Effects of Drugs and Chemotherapeutic Agents on Dental Implant Osseointegration: A Narrative Review

Page: [42 - 60] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Background: Dental implants have been one of the most popular treatments for rehabilitating individuals with single missing teeth or fully edentulous jaws since their introduction. As more implant patients are well-aged and take several medications due to various systemic conditions, clinicians should take into consideration the possible drug implications on bone remodeling and osseointegration.

Objective: The present study aims to examine and review some desirable and unwelcomed implications of medicine on osseointegration.

Methods: A broad search for proper relevant studies was conducted in four databases, including Web of Science, Pubmed, Scopus, and Google Scholar.

Results: Some commonly prescribed medicines, such as nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, proton pump inhibitors (PPIs), selective serotonin reuptake inhibitors (SSRIs), anticoagulants, metformin, and chemotherapeutic agents, may jeopardize osseointegration. On the contrary, some therapeutic agents, such as anabolic, anti-catabolic, or dual anabolic agents may enhance osseointegration and increase the treatment’s success rate.

Conclusion: Systemic medications that enhance osseointegration include mineralization promoters and bone resorption inhibitors. On the other hand, medications often given to the elderly with systemic problems might interfere with osseointegration, leading to implant failure. However, to validate the research, more human studies with a higher level of evidence are required.

Keywords: dental implants, osseointegration, bone density, drug therapy, chemotherapy, contraindications

[1]
Moraschini V, Poubel LA, Ferreira VF, Barboza ES. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: A systematic review. Int J Oral Maxillofac Implants 2015; 44(3): 377-88.
[http://dx.doi.org/10.1016/j.ijom.2014.10.023] [PMID: 25467739]
[2]
Branemark PI. Introduction to osseointegration Tissue-Integrated prostheses. 1985; p. 11-76.
[3]
Chrcanovic BR, Kisch J, Albrektsson T, Wennerberg A. Factors influencing early dental implant failures. J Dent Res 2016; 95(9): 995-1002.
[http://dx.doi.org/10.1177/0022034516646098] [PMID: 27146701]
[4]
Sennerby L, Dasmah A, Larsson B, Iverhed M. Bone tissue responses to surface-modified zirconia implants: A histomorphometric and removal torque study in the rabbit. Clin Implant Dent Relat Res 2005; 7(s1) (Suppl. 1): S13-20.
[http://dx.doi.org/10.1111/j.1708-8208.2005.tb00070.x] [PMID: 16137083]
[5]
Stadelmann VA, Terrier A, Gauthier O, et al. Implants delivering bisphosphonate locally increase periprosthetic bone density in an osteoporotic sheep model. A pilot study. Cells Mater 2008; 16: 10-6.
[http://dx.doi.org/10.22203/eCM.v016a02]
[6]
O’Brien CA, Nakashima T, Takayanagi H. Osteocyte control of osteoclastogenesis. Bone 2013; 54(2): 258-63.
[http://dx.doi.org/10.1016/j.bone.2012.08.121] [PMID: 22939943]
[7]
Wang YN, Jia TT, Xu X, Zhang DJ. Overview of animal researches about the effects of systemic drugs on implant osseointegration. West China J Stomatol 2020; 38(2): 211-7.
[8]
Esposito M, Thomsen P, Ericson LE, Lekholm U. Histopathologic observations on early oral implant failures. Int J Oral Maxillofac Implants 1999; 14(6): 798-810.
[PMID: 10612916]
[9]
Kovács AF. Influence of chemotherapy on endosteal implant survival and success in oral cancer patients. Int J Oral Maxillofac Surg 2001; 30(2): 144-7.
[http://dx.doi.org/10.1054/ijom.2000.0023] [PMID: 11405450]
[10]
Duttenhoefer F, Fuessinger MA, Beckmann Y, Schmelzeisen R, Groetz KA, Boeker M. Dental implants in immunocompromised patients: A systematic review and meta-analysis. Int J Implant Dent 2019; 5(1): 43.
[http://dx.doi.org/10.1186/s40729-019-0191-5] [PMID: 31776815]
[11]
de Molon RS, Sakakura CE, Faeda RS, et al. Effect of the long-term administration of Cyclosporine A on bone healing around osseointegrated titanium implants: A histomorphometric study in the rabbit tibia. Microsc Res Tech 2017; 80(9): 1000-8.
[http://dx.doi.org/10.1002/jemt.22894] [PMID: 28544667]
[12]
Gonçalves FC, Oliveira GJPL, Scardueli CR, Spin-Neto R, Stavropoulos A, Marcantonio RAC. Cyclosporine A impairs bone repair in critical defects filled with different osteoconductive bone substitutes. Braz Oral Res 2020; 34: e007.
[http://dx.doi.org/10.1590/1807-3107bor-2020.vol34.0007] [PMID: 32049108]
[13]
Sakakura CE, Margonar R, Holzhausen M, Nociti FH Jr, Alba RC Jr, Marcantonio E Jr. Influence of cyclosporin A therapy on bone healing around titanium implants: A histometric and biomechanic study in rabbits. J Periodontol 2003; 74(7): 976-81.
[http://dx.doi.org/10.1902/jop.2003.74.7.976] [PMID: 12931759]
[14]
El Hadary AA, Yassin HH, Mekhemer ST, Holmes JC, Grootveld M. Evaluation of the effect of ozonated plant oils on the quality of osseointegration of dental implants under the influence of Cyclosporin A: An in vivo study. J Oral Implantol 2011; 37(2): 247-57.
[http://dx.doi.org/10.1563/AAID-JOI-D-09-00098] [PMID: 20545531]
[15]
Sakakura CE, Lopes BM, Margonar R, et al. Cyclosporine-A and bone density around titanium implants: A histometric study in rabbits. J Osseointegration 2011; 3: 25-9.
[16]
Sakakura CE, Marcantonio E Jr, Wenzel A, Scaf G. Influence of cyclosporin A on quality of bone around integrated dental implants: A radiographic study in rabbits. Clin Oral Implants Res 2007; 18(1): 34-9.
[http://dx.doi.org/10.1111/j.1600-0501.2006.01253.x] [PMID: 17224021]
[17]
Petsinis V, Kamperos G, Alexandridi F, Alexandridis K. The impact of glucocorticosteroids administered for systemic diseases on the osseointegration and survival of dental implants placed without bone grafting-A retrospective study in 31 patients. J Craniomaxillofac Surg 2017; 45(8): 1197-200.
[http://dx.doi.org/10.1016/j.jcms.2017.05.023] [PMID: 28684069]
[18]
Fu JH, Bashutski JD, Al-Hezaimi K, Wang HL. Statins, glucocorticoids, and nonsteroidal anti-inflammatory drugs: Their influence on implant healing. Implant Dent 2012; 21(5): 362-7.
[http://dx.doi.org/10.1097/ID.0b013e3182611ff6] [PMID: 22968569]
[19]
Bencharit S, Reside GJ, Howard-Williams EL. Complex prosthodontic treatment with dental implants for a patient with polymyalgia rheumatica: A clinical report. Int J Oral Maxillofac Implants 2010; 25(6): 1241-5.
[PMID: 21197503]
[20]
Schulz MC, Kowald J, Estenfelder S, et al. Site-specific variations in bone mineral density under systemic conditions inducing osteoporosis in minipigs. Front Physiol 2017; 8: 426.
[http://dx.doi.org/10.3389/fphys.2017.00426] [PMID: 28676766]
[21]
Cai J, Shao X, Yang Q, et al. Pulsed electromagnetic fields modify the adverse effects of glucocorticoids on bone architecture, bone strength and porous implant osseointegration by rescuing bone-anabolic actions. Bone 2020; 133: 115266.
[http://dx.doi.org/10.1016/j.bone.2020.115266] [PMID: 32044333]
[22]
Carr AB, Revuru VS, Lohse CM. Risk of dental implant failure associated with medication use. J Prosthodont 2019; 28(7): 743-9.
[http://dx.doi.org/10.1111/jopr.12773] [PMID: 29508502]
[23]
de Deco CP, da Silva Marchini AM, Marchini L, da Rocha RF. Extended periods of alcohol intake negatively affects osseointegration in rats. J Oral Implantol 2015; 41(3): e44-9.
