Mitoresilience: Hormesis, Psycho-physical Resilience, Mitochondria and Heart Rate Variability as Relevant Interplaying Elements in Longevity Medicine

Page: [25 - 32] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Psycho-biological resilience is considered one of the most important factors in the epigenetics of aging. Cell senescence exhibits a series of possible biochemical derangements concerning mitochondria, proteasome, genome and membranes. Research has shown that resilience can be acquired through hormesis, a set of conservative and adaptive processes based on biphasic doseresponse to specific mild stressors, such as fasting, intake of polyphenols, exercising, physical and chemical stress and mental engagement. These stimuli were shown to elicit beneficial cellular metabolic pathways, such as sirtuin activation, mechanistic target of rapamycin and insulin growth factor- 1 downregulation, nuclear related factor 2 upregulation and autophagy. The complex of these resilience-building processes plays a documented role in longevity. Mitochondria are regarded as one of the core actors of aging processes and represent the main target of hormetic approaches [mitohormesis]; furthermore, the influence of the mind on mitochondria, and thus on the balance of health and disease has been recently established, leading to the so-called mitochondria psychobiology. Hence, psychologic and physical stress that reflects on these organelles may be regarded as a relevant factor in cell senescence, and thus the proposed “mitoresilience“ denomination may be pertinent within the biomedical science of aging. Finally, the quantification of individual resilience is becoming increasingly important in aging science, and the investigation of the autonomic nervous system through heart rate variability (HRV) proved to be a valid method to quantify this parameter. In conclusion, an integrated approach targeting hormetic pathways to improve psychophysical resilience (namely mitoresilience), supported by the monitoring of HRV, may represent a valuable option in longevity medicine.

Keywords: Aging, senescence, hormesis, mitochondria, resilience, heart rate variability, mitohormesis, polyphenols, fasting, stress, nutrition, physical activity, mitoresilience, NrF2.

