Y-P.; Wang, H.; Zhu, J-H.; Jiang, H-T.; Wu, K.; He, B-C.; Sun, W-J. BMP7 mediates the anticancer effect of honokiol by upregulating p53 in HCT116 cells. Int. J. Oncol., 2017, 51(3), 907-917.
[http://dx.doi.org/10.3892/ijo.2017.4078] [PMID: 28731124]
[15]
Jun-Jun, W.; Xiao-Lei, M.; Jing-Ya, C.; Yong, C. The pharmacokinetics and tissue distribution of honokiol and its metabolites in rats. Eur. J. Drug Metab. Pharmacokinet., 2016, 41(5), 587-594.
[http://dx.doi.org/10.1007/s13318-015-0281-6] [PMID: 25956504]
[16]
Martinho, N.; Damgé, C.; Reis, C.P. Recent advances in drug delivery systems. J. Biomater. Nanobiotechnol., 2011, 2, 510.
[http://dx.doi.org/10.4236/jbnb.2011.225062]
[17]
Jahangirian, H.; Lemraski, E.G.; Webster, T.J.; Rafiee-Moghaddam, R.; Abdollahi, Y. A review of drug delivery systems based on nanotechnology and green chemistry: Green nanomedicine. Int. J. Nanomedicine, 2017, 12, 2957-2978.
[http://dx.doi.org/10.2147/IJN.S127683] [PMID: 28442906]
[18]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[19]
Hussain, S. Nanomedicine for treatment of lung cancer. Adv. Exp. Med. Biol., 2016, 890, 137-147.
[http://dx.doi.org/10.1007/978-3-319-24932-2_8] [PMID: 26703803]
[20]
Hua, S.; de Matos, M.B.C.; Metselaar, J.M.; Storm, G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front. Pharmacol., 2018, 9, 790.
[http://dx.doi.org/10.3389/fphar.2018.00790] [PMID: 30065653]
[21]
Houshmand, M.; Garello, F.; Circosta, P.; Stefania, R.; Aime, S.; Saglio, G.; Giachino, C. Nanocarriers as magic bullets in the treatment of leukemia. Nanomaterials (Basel), 2020, 10(2), 276.
[http://dx.doi.org/10.3390/nano10020276] [PMID: 32041219]
[22]
Muluh, T.A.; Chen, Z.; Li, Y.; Xiong, K.; Jin, J.; Fu, S.; Wu, J. Enhancing cancer immunotherapy treatment goals by using nanoparticle delivery system. Int. J. Nanomedicine, 2021, 16, 2389-2404.
[http://dx.doi.org/10.2147/IJN.S295300] [PMID: 33790556]
[23]
Li, J.; Bao, J.; Wang, W. Drug formulation based on particulates comprising polysaccharide-vitamin conjugate. W.O. Patent 2017053920, 2019.
[24]
Liang, Y. Preparation and in vitro antitumor activity of honokiol prodrugs. In: 2013 the national sub-academic, Symposium, abstract settopic H: Medical points. Chinese Chemical Society; , 2013; 37, .
[25]
Zhou, F.; Teng, F.; Deng, P.; Meng, N.; Song, Z.; Feng, R. Recent progress of nano-drug delivery system for liver cancer treatment. Anticancer. Agents Med. Chem., 2018, 17(14), 1884-1897.
[http://dx.doi.org/10.2174/1871520617666170713151149] [PMID: 28707574]