[http://dx.doi.org/10.1563/AAID-JOI-D-13-00111] [PMID: 24471800]
[24]
Mukherjee S. Alcoholism and its effects on the central nervous system. Curr Neurovasc Res 2013; 10(3): 256-62.
[http://dx.doi.org/10.2174/15672026113109990004] [PMID: 23713737]
[25]
Ouanounou A, Hassanpour S, Glogauer M. The influence of systemic medications on osseointegration of dental implants. J Can Dent Assoc 2016; 82(g7): 1488-59.
[PMID: 27548672]
[26]
Dai J, Lin D, Zhang J, et al. Chronic alcohol ingestion induces osteoclastogenesis and bone loss through IL-6 in mice. J Clin Invest 2000; 106(7): 887-95.
[http://dx.doi.org/10.1172/JCI10483] [PMID: 11018077]
[27]
Koo S. König B Jr, Mizusaki CI, Allegrini S Jr, Yoshimoto M, Carbonari MJ. Effects of alcohol consumption on osseointegration of titanium implants in rabbits. Implant Dent 2004; 13(3): 232-7.
[http://dx.doi.org/10.1097/01.id.0000140462.33075.34] [PMID: 15359159]
[28]
de Deco CP, da Silva MAM. Bárbara MA, de Vasconcellos LM, da Rocha RF, Marchini L. Negative effects of alcohol intake and estrogen deficiency combination on osseointegration in a rat model. J Oral Implantol 2011; 37(6): 633-9.
[http://dx.doi.org/10.1563/AAID-JOI-D-10-00048] [PMID: 21504361]
[29]
Tao ZS, Zhou WS, Yang M, Xu H. Resveratrol reverses the negative effect of alcohol on hydroxyapatite-coated implant osseointegration in senile female rats. Z Gerontol Geriatr 2020; 53(6): 538-45.
[http://dx.doi.org/10.1007/s00391-019-01595-3] [PMID: 31435788]
[30]
Weyant RJ. Characteristics associated with the loss and peri-implant tissue health of endosseous dental implants. Int J Oral Maxillofac Implants 1994; 9(1): 95-102.
[PMID: 8150519]
[31]
Alissa R, Oliver RJ. Influence of prognostic risk indicators on osseointegrated dental implant failure: A matched case-control analysis. J Oral Implantol 2012; 38(1): 51-61.
[http://dx.doi.org/10.1563/AAID-JOI-D-10-00086] [PMID: 20932122]
[32]
Ekfeldt A, Christiansson U, Eriksson T, et al. A retrospective analysis of factors associated with multiple implant failures in maxillae. Clin Oral Implants Res 2001; 12(5): 462-7.
[http://dx.doi.org/10.1034/j.1600-0501.2001.120505.x] [PMID: 11564105]
[33]
Ortuño MJ, Robinson ST, Subramanyam P, et al. Serotoninreuptake inhibitors act centrally to cause bone loss in mice by counteracting a local anti-resorptive effect. Nat Med 2016; 22(10): 1170-9.
[http://dx.doi.org/10.1038/nm.4166] [PMID: 27595322]
[34]
Wu X, Al-Abedalla K, Rastikerdar E, et al. Selective serotonin reuptake inhibitors and the risk of osseointegrated implant failure: A cohort study. J Dent Res 2014; 93(11): 1054-61.
[http://dx.doi.org/10.1177/0022034514549378] [PMID: 25186831]
[35]
Abu Nada L, Al Subaie A, Mansour A, et al. The antidepressant drug, sertraline, hinders bone healing and osseointegration in rats’ tibiae. J Clin Periodontol 2018; 45(12): 1485-97.
[http://dx.doi.org/10.1111/jcpe.13015] [PMID: 30289996]
[36]
Howie RN, Herberg S, Durham E, et al. Selective serotonin re-uptake inhibitor sertraline inhibits bone healing in a calvarial defect model. Int J Oral Sci 2018; 10(3): 25.
[http://dx.doi.org/10.1038/s41368-018-0026-x] [PMID: 30174329]
[37]
Wu Q, Bencaz AF, Hentz JG, Crowell MD. Selective serotonin reuptake inhibitor treatment and risk of fractures: A meta-analysis of cohort and case-control studies. Osteoporos Int 2012; 23(1): 365-75.
[http://dx.doi.org/10.1007/s00198-011-1778-8] [PMID: 21904950]
[38]
Chrcanovic BR, Kisch J, Albrektsson T, Wennerberg A. Is the intake of selective serotonin reuptake inhibitors associated with an increased risk of dental implant failure? Int J Oral Maxillofac Implants 2017; 46(6): 782-8.
[http://dx.doi.org/10.1016/j.ijom.2017.01.016] [PMID: 28222946]
[39]
Carr AB, Gonzalez RLV, Jia L, Lohse CM. Relationship between selective serotonin reuptake inhibitors and risk of dental implant failure. J Prosthodont 2019; 28(3): 252-7.
[http://dx.doi.org/10.1111/jopr.13015] [PMID: 30637850]
[40]
Altay MA, Sindel A. Özalp Ö, et al. Does the intake of selective serotonin reuptake inhibitors negatively affect dental implant osseointegration? A retrospective study. J Oral Implantol 2018; 44(4): 260-5.
[http://dx.doi.org/10.1563/aaid-joi-D-17-00240] [PMID: 29517407]
[41]
Silva C, Dos Santos MS, Monteiro JL, et al. Is there an association between the use of antidepressants and complications involving dental implants? A systematic review and meta-analysis. Int J Oral Maxillofac Surg 2020.
[PMID: 32534847]
[42]
Cai WX, Ma L, Zheng LW, et al. Influence of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) on osseointegration of dental implants in rabbit calvaria. Clin Oral Implants Res 2015; 26(4): 478-83.
[http://dx.doi.org/10.1111/clr.12392] [PMID: 24684486]
[43]
Toy VE, Dundar S, Bozoglan A. The effects of a nonsteroidal anti-inflammatory drug on the degree of titanium implant osseointegration. J Oral Biol Craniofac Res 2020; 10(4): 333-6.
[http://dx.doi.org/10.1016/j.jobcr.2020.06.006] [PMID: 32714785]
[44]
Ribeiro FV, César-Neto JB, Nociti FH Jr, et al. Selective cyclooxygenase-2 inhibitor may impair bone healing around titanium implants in rats. J Periodontol 2006; 77(10): 1731-5.
[http://dx.doi.org/10.1902/jop.2006.060119] [PMID: 17032117]
[45]
Sakka S, Hanouneh SI. Investigation of the effect of ibuprofen on the healing of osseointegrated oral implants. J Investig Clin Dent 2013; 4(2): 113-9.
[http://dx.doi.org/10.1111/j.2041-1626.2012.00164.x] [PMID: 22927165]
[46]
Winnett B, Tenenbaum HC, Ganss B, Jokstad A. Perioperative use of non-steroidal anti-inflammatory drugs might impair dental implant osseointegration. Clin Oral Implants Res 2016; 27(2): e1-7.
[http://dx.doi.org/10.1111/clr.12493] [PMID: 25267330]
[47]
Chappuis V, Avila-Ortiz G. Araújo MG, Monje A. Medication-related dental implant failure: Systematic review and meta-analysis. Clin Oral Implants Res 2018; 29 (Suppl. 16): 55-68.
[http://dx.doi.org/10.1111/clr.13137] [PMID: 30328197]
[48]
Luo JD, Miller C, Jirjis T, Nasir M, Sharma D. The effect of non-steroidal anti-inflammatory drugs on the osteogenic activity in osseointegration: A systematic review. Int J Implant Dent 2018; 4(1): 30.
[http://dx.doi.org/10.1186/s40729-018-0141-7] [PMID: 30298361]
[49]
Apostu D, Lucaciu O, Lucaciu GD, et al. Systemic drugs that influence titanium implant osseointegration. Drug Metab Rev 2017; 49(1): 92-104.
[http://dx.doi.org/10.1080/03602532.2016.1277737] [PMID: 28030966]
[50]
Abdelhamid AI. Scanning electron microscope evaluation of the effect of systemic administration of aspirin on the osseointegration of dental implants (experimental study). J Pak Dent Assoc 2011; 20(4): 260-5.
