Extraction and Purification of Bioactive Peptide with Antimicrobial Properties from Horseshoe Crab

Article ID: e060622205657 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Peptides are small biomolecules that act as bioactive or host defense molecules. These peptides have a significant role in medicine because of their broad spectrum antimicrobial properties. Marine sources are the largest supply of peptides and natural small molecules since they represent half of the total global biodiversity. Among the different crab species, the horseshoe crab is widely used for extracting the peptides. The horseshoe crab is a marine and brackish water arthropod; it plays a crucial role in the reel and whelk fishing industry and the production of important pharmaceutical bioactive components. This review highlights the details of the extraction and purification of antimicrobial peptides from the horseshoe crab. These peptides represent trends and opportunities for the future, with a focus on the pharmaceutical industries.

Keywords: Antimicrobial peptides, bioactive, horseshoe crab, hemolymph, host defense molecule, global biodiversity.

Graphical Abstract

[1]
Stine, V.; Mathias, O.; Francisco, J.; Quevedo, F.; Itsara, I.; Peter, F. Present and potential future distributions of Asian Horseshoe crabs determine areas for conservation. Front. Mar. Sci., 2008, 5(164), 1-16.
[2]
Smith, D.R.; Brockmann, H.J.; Beekey, M.A.; King, T.L.; Millard, M.J.; Zaldivar-Rae, J. Conservation status of the American horseshoe crab, (Limulus Polyphemus): a regional assessment. Rev. Fish Biol. Fish., 2017, 27(1), 1-41.https://link.springer.com/article/10.1007/s11160-016-9461-y
[3]
Sekiguchi, K.; Sugita, H. Systematics and hybridization in the four living species of horseshoe crabs. Evolution, 1980, 34(4), 712-718.
[http://dx.doi.org/10.1111/j.1558-5646.1980.tb04010.x] [PMID: 28563980]
[4]
Rudkin, D.M.; Young, G.A. Horseshoe crabs an ancient ancestry revealed in biology and Conservation of Horseshoe crab; Tanacredi, J.T.; Botton, M/L.; Smith, D.R; Springer: Boston, MA, 2009, pp. 25-44.
[5]
Carmichael, R.H.; Brush, E. Three decades of horseshoe crab rearing a review of conditions for captive growth and survival. Rev. Rev. Aquacult., 2012, 4(1), 32-43.
[http://dx.doi.org/10.1111/j.1753-5131.2012.01059.x]
[6]
Mashar, A.; Buter, N.; Juliandi, B.; Qonita, Y.; Hakim, A.A.; Wardiatno, Y. Biodiversity and Distribution of Horseshoe Crabs in Northern Coast of Java and Southern Coast of Madura. IOP Conference Series Earth and Environment Science., 2017, 54(1)http://dx.doi.org/doi 012076
[http://dx.doi.org/10.1088/1755-1315/54/1/012076]
[7]
Iwanaga, S. Biochemical principle of Limulus test for detecting bacterial endotoxins. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2007, 83(4), 110-119.
[http://dx.doi.org/10.2183/pjab.83.110] [PMID: 24019589]
[8]
Kumar, V.; Roy, S.; Sahoo, A.K.; Kumar, V. Horseshoe crabs: Biomedical importance and its potential use in developing health-care products. Indian J. Geo-Mar. Sci., 2016, 45(10), 1234-1244.
[9]
Smith, D.R.; Brockmann, H.J.; Beekey, M.A.; King, T.L.; Milard, M.J.; Zaldivar-Rae, J. Conservation status of the American horseshoe crab, (Limulus polyphemus): A regional assessment. Rev. Fish Biol. Fish., 2017, 27(1), 1-41.
[http://dx.doi.org/10.1007/s11160-016-9461-y]
[10]
Marggraf, M.B.; Panteleev, P.V.; Emelianova, A.A.; Sorokin, M.I.; Bolosov, I.A.; Buzdin, A.A.; Kuzmin, D.V.; Ovchinnikova, T.V. Cytotoxic potential of the novel horseshoe crab peptide polyphemusin III. Mar. Drugs, 2018, 16(12), 466.
[http://dx.doi.org/10.3390/md16120466] [PMID: 30486233]
[11]
Best Manufacturing Practices- The Horseshoe Crab 2013.https://www.horseshoecrab.org/med/bestpractices.html
[12]
Iwanaga, S.; Kawabata, S. Evolution and phylogeny of defense molecules associated with innate immunity in horseshoe crab. Front. Biosci., 1998, 3(4), D973-D984.
[http://dx.doi.org/10.2741/A337] [PMID: 9727083]
[13]
Armstrong, P.B. The American Horseshoe Carb; Shuster, C.M.; Barlow, R.B; Brockmann, J.J., Ed.; Harvard University press: Cambridge, MA, 2003, pp. 288-309.