[51]
Tao Z, Zhou W, Wu X, et al. Local administration of aspirin improves osseointegration of hydroxyapatite-coated titanium implants in ovariectomized rats through activation of the Notch signaling pathway. J Biomater Appl 2020; 34(7): 1009-18.
[http://dx.doi.org/10.1177/0885328219889630] [PMID: 31757183]
[52]
Trancik T, Mills W, Vinson N. The effect of indomethacin, aspirin, and ibuprofen on bone ingrowth into a porous-coated implant. Clin Orthop Relat Res 1989; 249: 113-21.
[http://dx.doi.org/10.1097/00003086-198912000-00013] [PMID: 2582661]
[53]
Bastos MF. Serrão CR, Miranda TS, Cruz DF, de Souza MF, Duarte PM. Effects of metformin on bone healing around titanium implants inserted in non-diabetic rats. Clin Oral Implants Res 2017; 28(10): e146-50.
[http://dx.doi.org/10.1111/clr.12960] [PMID: 27573975]
[54]
Serrão CR. Bastos MF, Cruz DF, de Souza MF, Vallim PC, Duarte PM. Role of metformin in reversing the negative impact of hyperglycemia on bone healing around implants inserted in type 2 diabetic rats. Int J Oral Maxillofac Implants 2017; 32(3): 547-54.
[http://dx.doi.org/10.11607/jomi.5754] [PMID: 28494038]
[55]
Sharma H, Gupta AS, Mowar A, Kusum C. Evaluation of the effect of 1% Metformin Gel coating on the osseointegration achieved around dental implants using bone mineral density and resonance frequency analysis-A clinical and three-dimensional radiographic study. Int J Pharm Res 2021; 13(1): 1-9.
[56]
Wu X, Al-Abedalla K, Abi-Nader S, Daniel NG, Nicolau B, Tamimi F. Proton pump inhibitors and the risk of osseointegrated dental implant failure: A cohort study. Clin Implant Dent Relat Res 2017; 19(2): 222-32.
[http://dx.doi.org/10.1111/cid.12455] [PMID: 27766743]
[57]
Rogoszinski T, Boggess WJ, Coburn JF, et al. The effect of proton pump inhibitors on long-term implant success. J Oral Maxillofac Surg 2020; 78(10): e65.
[http://dx.doi.org/10.1016/j.joms.2020.07.130]
[58]
Ursomanno BL, Cohen RE, Levine MJ, Yerke LM. Effect of proton pump inhibitors on bone loss at dental implants. Int J Oral Maxillofac Implants 2020; 35(1): 130-4.
[http://dx.doi.org/10.11607/jomi.7800] [PMID: 31923296]
[59]
Altay MA, Sindel A. Özalp Ö, Yıldırımyan N, Kocabalkan B. Proton pump inhibitor intake negatively affects the osseointegration of dental implants: A retrospective study. J Korean Assoc Oral Maxillofac Surg 2019; 45(3): 135-40.
[http://dx.doi.org/10.5125/jkaoms.2019.45.3.135] [PMID: 31334101]
[60]
Mester A, Apostu D, Ciobanu L, et al. The impact of proton pump inhibitors on bone regeneration and implant osseointegration. Drug Metab Rev 2019; 51(3): 330-9.
[http://dx.doi.org/10.1080/03602532.2019.1610767] [PMID: 31055956]
[61]
Nag VD. 59. Proton pump inhibitors and dental implant failure- is there any link?? A scoping review. J Indian Prosthodont Soc 2018; 18(6) (Suppl. 2): S92.
[http://dx.doi.org/10.4103/0972-4052.246564] [PMID: 30602864]
[62]
Peng Z, Wen-Yi S, Da-Wei G, et al. Symbol Effects of proton pump inhibitor FR167356 on osseointegration of dental implant in osteoporosis rabbits. J Clin Rehabil Tissue Eng Res 2014; 18(33): 5334-40.
[63]
Al Subaie A, Emami E, Tamimi I, et al. Systemic administration of omeprazole interferes with bone healing and implant osseointegration: An in vivo study on rat tibiae. J Clin Periodontol 2016; 43(2): 193-203.
[http://dx.doi.org/10.1111/jcpe.12506] [PMID: 26725944]
[64]
Chrcanovic BR, Kisch J, Albrektsson T, Wennerberg A. Intake of proton pump inhibitors is associated with an increased risk of dental implant failure. Int J Oral Maxillofac Implants 2017; 32(5): 1097-102.
[http://dx.doi.org/10.11607/jomi.5662] [PMID: 28632255]
[65]
Jung RE, Al-Nawas B, Araujo M, et al. Group 1 ITI consensus report: The influence of implant length and design and medications on clinical and patient-reported outcomes. Clin Oral Implants (Suppl. 16): 69-77.
[http://dx.doi.org/10.1111/clr.13342] [PMID: 30328189]
[66]
Cheng LL. Systemic intake of proton pump inhibitors and selective serotonin reuptake inhibitors may be associated with implant failure. J Evid Based Dent Pract 2020; 20(3): 101466.
[http://dx.doi.org/10.1016/j.jebdp.2020.101466] [PMID: 32921386]
[67]
Marković A, Đinić A, Calvo GJL, Tahmaseb A, Šćepanović M, Janjić B. Randomized clinical study of the peri-implant healing to hydrophilic and hydrophobic implant surfaces in patients receiving anticoagulants. Clin Oral Implants Res 2017; 28(10): 1241-7.
[http://dx.doi.org/10.1111/clr.12948] [PMID: 27539149]
[68]
Kapetanou AG, Savvidis MS, Potoupnis ME, et al. (Rivaroxaban) on implants pull-out strength. An experimental study in rats. J Frailty Sarcopenia Falls 2017; 2(1): 1.
[69]
Callahan BC, Lisecki EJ, Banks RE, Dalton JE, Cook SD, Wolff JD. The effect of warfarin on the attachment of bone to hydroxyapatite-coated and uncoated porous implants. J Bone Joint Surg Am 1995; 77(2): 225-30.
[http://dx.doi.org/10.2106/00004623-199502000-00008] [PMID: 7844128]
[70]
Takahashi-Yanaga F. Activator or inhibitor? GSK-3 as a new drug target. Biochem Pharmacol 2013; 86(2): 191-9.
[http://dx.doi.org/10.1016/j.bcp.2013.04.022] [PMID: 23643839]
[71]
Alshahrani NS, Abu-Nada L, Ramirez Garcia-Luna JL, et al. Ranitidine impairs bone healing and implant osseointegration in rats’ tibiae. J Oral Maxillofac Surg 2020; 78(11): 1943-52.
[http://dx.doi.org/10.1016/j.joms.2020.06.027] [PMID: 32687794]
[72]
Parsons ME, Ganellin CR. Histamine and its receptors. Br J Pharmacol 2006; 147 (Suppl. 1): S127-35.
[http://dx.doi.org/10.1038/sj.bjp.0706440] [PMID: 16402096]
[73]
Skeel RT, Khleif SN. Handbook of cancer chemotherapy. Lippincott Williams & Wilkins: Philadelphia 2011.
[74]
Dantas MVM, Verzola MHA. Sanitá PV, Dovigo LN, Cerri PS, Gabrielli MAC. The influence of Cisplatin-based chemotherapy on the osseointegration of dental implants: An in vivo mechanical and histometrical study. Clin Oral Implants Res 2019; 30(7): 603-16.
[http://dx.doi.org/10.1111/clr.13445] [PMID: 31022308]
[75]
Al-Mahalawy H, Marei HF, Abuohashish H, Alhawaj H, Alrefaee M, Al-Jandan B. Effects of cisplatin chemotherapy on the osseointegration of titanium implants. J Craniomaxillofac Surg 2016; 44(4): 337-46.
[http://dx.doi.org/10.1016/j.jcms.2016.01.012] [PMID: 26895777]
[76]
Matheus HR, Ervolino E, Faleiros PL, et al. Cisplatin chemotherapy impairs the peri-implant bone repair around titanium implants: An in vivo study in rats. J Clin Periodontol 2018; 45(2): 241-52.
[http://dx.doi.org/10.1111/jcpe.12824] [PMID: 28965362]
[77]
Steele CM, Alsanei WA, Ayanikalath S, et al. The influence of food texture and liquid consistency modification on swallowing physiology and function: A systematic review. Dysphagia 2015; 30(1): 2-26.
[http://dx.doi.org/10.1007/s00455-014-9578-x] [PMID: 25343878]
[78]
Al-Jandan B, Marei HF, Abuohashish H, Zakaria O, Al-Mahalawy H. Effects of sunitinib targeted chemotherapy on the osseointegration of titanium implants. Biomed Pharmacother 2018; 100: 433-40.
[http://dx.doi.org/10.1016/j.biopha.2018.02.056] [PMID: 29471246]
[79]
Al-Jandan B. Effect of antiangiogenic targeted chemotherapy on the osseointegration of titanium implants in rabbits. Br J Oral Maxillofac Surg 2019; 57(2): 157-63.
[http://dx.doi.org/10.1016/j.bjoms.2019.01.003] [PMID: 30678991]
[80]
Chrcanovic BR, Albrektsson T, Wennerberg A. Dental implants in patients receiving chemotherapy: A meta-analysis. Implant Dent 2016; 25(2): 261-71.
[http://dx.doi.org/10.1097/ID.0000000000000388] [PMID: 26910184]
[81]
Hadrowicz P, Hadrowicz J, Kozakiewicz M, Gesing A. Assessment of parathyroid hormone serum level as a predictor for bone condition around dental implants. Int J Oral Maxillofac Implants 2017; 32(4): e207-12.
[http://dx.doi.org/10.11607/jomi.5686] [PMID: 28708916]
[82]
Aggarwal P, Zavras A. Parathyroid hormone and its effects on dental tissues. Oral Dis 2012; 18(1): 48-54.
[http://dx.doi.org/10.1111/j.1601-0825.2011.01850.x] [PMID: 21895887]
[83]
Tao ZS, Zhou WS, Qiang Z, et al. Intermittent administration of human parathyroid hormone (1-34) increases fixation of strontium-doped hydroxyapatite coating titanium implants via electrochemical deposition in ovariectomized rat femur. J Biomater Appl 2016; 30(7): 952-60.
[http://dx.doi.org/10.1177/0885328215610898] [PMID: 26482573]
[84]
Park S, Heo HA, Kim KW, Min JS, Pyo SW. Intermittent parathyroid hormone improves bone formation around titanium implants in osteoporotic rat maxillae. Int J Oral Maxillofac Implants 2017; 32(1): 204-9.
[http://dx.doi.org/10.11607/jomi.5037] [PMID: 27706266]
[85]
Oki Y, Doi K, Makihara Y, Kobatake R, Kubo T, Tsuga K. Effects of continual intermittent administration of parathyroid hormone on implant stability in the presence of osteoporosis: An in vivo study using resonance frequency analysis in a rabbit model. J Appl Oral Sci 2017; 25(5): 498-505.
[http://dx.doi.org/10.1590/1678-7757-2016-0561] [PMID: 29069147]
[86]
Oki Y, Doi K, Makihara Y, Kubo T, Oue H, Tsuga K. Intermittent administration of parathyroid hormone enhances primary stability of dental implants in a bone-reduced rabbit model. J Oral Sci 2016; 58(2): 241-6.
[http://dx.doi.org/10.2334/josnusd.15-0717] [PMID: 27349546]
[87]
Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 2001; 344(19): 1434-41.
[http://dx.doi.org/10.1056/NEJM200105103441904] [PMID: 11346808]
[88]
Rubin MR, Bilezikian JP. New anabolic therapies in osteoporosis. Curr Opin Rheumatol 2002; 14(4): 433-40.
[http://dx.doi.org/10.1097/00002281-200207000-00018] [PMID: 12118181]
[89]
Shirota T, Tashiro M, Ohno K, Yamaguchi A. Effect of intermittent parathyroid hormone (1-34) treatment on the bone response after placement of titanium implants into the tibia of ovariectomized rats. J Oral Maxillofac Surg 2003; 61(4): 471-80.
[http://dx.doi.org/10.1053/joms.2003.50093] [PMID: 12684966]
[90]
Zhang L, Endo N, Yamamoto N, Tanizawa T, Takahashi HE. Effects of single and concurrent intermittent administration of human PTH (1-34) and incadronate on cancellous and cortical bone of femoral neck in ovariectomized rats. Tohoku J Exp Med 1998; 186(2): 131-41.
[http://dx.doi.org/10.1620/tjem.186.131] [PMID: 10223616]
[91]
Ohkawa Y, Tokunaga K, Endo N. Intermittent administration of human parathyroid hormone (1-34) increases new bone formation on the interface of hydroxyapatitecoated titanium rods implanted into ovariectomized rat femora. J Orthop Sci 2008; 13(6): 533-42.
[http://dx.doi.org/10.1007/s00776-008-1275-x] [PMID: 19089541]
[92]
Almagro MI, Roman-Blas JA, Bellido M. Castañeda S, Cortez R, Herrero-Beaumont G. PTH [1-34] enhances bone response around titanium implants in a rabbit model of osteoporosis. Clin Oral Implants Res 2013; 24(9): 1027-34.
[PMID: 22626278]
[93]
Heo HA, Park SH, Jeon YS, Pyo SW. Enhancing effect of intermittent parathyroid hormone administration on bone formation after titanium implant placement in an ovariectomized rat maxilla. Implant Dent 2016; 25(2): 227-31.
[http://dx.doi.org/10.1097/ID.0000000000000352] [PMID: 26513040]
[94]
Uchida Y, Kuroshima S, Uto Y, et al. Intermittent administration of parathyroid hormone improves bone quality and quantity around implants in rat tibiae. J Oral Biosci/JAOB, Jpn Assoc Oral Biol 2020; 62(2): 139-46.
[http://dx.doi.org/10.1016/j.job.2020.03.001] [PMID: 32272187]
[95]
Jiang L, Zhang W, Wei L, et al. Early effects of parathyroid hormone on vascularized bone regeneration and implant osseointegration in aged rats. Biomaterials 2018; 179: 15-28.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.035] [PMID: 29960821]
[96]
Corsini MS, Faraco FN, Castro AA, Onuma T, Sendyk WR, Shibli JA. Effect of systemic intermittent administration of human parathyroid hormone (rhPTH[1-34]) on the resistance to reverse torque in rabbit tibiae. J Oral Implantol 2008; 34(6): 298-302.
[http://dx.doi.org/10.1563/1548-1336-34.6.298] [PMID: 19133483]
[97]
Mafra CES, Sirolli M, Cavalcanti MC, et al. Effect of different doses of synthetic parathyroid hormone (1-34) on bone around implants: A preclinical rat model. Braz Dent J 2019; 30(1): 43-6.
[http://dx.doi.org/10.1590/0103-6440201902199] [PMID: 30864646]
[98]
Park JY, Heo HA, Park S, Pyo SW. Enhancement of peri-implant bone formation via parathyroid hormone administration in a rat model at risk for medication-related osteonecrosis of the jaw. J Periodontal Implant Sci 2020; 50(2): 121-31.
[http://dx.doi.org/10.5051/jpis.2020.50.2.121] [PMID: 32395390]
[99]
Shibamoto A, Ogawa T, Duyck J, Vandamme K, Naert I, Sasaki K. Effect of high-frequency loading and parathyroid hormone administration on peri-implant bone healing and osseointegration. Int J Oral Sci 2018; 10(1): 6.
[http://dx.doi.org/10.1038/s41368-018-0009-y] [PMID: 29531334]
[100]
Hayashi K, Fotovati A, Ali SA, Oda K, Oida H, Naito M. Prostaglandin EP4 receptor agonist augments fixation of hydroxyapatite-coated implants in a rat model of osteoporosis. J Bone Joint Surg Br 2005; 87(8): 1150-6.
[http://dx.doi.org/10.1302/0301-620X.87B8.15886] [PMID: 16049256]
[101]
Nasu T, Takemoto M, Akiyama N, Fujibayashi S, Neo M, Nakamura T. EP4 agonist accelerates osteoinduction and degradation of β-tricalcium phosphate by stimulating osteoclastogenesis. J Biomed Mater Res A 2009; 89(3): 601-8.