[14]
Iwanaga, S. The limulus clotting reaction. Curr. Opin. Immunol., 1993, 5(1), 74-82.
[http://dx.doi.org/10.1016/0952-7915(93)90084-6] [PMID: 8452677]
[15]
Levin, J. The Limulus amebocyte lysate test: Perspectives and problems. Prog. Clin. Biol. Res., 1987, 231, 1-23.
[PMID: 3588610]
[16]
Koshiba, T.; Hashii, T.; Kawabata, S. A structural perspective on the interaction between lipopolysaccharide and factor C, a receptor involved in recognition of Gram-negative bacteria. J. Biol. Chem., 2007, 282(6), 3962-3967.
[http://dx.doi.org/10.1074/jbc.M609198200] [PMID: 17135239]
[17]
James, G.T. Inactivation of the protease inhibitor phenylmethylsulfonyl fluoride in buffers. Anal. Biochem., 1978, 86(2), 574-579.
[http://dx.doi.org/10.1016/0003-2697(78)90784-4] [PMID: 26289]
[18]
Mürer, E.H.; Levin, J.; Holme, R. Isolation and studies of the granules of the amebocytes of Limulus polyphemus, the horseshoe crab. J. Cell. Physiol., 1975, 86(3 Pt 1), 533-542.
[http://dx.doi.org/10.1002/jcp.1040860310] [PMID: 413]
[19]
Decker, H.; Ryan, M.; Jaenicke, E.; Terwilliger, N. SDS-induced phenoloxidase activity of hemocyanins from Limulus polyphemus, Eurypelma californicum, and Cancer magister. J. Biol. Chem., 2001, 276(21), 17796-17799.
[http://dx.doi.org/10.1074/jbc.M010436200] [PMID: 11278677]
[20]
Armstrong, P.B.; Melchior, R.; Quigley, J.P. Humoral immunity in long-lived arthropods. J. Insect Physiol., 1996, 42(1), 53-64.
[http://dx.doi.org/10.1016/0022-1910(95)00082-8]
[21]
Armstrong, P.B. Interaction of the motile blood cells of the horseshoe crab, Limulus. Studies on contact paralysis of pseudopodial activity and cellular overlapping in vitro. Exp. Cell Res., 1977, 107(1), 127-138.
[http://dx.doi.org/10.1016/0014-4827(77)90394-9] [PMID: 862673]
[22]
Conrad, M.L.; Pardy, R.L.; Wainwright, N.; Child, A.; Armstrong, P.B. Response of the blood clotting system of the American horseshoe crab, Limulus polyphemus, to a novel form of lipopolysaccharides from a green alga. Biol. Bull., 2001, 201(2), 246-247.
[http://dx.doi.org/10.2307/1543347] [PMID: 11687404]
[23]
Nakamura, T.; Morita, T.; Iwanaga, S. Intracellular proclotting enzyme in limulus (Tachypleus tridentatus) hemocytes: Its purification and properties. J. Biochem., 1985, 97(6), 1561-1574.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a135213] [PMID: 4030738]
[24]
Levin, J.; Ornberg, R.L. Blood cells of marine invertebrates: Experimental systems in cell biology a comparative physiology; Cohen, W.D; Alan. R Liss, Inc.: New York, NY, 1985, pp. 259-260.
[25]
Liang, S.M.; Liu, T.Y. Studies on the Limulus coagulation system: Inhibition of activation of the proclotting enzyme, by dimethyl sulfoxide. Biochem. Biophys. Res. Commun., 1982, 105(2), 553-559.
[http://dx.doi.org/10.1016/0006-291X(82)91470-X] [PMID: 7092871]
[26]
Söderhäll, K.; Smith, V.J. Separation of the haemocyte populations of Carcinus maenas and other marine decapods, and prophenoloxidase distribution. Dev. Comp. Immunol., 1983, 7(2), 229-239.
[http://dx.doi.org/10.1016/0145-305X(83)90004-6] [PMID: 6409683]
[27]
Solon, E.; Gupta, A.P.; Gaugler, R. Signal transduction during exocytosis in Limulus polyphemus granulocytes. Dev. Comp. Immunol., 1996, 20(5), 307-321.
[http://dx.doi.org/10.1016/S0145-305X(96)00022-5] [PMID: 9016385]
[28]
Morita, T.; Ohtsubo, S.; Nakamura, T.; Tanaka, S.; Iwanaga, S.; Ohashi, K.; Niwa, M. Isolation and biological activities of limulus anticoagulant (anti-LPS factor) which interacts with lipopolysaccharide (LPS). J. Biochem., 1985, 97(6), 1611-1620.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a135218] [PMID: 4030741]
[29]
Saito, T.; Kawabata, S.; Shigenaga, T.; Takayenoki, Y.; Cho, J.; Nakajima, H.; Hirata, M.; Iwanaga, S. A novel big defensin identified in horseshoe crab hemocytes: Isolation, amino acid sequence, and antibacterial activity. J. Biochem., 1995, 117(5), 1131-1137.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a124818] [PMID: 8586631]
[30]
Saravanan, R.; Sujatha, K. Purification of antimicrobial peptides from Paratelphusa jacquemontii hemolymph in response to artificial bacterial infection. Int. J. Adv. Multidiscip.Res, 2016, 3(11), 93-98.