[http://dx.doi.org/10.1002/jbm.a.31984] [PMID: 18437696]
[102]
Onishi E, Fujibayashi S, Takemoto M, et al. Enhancement of bone-bonding ability of bioactive titanium by prostaglandin E2 receptor selective agonist. Biomaterials 2008; 29(7): 877-83.
[http://dx.doi.org/10.1016/j.biomaterials.2007.10.028] [PMID: 18045684]
[103]
Masuzawa M, Beppu M, Ishii S, Oyake Y, Aoki H, Takagi M. Experimental study of bone formation around a titanium rod with β-tricalcium phosphate and prostaglandin E2 receptor agonists. J Orthop Sci 2005; 10(3): 308-14.
[http://dx.doi.org/10.1007/s00776-005-0890-z] [PMID: 15928895]
[104]
Hayashi K, Fotovati A, Ali SA, et al. Effect of a prostaglandin EP4 receptor agonist on early fixation of hydroxyapatite/titanium implants in ovariectomized rats. J Biomed Mater Res A 2009; 92(3): 1202-9.
[http://dx.doi.org/10.1002/jbm.a.32444] [PMID: 19322876]
[105]
Naito Y, Jimbo R, Bryington MS, et al. The influence of 1α.25-dihydroxyvitamin d3 coating on implant osseointegration in the rabbit tibia. J Oral Maxillofac Res 2014; 5(3): e3.
[PMID: 25386230]
[106]
Salomó-Coll O, Maté-Sánchez de Val JE, Ramírez-Fernandez MP, Hernández-Alfaro F, Gargallo-Albiol J, Calvo-Guirado JL. Topical applications of vitamin D on implant surface for bone-to-implant contact enhance: A pilot study in dogs part II. Clin Oral Implants Res 2016; 27(7): 896-903.
[http://dx.doi.org/10.1111/clr.12707] [PMID: 26419393]
[107]
Mangano F, et al. Is low serum vitamin D associated with early dental implant failure? A retrospective evaluation on 1625 implants placed in 822 patients. Mediators Inflamm 2016; 2016: 7.
[http://dx.doi.org/10.1155/2016/5319718]
[108]
Javed F, Malmstrom H, Kellesarian SV, Al-Kheraif AA, Vohra F, Romanos GE. Efficacy of vitamin D3 supplementation on osseointegration of implants. Implant Dent 2016; 25(2): 281-7.
[http://dx.doi.org/10.1097/ID.0000000000000390] [PMID: 26886807]
[109]
Guido MF, Ghertasi OS, Paz A, Mangano N, Mangano C. Low serum vitamin D and early dental implant failure: Is there a connection? A retrospective clinical study on 1740 implants placed in 885 patients. J Dent Res Dent Clin Dent Prospect 2018; 12(3): 174-82.
[http://dx.doi.org/10.15171/joddd.2018.027] [PMID: 30443302]
[110]
Salomó-Coll O, de Maté-Sánchez JEV, Ramírez-Fernandez MP, Hernández-Alfaro F, Gargallo-Albiol J, Calvo-Guirado JL. Osseoinductive elements around immediate implants for better osteointegration: A pilot study in foxhound dogs. Clin Oral Implants Res 2018; 29(11): 1061-9.
[http://dx.doi.org/10.1111/clr.12809] [PMID: 26923181]
[111]
Kwiatek J. Jaroń A, Trybek G. Impact of the 25-hydroxycholecalciferol concentration and vitamin D deficiency treatment on changes in the bone level at the implant site during the process of osseointegration: A prospective, randomized, controlled clinical trial. J Clin Med 2021; 10(3): 526.
[http://dx.doi.org/10.3390/jcm10030526] [PMID: 33540512]
[112]
Li X, Grisanti M, Fan W, et al. Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury. J Bone Miner Res 2011; 26(11): 2610-21.
[http://dx.doi.org/10.1002/jbmr.472] [PMID: 21773994]
[113]
Liu M, Kurimoto P, Zhang J, et al. Sclerostin and DKK1 inhibition preserves and augments alveolar bone volume and architecture in rats with alveolar bone loss. J Dent Res 2018; 97(9): 1031-8.
[http://dx.doi.org/10.1177/0022034518766874] [PMID: 29617179]
[114]
Florio M, Gunasekaran K, Stolina M, et al. A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair. Nat Commun 2016; 7(1): 11505.
[http://dx.doi.org/10.1038/ncomms11505] [PMID: 27230681]
[115]
Glantschnig H, Scott K, Hampton R, et al. A rate-limiting role for Dickkopf-1 in bone formation and the remediation of bone loss in mouse and primate models of postmenopausal osteoporosis by an experimental therapeutic antibody. J Pharmacol Exp Ther 2011; 338(2): 568-78.
[http://dx.doi.org/10.1124/jpet.111.181404] [PMID: 21531794]
[116]
Agholme F, Isaksson H, Kuhstoss S, Aspenberg P. The effects of Dickkopf-1 antibody on metaphyseal bone and implant fixation under different loading conditions. Bone 2011; 48(5): 988-96.
[http://dx.doi.org/10.1016/j.bone.2011.02.008] [PMID: 21329773]
[117]
Ke HZ, Richards WG, Li X, Ominsky MS. Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev 2012; 33(5): 747-83.
[http://dx.doi.org/10.1210/er.2011-1060] [PMID: 22723594]
[118]
McClung MR, Grauer A, Boonen S, et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 2014; 370(5): 412-20.
[http://dx.doi.org/10.1056/NEJMoa1305224] [PMID: 24382002]
[119]
Liu S, Virdi AS, Sena K, Sumner DR. Sclerostin antibody prevents particle-induced implant loosening by stimulating bone formation and inhibiting bone resorption in a rat model. Arthritis Rheum 2012; 64(12): 4012-20.
[http://dx.doi.org/10.1002/art.37697] [PMID: 23192793]
[120]
Yu SH, Hao J, Fretwurst T, et al. Sclerostin-neutralizing antibody enhances bone regeneration around oral implants. Tissue Eng Part A 2018; 24(21-22): 1672-9.
[http://dx.doi.org/10.1089/ten.tea.2018.0013] [PMID: 29921173]
[121]
da Silva FL, Alves MCA, Peruzzo DC, Montalli VA, Duarte PM, Napimoga MH. Preliminary findings on the role of sclerostin in the osseointegration process around titanium implants. Int J Oral Maxillofac Implants 2016; 31(6): 1298-302.
[http://dx.doi.org/10.11607/jomi.5093] [PMID: 27861654]
[122]
Virdi AS, Irish J, Sena K, et al. Sclerostin antibody treatment improves implant fixation in a model of severe osteoporosis. J Bone Joint Surg Am 2015; 97(2): 133-40.
[http://dx.doi.org/10.2106/JBJS.N.00654] [PMID: 25609440]
[123]
Virdi AS, Liu M, Sena K, et al. Sclerostin antibody increases bone volume and enhances implant fixation in a rat model. J Bone Joint Surg Am 2012; 94(18): 1670-80.
[http://dx.doi.org/10.2106/JBJS.K.00344] [PMID: 22992878]
[124]
Hardeland R, Pandi-Perumal SR, Cardinali DP. Melatonin. Int J Biochem Cell Biol 2006; 38(3): 313-6.
[http://dx.doi.org/10.1016/j.biocel.2005.08.020] [PMID: 16219483]
[125]
Roth JA, Kim BG, Lin WL, Cho MI. Melatonin promotes osteoblast differentiation and bone formation. J Biol Chem 1999; 274(31): 22041-7.
[http://dx.doi.org/10.1074/jbc.274.31.22041] [PMID: 10419530]
[126]
Garcia-Mauriño S, Gonzalez-Haba MG, Calvo JR, et al. Melatonin enhances IL-2, IL-6, and IFN-gamma production by human circulating CD4+ cells: A possible nuclear receptor-mediated mechanism involving T helper type 1 lymphocytes and monocytes. J Immunol 1997; 159(2): 574-81.
[PMID: 9218571]
[127]
Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT. Melatonin membrane receptors in peripheral tissues: Distribution and functions. Mol Cell Endocrinol 2012; 351(2): 152-66.
[http://dx.doi.org/10.1016/j.mce.2012.01.004] [PMID: 22245784]
[128]
Abdel-Dayem H, Abdel-Alim H, Banasr F. Topical application of melatonin around immediate implants. Am J Res Commun 2014; 2(3): 1-12.
[129]
Rostom D, Ela A, Abdalla M. Effect of melatonin on osseointegration of immediate loading implant supported mandibular over denture: Randomized clinical trail. Int dent med 2016; 2015: 1-5.
[http://dx.doi.org/10.15713/ins.idmjar.55]
[130]
El-Gammal MY, Salem AS, Anees MM, Tawfik MA. Clinical and radiographic evaluation of immediate loaded dental implants with local application of melatonin: A preliminary randomized controlled clinical trial. J Oral Implantol 2016; 42(2): 119-25.
[http://dx.doi.org/10.1563/aaid-joi-D-14-00277] [PMID: 26103559]
[131]
Najeeb S, Khurshid Z, Zohaib S, Zafar MS. Therapeutic potential of melatonin in oral medicine and periodontology. Kaohsiung J Med Sci 2016; 32(8): 391-6.
[http://dx.doi.org/10.1016/j.kjms.2016.06.005] [PMID: 27523451]
[132]
Permuy M. López-Peña M, González-Cantalapiedra A, Muñoz F. Melatonin: A review of its potential functions and effects on dental diseases. Int J Mol Sci 2017; 18(4): E865.
[http://dx.doi.org/10.3390/ijms18040865] [PMID: 28422058]
[133]
Gómez-Moreno G, Aguilar-Salvatierra A, Boquete-Castro A, et al. Outcomes of topical applications of melatonin in implant dentistry: A systematic review. Implant Dent 2015; 24(1): 25-30.
[http://dx.doi.org/10.1097/ID.0000000000000186] [PMID: 25621548]
[134]
Posch AT, de Avellar-Pinto JF, Malta FS, et al. Lithium chloride improves bone filling around implants placed in estrogen-deficient rats. Arch Oral Biol 2020; 111: 104644.
[http://dx.doi.org/10.1016/j.archoralbio.2019.104644] [PMID: 31896027]
[135]
Kim JB, Leucht P, Lam K, et al. Bone regeneration is regulated by WNT signaling. J Bone Miner Res 2007; 22(12): 1913-23.
[http://dx.doi.org/10.1359/jbmr.070802] [PMID: 17696762]
[136]
Naot D, Cornish J. The role of peptides and receptors of the calcitonin family in the regulation of bone metabolism. Bone 2008; 43(5): 813-8.
[http://dx.doi.org/10.1016/j.bone.2008.07.003] [PMID: 18687416]
[137]
Rosenfeld MG, Mermod JJ, Amara SG, et al. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 1983; 304(5922): 129-35.
[http://dx.doi.org/10.1038/304129a0] [PMID: 6346105]
[138]
Ogawa A, Harris V, McCorkle SK, Unger RH, Luskey KL. Amylin secretion from the rat pancreas and its selective loss after streptozotocin treatment. J Clin Invest 1990; 85(3): 973-6.
[http://dx.doi.org/10.1172/JCI114528] [PMID: 2179271]
[139]
Cankaya D, Tabak Y, Ozturk AM, Gunay MC. Perioperative alendronate, risedronate, calcitonin and indomethacin treatment alters femoral stem fixation and periprosthetic bone mineral density in ovariectomized rats. J Orthop Sci 2015; 20(4): 728-33.
[http://dx.doi.org/10.1007/s00776-015-0717-5] [PMID: 25804375]
[140]
Chen BL, Xie DH, Zheng ZM, et al. Comparison of the effects of alendronate sodium and calcitonin on bone-prosthesis osseointegration in osteoporotic rats. Osteoporos Int 2011; 22(1): 265-70.
[http://dx.doi.org/10.1007/s00198-010-1186-5] [PMID: 20204600]
[141]
Mao Y, Lu WQ. Effect of calcitonin on biomechanical characteristics of osteoporotic bone with implant. J Tongji University 2012; p. 02.
[142]
Januário AL, Sallum EA, de Toledo S, Sallum AW, Nociti JF Jr. Effect of calcitonin on bone formation around titanium implant. A histometric study in rabbits. Braz Dent J 2001; 12(3): 158-62.
[PMID: 11696910]
[143]
Bai-ling C, Deng-hui X, Wei-jia L, et al. Calcitonin promotes implant osteointegration in osteoporosis condition. J Clin Rehabil Tissue Eng Res 2011; 15(26): 4927-30.
[144]
Bartl R, Frisch B, Tresckow E, Bartl C. Bisphosphonates in medical practice: Actions-side effects-indications-strategies. Springer Science & Business Media: Berlin 2007.
[http://dx.doi.org/10.1007/978-3-540-69870-8]
[145]
Fleish H, Neuman WF. Mechanisms of calcification: Role of collagen, polyphosphates, and phosphatase. Am J Physiol 1961; 200(6): 1296-300.
[http://dx.doi.org/10.1152/ajplegacy.1961.200.6.1296] [PMID: 13700202]
[146]
Najeeb S, Zafar MS, Khurshid Z, Zohaib S, Hasan SM, Khan RS. Bisphosphonate releasing dental implant surface coatings and osseointegration: A systematic review. J Taibah Univ Med Sci 2017; 12(5): 369-75.
[http://dx.doi.org/10.1016/j.jtumed.2017.05.007] [PMID: 31435266]
[147]
Lehenkari PP, Kellinsalmi M. Näpänkangas JP, et al. Further insight into mechanism of action of clodronate: Inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite. Mol Pharmacol 2002; 61(5): 1255-62.
[http://dx.doi.org/10.1124/mol.61.5.1255] [PMID: 11961144]
[148]
Gong L, Altman RB, Klein TE. Bisphosphonates pathway. Pharmacogenet Genomics 2011; 21(1): 50-3.
[http://dx.doi.org/10.1097/FPC.0b013e328335729c] [PMID: 20023594]
[149]
Qayoom I, Raina DB. Širka A, et al. Anabolic and antiresorptive actions of locally delivered bisphosphonates for bone repair: A review. Bone Joint Res 2018; 7(10): 548-60.
[http://dx.doi.org/10.1302/2046-3758.710.BJR-2018-0015.R2] [PMID: 30464835]
[150]
Guimarães MB, Antes TH, Dolacio MB, Pereira DD, Marquezan M. Does local delivery of bisphosphonates influence the osseointegration of titanium implants? A systematic review. Int J Oral Maxillofac Implants 2017; 46(11): 1429-36.
[http://dx.doi.org/10.1016/j.ijom.2017.04.014] [PMID: 28521963]
[151]
Kellesarian SV, Abduljabbar T, Vohra F, et al. Role of local alendronate delivery on the osseointegration of implants: A systematic review and meta-analysis. Int J Oral Maxillofac Implants 2017; 46(7): 912-21.
[http://dx.doi.org/10.1016/j.ijom.2017.03.009] [PMID: 28366449]
[152]
Abtahi J, Henefalk G, Aspenberg P. Randomised trial of bisphosphonate-coated dental implants: Radiographic follow-up after five years of loading. Int J Oral Maxillofac Implants 2016; 45(12): 1564-9.
[http://dx.doi.org/10.1016/j.ijom.2016.09.001] [PMID: 27688166]
[153]
Abtahi J, Henefalk G, Aspenberg P. Impact of a zoledronate coating on early post-surgical implant stability and marginal bone resorption in the maxilla-A split-mouth randomized clinical trial. Clin Oral Implants Res 2019; 30(1): 49-58.
[http://dx.doi.org/10.1111/clr.13391] [PMID: 30565741]
[154]
Khamis AK, Elsharkawy S. The influence of local delivery of bisphosphonate on osseointegration of dental implants. Evid Based Dent 2018; 19(3): 82-3.
[http://dx.doi.org/10.1038/sj.ebd.6401326] [PMID: 30361658]
[155]
Stavropoulos A, Bertl K, Pietschmann P, Pandis N. Schiødt M, Klinge B. The effect of antiresorptive drugs on implant therapy: Systematic review and meta-analysis. Clin Oral Implants Res 2018; 29 (Suppl. 18): 54-92.