[http://dx.doi.org/10.22192/ijamr.2016.03.11.009]
[32]
Takanori, N.; Takashi, M.; Sadaaki, W. Lipolysaccharides-sensitive serine protease zymogen (factor C) found in Limulus hemocytes. Eur. J. Biochem., 1986, 154, 511-521.
[http://dx.doi.org/10.1111/j.1432-1033.1986.tb09427.x] [PMID: 3512266]
[33]
Selsted, M.E.; Tang, Y.Q.; Morris, W.L.; McGuire, P.A.; Novotny, M.J.; Smith, W.; Henschen, A.H.; Cullor, J.S. Purification, primary structures, and antibacterial activities of -defensins, a new family of antimicrobial peptides from bovine neutrophils. J. Biol. Chem., 1993, 268(9), 6641-6648.
[http://dx.doi.org/10.1016/S0021-9258(18)53298-1] [PMID: 8454635]
[34]
Diamond, G.; Zasloff, M.; Eck, H.; Brasseur, M.; Maloy, W.L.; Bevins, C.L. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: Peptide isolation and cloning of a cDNA. Proc. Natl. Acad. Sci. USA, 1991, 88(9), 3952-3956.
[http://dx.doi.org/10.1073/pnas.88.9.3952] [PMID: 2023943]
[35]
Zasloff, M. Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA, 1987, 84(15), 5449-5453.
[http://dx.doi.org/10.1073/pnas.84.15.5449] [PMID: 3299384]
[36]
Gennaro, R.; Skerlavaj, B.; Romeo, D. Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect. Immun., 1989, 57(10), 3142-3146.
[http://dx.doi.org/10.1128/iai.57.10.3142-3146.1989] [PMID: 2777377]
[37]
Lee, J.Y.; Boman, A.; Sun, C.X.; Andersson, M.; Jörnvall, H.; Mutt, V.; Boman, H.G. Antibacterial peptides from pig intestine: Isolation of a mammalian cecropin. Proc. Natl. Acad. Sci. USA, 1989, 86(23), 9159-9162.
[http://dx.doi.org/10.1073/pnas.86.23.9159] [PMID: 2512577]
[38]
Agerberth, B.; Lee, J.Y.; Bergman, T.; Carlquist, M.; Boman, H.G.; Mutt, V.; Jörnvall, H. Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur. J. Biochem., 1991, 202(3), 849-854.
[http://dx.doi.org/10.1111/j.1432-1033.1991.tb16442.x] [PMID: 1765098]
[39]
Ganz, T.; Selsted, M.E.; Szklarek, D.; Harwig, S.S.; Daher, K.; Bainton, D.F.; Lehrer, R.I. Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest., 1985, 76(4), 1427-1435.
[http://dx.doi.org/10.1172/JCI112120] [PMID: 2997278]
[40]
Guo, D.C.; Mant, C.T.; Hodges, R.S. Effects of ion-pairing reagents on the prediction of peptide retention in reversed-phase high-performance liquid chromatography. J. Chromatogr. A, 1987, 386, 205-222.
[http://dx.doi.org/10.1016/S0021-9673(01)94598-4] [PMID: 3558604]
[41]
Zheng, J.; Wen, D.; Zhao, H.; Zhang, C. Acetic acid urea polyacrylamide gel electrophoresis: A rapid method for testing the genetic purity of sunflower seeds. Qual. Assur. Saf. Crops Foods, 2017, 09(1), 41-46.
[http://dx.doi.org/10.3920/QAS2015.0593]
[42]
Smith, B.J. Acetic Acid- Urea Polyacrylamide Gel Electrophoresis of Proteins.In: Walker, J.M (eds) Basic Protein and Peptide Protocols. Methods in Molecular Biology; , 1994, Vol. 32, . Human Press.
[http://dx.doi.org/10.1385/0-89603-268-X:39]
[43]
Suda, S.; Field, D.; Barron, N. Antimicrobial Peptide Production and Purification.In Walls, D., Loughran, S. (eds) Protein Chromatography. Methods in Molecular Biology; , 2017, Vol. 1485, . Humana Press, New York, NY..
[http://dx.doi.org/10.1007/978-1-4939-6412-3_22]
[44]
Yedery, R.D.; Reddy, K.V. Purification and characterization of antibacterial proteins from granular hemocytes of Indian mud crab, Scylla serrata. Acta Biochim. Pol., 2009, 56(1), 71-82.
[http://dx.doi.org/10.18388/abp.2009_2518] [PMID: 19219229]