[http://dx.doi.org/10.1111/clr.13282] [PMID: 30306695]
[156]
Schmitt CM, Buchbender M, Lutz R, Neukam FW. Oral implant survival in patients with bisphosphonate (BP)/antiresorptive and radiation therapy and their impact on osteonecrosis of the jaws. A systematic review. Eur J Oral Implantology 2018; 11(1) (Suppl. 1): S93-S111.
[PMID: 30109302]
[157]
Gelazius R, Poskevicius L, Sakavicius D, Grimuta V, Juodzbalys G. Dental implant placement in patients on bisphosphonate therapy: A systematic review. J Oral Maxillofac Res 2018; 9(3): e2.
[http://dx.doi.org/10.5037/jomr.2018.9302] [PMID: 30429962]
[158]
Yajima N, Munakata M, Fuchigami K, Sanda M, Kasugai S. Influence of bisphosphonates on implant failure rates and characteristics of postmenopausal woman mandibular jawbone. J Oral Implantol 2017; 43(5): 345-9.
[http://dx.doi.org/10.1563/aaid-joi-D-17-00015] [PMID: 28873023]
[159]
de-Freitas N-R, Lima LB, de-Moura MB, Veloso-Guedes CC. Simamoto-Júnior PC, de-Magalhães D. Bisphosphonate treatment and dental implants: A systematic review. Med Oral Patol Oral Cir Bucal 2016; 21(5): e644-51.
[http://dx.doi.org/10.4317/medoral.20920] [PMID: 27475681]
[160]
Mendes V, Dos Santos GO, Calasans-Maia MD, Granjeiro JM, Moraschini V. Impact of bisphosphonate therapy on dental implant outcomes: An overview of systematic review evidence. Int J Oral Maxillofac Implants 2019; 48(3): 373-81.
[http://dx.doi.org/10.1016/j.ijom.2018.09.006] [PMID: 30314708]
[161]
Kapasa ER, Giannoudis PV, Jia X, Hatton PV, Yang XB. The effect of RANKL/OPG balance on reducing implant complications. J Funct Biomater 2017; 8(4): 42.
[http://dx.doi.org/10.3390/jfb8040042] [PMID: 28937598]
[162]
Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 2007; 9 (Suppl 1): S1.
[http://dx.doi.org/10.1186/ar2165]
[163]
Theoleyre S, Wittrant Y, Tat SK, Fortun Y, Redini F, Heymann D. The molecular triad OPG/RANK/RANKL: Involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev 2004; 15(6): 457-75.
[http://dx.doi.org/10.1016/j.cytogfr.2004.06.004] [PMID: 15561602]
[164]
Kostenuik PJ. Osteoprotegerin and RANKL regulate bone resorption, density, geometry and strength. Curr Opin Pharmacol 2005; 5(6): 618-25.
[http://dx.doi.org/10.1016/j.coph.2005.06.005] [PMID: 16188502]
[165]
Liu Y, Hu J, Liu B, Jiang X, Li Y. The effect of osteoprotegerin on implant osseointegration in ovariectomized rats. Arch Med Sci 2017; 13(2): 489-95.
[http://dx.doi.org/10.5114/aoms.2017.65468] [PMID: 28261305]
[166]
Verborgt O, Gibson GJ, Schaffler MB. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res 2000; 15(1): 60-7.
[http://dx.doi.org/10.1359/jbmr.2000.15.1.60] [PMID: 10646115]
[167]
Colopy SA, Benz-Dean J, Barrett JG, et al. Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading. Bone 2004; 35(4): 881-91.
[http://dx.doi.org/10.1016/j.bone.2004.05.024] [PMID: 15454095]
[168]
Fazzalari NL. Bone fracture and bone fracture repair. Osteoporos Int 2011; 22(6): 2003-6.
[http://dx.doi.org/10.1007/s00198-011-1611-4] [PMID: 21523400]
[169]
Weitzmann MN. The role of inflammatory cytokines, the rankl/opg axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica 2013; 2013: 125705.
[http://dx.doi.org/10.1155/2013/125705] [PMID: 24278766]
[170]
Aubin JE, Bonnelye E. Osteoprotegerin and its ligand: A new paradigm for regulation of osteoclastogenesis and bone resorption. Osteoporos Int 2000; 11(11): 905-13.
[http://dx.doi.org/10.1007/s001980070028] [PMID: 11193242]
[171]
Haynes DR, Crotti TN, Potter AE, et al. The osteoclastogenic molecules RANKL and RANK are associated with periprosthetic osteolysis. J Bone Joint Surg Br 2001; 83(6): 902-11.
[http://dx.doi.org/10.1302/0301-620X.83B6.0830902] [PMID: 11521937]
[172]
Bernhardsson M, Sandberg O, Aspenberg P. Anti-RANKL treatment improves screw fixation in cancellous bone in rats. Injury 2015; 46(6): 990-5.
[http://dx.doi.org/10.1016/j.injury.2015.02.011] [PMID: 25744169]
[173]
Baron R, Ferrari S, Russell RG. Denosumab and bisphosphonates: Different mechanisms of action and effects. Bone 2011; 48(4): 677-92.
[http://dx.doi.org/10.1016/j.bone.2010.11.020] [PMID: 21145999]
[174]
Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 2008; 29(2): 155-92.
[http://dx.doi.org/10.1210/er.2007-0014] [PMID: 18057140]
[175]
Maximov PY, Lee TM, Jordan VC. The discovery and development of Selective Estrogen Receptor Modulators (SERMs) for clinical practice. Curr Clin Pharmacol 2013; 8(2): 135-55.
[http://dx.doi.org/10.2174/1574884711308020006] [PMID: 23062036]
[176]
Heo HA, Park S, Jeon YS, Pyo SW. Effect of raloxifene administration on bone response around implant in the maxilla of osteoporotic rats. Implant Dent 2019; 28(3): 272-8.
[http://dx.doi.org/10.1097/ID.0000000000000881] [PMID: 31124824]
[177]
Faverani LP, Polo TOB, Ramalho-Ferreira G, et al. Raloxifene but not alendronate can compensate the impaired osseointegration in osteoporotic rats. Clin Oral Investig 2018; 22(1): 255-65.
[http://dx.doi.org/10.1007/s00784-017-2106-2] [PMID: 28357643]
[178]
Mu C, Hu Y, Huang L, et al. Sustained raloxifene release from hyaluronan-alendronate-functionalized titanium nanotube arrays capable of enhancing osseointegration in osteoporotic rabbits. Mater Sci Eng C 2018; 82: 345-53.
[http://dx.doi.org/10.1016/j.msec.2017.08.056] [PMID: 29025668]
[179]
Leiblein M, Henrich D, Fervers F, et al. Do antiosteoporotic drugs improve bone regeneration in vivo? Eur J Trauma Emerg Surg 2019.
[PMID: 31028428]
[180]
Sendyk DI, Deboni MC, Pannuti CM, Naclério-Homem MG, Wennerberg A. The influence of statins on osseointegration: A systematic review of animal model studies. J Oral Rehabil 2016; 43(11): 873-82.
[http://dx.doi.org/10.1111/joor.12438] [PMID: 27611923]
[181]
Kellesarian SV, Al Amri MD, Al-Kheraif AA, Ghanem A, Malmstrom H, Javed F. Efficacy of local and systemic statin delivery on the osseointegration of implants: A systematic review. Int J Oral Maxillofac Implants 2017; 32(3): 497-506.
[http://dx.doi.org/10.11607/jomi.4955] [PMID: 28494034]
[182]
Moraschini V, Almeida DCF, Calasans-Maia JA, Diuana Calasans-Maia M. The ability of topical and systemic statins to increase osteogenesis around dental implants: A systematic review of histomorphometric outcomes in animal studies. Int J Oral Maxillofac Implants 2018; 47(8): 1070-8.
[http://dx.doi.org/10.1016/j.ijom.2017.12.009] [PMID: 29352637]
[183]
Moriyama Y, Ayukawa Y, Ogino Y, et al. Local application of fluvastatin improves peri-implant bone quantity and mechanical properties: A rodent study. Acta Biomater 2010; 6(4): 1610-8.
[http://dx.doi.org/10.1016/j.actbio.2009.10.045] [PMID: 19887121]
[184]
Li X, Wu F, Zhang Y, Yang J, Shinohara A, Kagami H. Discontinuation of simvastatin leads to a rebound phenomenon and results in immediate peri-implant bone loss. Clin Exp Dent Res 2016; 2(1): 65-72.
[http://dx.doi.org/10.1002/cre2.23] [PMID: 29744151]
[185]
Moriyama Y, Ayukawa Y, Ogino Y, Atsuta I, Koyano K. Topical application of statin affects bone healing around implants. Clin Oral Implants Res 2008; 19(6): 600-5.
[http://dx.doi.org/10.1111/j.1600-0501.2007.01508.x] [PMID: 18422989]
[186]
Tan J, Yang N, Fu X, et al. Single-dose local simvastatin injection improves implant fixation via increased angiogenesis and bone formation in an ovariectomized rat model. Med Sci Monit 2015; 21: 1428-39.
[http://dx.doi.org/10.12659/MSM.892247] [PMID: 25982481]
[187]
Ding X, Wang S, Jin W, Liu X, Chen J, Chen S. Encapsulation of a nanoporous simvastatin-chitosan composite to enhance osteointegration of hydroxyapatite-coated polyethylene terephthalate ligaments. Int J Nanomedicine 2019; 14: 4881-93.
[http://dx.doi.org/10.2147/IJN.S210687] [PMID: 31308664]
[188]
Jun JH, Oh KC, Park KH, Jung N, Li J, Moon HS. Improvement of osseointegration by ultraviolet and/or simvastatin treatment on titanium implants with or without bone graft materials. Materials 2021; 14(13): 3707.
[http://dx.doi.org/10.3390/ma14133707] [PMID: 34279277]
[189]
Coburn J, Carr B, Boggess WJ, et al. Peri-implantitis risk in patients taking statins and antihypertensives. J Oral Maxillofac Surg 2020; 78(10): e62-3.
[http://dx.doi.org/10.1016/j.joms.2020.07.126]
[190]
Gutierrez GE, Lalka D, Garrett IR, Rossini G, Mundy GR. Transdermal application of lovastatin to rats causes profound increases in bone formation and plasma concentrations. Osteoporos Int 2006; 17(7): 1033-42.
[http://dx.doi.org/10.1007/s00198-006-0079-0] [PMID: 16758140]
[191]
Mundy G, Garrett R, Harris S, et al. Stimulation of bone formation in vitro and in rodents by statins. Science 1999; 286(5446): 1946-9.
[http://dx.doi.org/10.1126/science.286.5446.1946] [PMID: 10583956]
[192]
Dundar S, Bozoglan A. Evaluation of the effects of topically applied simvastatin on titanium implant osseointegration. J Oral Biol Craniofac Res 2020; 10(2): 149-52.
[http://dx.doi.org/10.1016/j.jobcr.2020.04.004] [PMID: 32322477]
[193]
Osman MA, Abd El-Akber MO, Antar MM. The effect of simvastatin drug on osteogenesis around titanium implant (radiographic and histomorphometric analysis). Al-Azhar J Dent Sci 2018; 21(3): 275-83.
[http://dx.doi.org/10.21608/ajdsm.2018.71571]
[194]
Apostu D, Lucaciu O, Mester A, Oltean-Dan D, Gheban D, Ciprian Benea HR. Tibolone, alendronate, and simvastatin enhance implant osseointegration in a preclinical in vivo model. Clin Oral Implants Res 2020; 31(7): 655-68.
[http://dx.doi.org/10.1111/clr.13602] [PMID: 32279374]
[195]
Mohammed AH, Al Kayat A. Effect of systemic administration of simvastatin on dental implant stability: A random clinical study. Iraqi Dent J 2016; 38(2): 119-23.
[http://dx.doi.org/10.26477/idj.v38i2.89]
[196]
Basudan AM, Shaheen MY, Niazy AA, van den Beucken JJJP, Jansen JA, Alghamdi HS. Biological effect of single or combined pharmacological therapy using alendronate and simvastatin on implant osseointegration: An in vivo study in healthy and osteoporotic rat models. Appl Sci 2020; 10(12): 4298.
[http://dx.doi.org/10.3390/app10124298]
[197]
Xu R, Shi G, Xu L, et al. Simvastatin improves oral implant osseointegration via enhanced autophagy and osteogenesis of BMSCs and inhibited osteoclast activity. J Tissue Eng Regen Med 2018; 12(5): 1209-19.
[http://dx.doi.org/10.1002/term.2652] [PMID: 29498229]
[198]
Fang W, Zhao S, He F, et al. Influence of simvastatin-loaded implants on osseointegration in an ovariectomized animal model. BioMed Res Inter 2015; 2015: 7.
[http://dx.doi.org/10.1155/2015/831504]
[199]
Zhao B, Li X, Xu H, Jiang Y, Wang D, Liu R. Influence of simvastatin-strontium-hydroxyapatite coated implant formed by micro-arc oxidation and immersion method on osteointegration in osteoporotic rabbits. Int J Nanomedicine 2020; 15: 1797-807.
[http://dx.doi.org/10.2147/IJN.S244815] [PMID: 32214812]
[200]
Pauly S, Back DA, Kaeppler K, Haas NP, Schmidmaier G, Wildemann B. Influence of statins locally applied from orthopedic implants on osseous integration. BMC Musculoskelet Disord 2012; 13(1): 208.
[http://dx.doi.org/10.1186/1471-2474-13-208] [PMID: 23102098]
[201]
Scardueli CR, Bizelli-Silveira C, Marcantonio RAC, Marcantonio E Jr, Stavropoulos A, Spin-Neto R. Systemic administration of strontium ranelate to enhance the osseointegration of implants: systematic review of animal studies. Int J Implant Dent 2018; 4(1): 21.
[http://dx.doi.org/10.1186/s40729-018-0132-8] [PMID: 30014305]
[202]
Meunier PJ, Roux C, Seeman E, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 2004; 350(5): 459-68.
[http://dx.doi.org/10.1056/NEJMoa022436] [PMID: 14749454]
[203]
Barbara A, Delannoy P, Denis BG, Marie PJ. Normal matrix mineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells. Metabolism 2004; 53(4): 532-7.
[http://dx.doi.org/10.1016/j.metabol.2003.10.022] [PMID: 15045704]
[204]
Sila-Asna M, Bunyaratvej A, Maeda S, Kitaguchi H, Bunyaratavej N. Osteoblast differentiation and bone formation gene expression in strontium-inducing bone marrow mesenchymal stem cell. Kobe J Med Sci 2007; 53(1-2): 25-35.
[PMID: 17579299]
[205]
Marx D, Rahimnejad YA, Papini M, Towler M. A review of the latest insights into the mechanism of action of strontium in bone. Bone Rep 2020; 12: 100273.
[http://dx.doi.org/10.1016/j.bonr.2020.100273] [PMID: 32395571]
[206]
Li Y, Feng G, Gao Y, Luo E, Liu X, Hu J. Strontium ranelate treatment enhances hydroxyapatite-coated titanium screws fixation in osteoporotic rats. J Orthop Res 2010; 28(5): 578-82.
[http://dx.doi.org/10.1002/jor.21050] [PMID: 20014319]
[207]
Chen B, Li Y, Yang X, Xu H, Xie D. Zoledronic acid enhances bone-implant osseointegration more than alendronate and strontium ranelate in ovariectomized rats. Osteoporos Int 2013; 24(7): 2115-21.
[http://dx.doi.org/10.1007/s00198-013-2288-7] [PMID: 23389695]
[208]
Linderbäck P, Agholme F, Wermelin K, Närhi T, Tengvall P, Aspenberg P. Weak effect of strontium on early implant fixation in rat tibia. Bone 2012; 50(1): 350-6.
[http://dx.doi.org/10.1016/j.bone.2011.10.034] [PMID: 22108138]
[209]
Alenezi A, Galli S, Atefyekta S, Andersson M, Wennerberg A. Osseointegration effects of local release of strontium ranelate from implant surfaces in rats. J Mater Sci Mater Med 2019; 30(10): 116.
[http://dx.doi.org/10.1007/s10856-019-6314-y] [PMID: 31606798]