Graphical Abstract

[1]
Calabrese EJ, Mattson MP. How does hormesis impact biolo-gy, toxicology, and medicine? NPJ Aging Mech Dis 2017; 3(1): 13.
[http://dx.doi.org/10.1038/s41514-017-0013-z] [PMID: 28944077]
[2]
Galimberti D. La medicina dell’aging e dell’antiaging. Italia: Elsevier Amsterdam 2016.
[3]
Editorial What is health? The ability to adapt. Lancet 2009; 373(9666): 781.
[http://dx.doi.org/10.1016/S0140-6736(09)60456-6] [PMID: 19269498]
[4]
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194-217.
[http://dx.doi.org/10.1016/j.cell.2013.05.039] [PMID: 23746838]
[5]
Rattan S, Kyriazis M. The science of hormesis in health and longevity 2019.
[6]
Cavezzi A, Ambrosini L, Colucci R, Ionna GD, Urso SU. Aging in the perspective of integrative medicine, psychoneu-roendocrineimmunology and hormesis. Curr Aging Sci 2020; 13(2): 82-91.
[http://dx.doi.org/10.2174/1874609812666191129095417] [PMID: 31782371]
[7]
Herskind AM, McGue M, Holm NV, Sørensen TIA, Harvald B, Vaupel JW. The heritability of human longevity: A popula-tion-based study of 2872 Danish twin pairs born 1870-1900. Hum Genet 1996; 97(3): 319-23.
[http://dx.doi.org/10.1007/BF02185763] [PMID: 8786073]
[8]
Zeng Y, Shen K. Resilience significantly contributes to excep-tional longevity. Curr Gerontol Geriatr Res 2010; 2010: 525693.
[http://dx.doi.org/10.1155/2010/525693] [PMID: 21197075]
[9]
MacLeod S, Musich S, Hawkins K, Alsgaard K, Wicker ER. The impact of resilience among older adults. Geriatr Nurs 2016; 37(4): 266-72.
[http://dx.doi.org/10.1016/j.gerinurse.2016.02.014] [PMID: 27055911]
[10]
Borras C, Ingles M, Mas-Bargues C. et al. Centenarians: An excellent example of resilience for successful ageing. Mech Ageing Dev 2020; 186: 111199.
[http://dx.doi.org/10.1016/j.mad.2019.111199] [PMID: 31899226]
[11]
Amaral AS, Afonso RM, Brandão D, Teixeira L, Ribeiro O. Resilience in very advanced ages: A study with centenarians. Int J Aging Hum Dev 2021; 93(1): 601-18.
[http://dx.doi.org/10.1177/0091415020926839] [PMID: 32475122]
[12]
Calabrese EJ, Baldwin LA. Hormesis as a biological hypothesis. Environ Health Perspect 1998; 106 (Suppl. 1): 357-62.
[http://dx.doi.org/10.1289/ehp.98106s1357]
[13]
Calabrese EJ, Dhawan G, Kapoor R, Iavicoli I, Calabrese V. What is hormesis and its relevance to healthy aging and longevity? Biogerontology 2015; 16(6): 693-707.
[http://dx.doi.org/10.1007/s10522-015-9601-0] [PMID: 26349923]
[14]
Leak RK, Calabrese EJ, Kozumbo WJ. et al. Enhancing and extending biological performance and resilience. Dose Response 2018; 16(3): 1559325818784501.
[http://dx.doi.org/10.1177/1559325818784501] [PMID: 30140178]
[15]
Agathokleous E, Calabrese EJ. Hormesis: The dose response for the 21st century: The future has arrived. Toxicology 2019; 425: 152249.
[http://dx.doi.org/10.1016/j.tox.2019.152249] [PMID: 31330228]
[16]
Calabrese EJ. The maturing of hormesis as a credible dose-response model. Nonlinearity Biol Toxicol Med 2003; 1(3): 319-43.
[http://dx.doi.org/10.1080/15401420390249907] [PMID: 19330138]
[17]
Martins I, Galluzzi L, Kroemer G. Hormesis, cell death and aging. Aging (Albany NY) 2011; 3(9): 821-8.
[http://dx.doi.org/10.18632/aging.100380] [PMID: 21931183]
[18]
Rubinsztein DC, Mariño G, Kroemer G. Autophagy and aging. Cell 2011; 146(5): 682-95.
[http://dx.doi.org/10.1016/j.cell.2011.07.030] [PMID: 21884931]
[19]
Szumiel I. Radiation hormesis: Autophagy and other cellular mechanisms. Int J Radiat Biol 2012; 88(9): 619-28.
[http://dx.doi.org/10.3109/09553002.2012.699698] [PMID: 22702489]
[20]
Moore MN. Lysosomes, autophagy, and hormesis in cell physiology, pathology, and age-related disease. Dose Response 2020; 18(3): 1559325820934227.
[http://dx.doi.org/10.1177/1559325820934227] [PMID: 32684871]
[21]
Calabrese V, Cornelius C, Cuzzocrea S, Iavicoli I, Rizzarelli E, Calabrese EJ. Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Mol Aspects Med 2011; 32(4-6): 279-304.
[http://dx.doi.org/10.1016/j.mam.2011.10.007] [PMID: 22020114]
[22]
Bhakta-Guha D, Efferth T. Hormesis: Decoding two sides of the same coin. Pharmaceuticals 2015; 8(4): 865-83.
[http://dx.doi.org/10.3390/ph8040865] [PMID: 26694419]
[23]
Lee SH, Lee JH, Lee HY, Min KJ. Sirtuin signaling in cellular senescence and aging. BMB Rep 2019; 52(1): 24-34.
[http://dx.doi.org/10.5483/BMBRep.2019.52.1.290] [PMID: 30526767]
[24]
Wątroba M, Dudek I, Skoda M, Stangret A, Rzodkiewicz P, Szukiewicz D. Sirtuins, epigenetics and longevity. Ageing Res Rev 2017; 40: 11-9.
[http://dx.doi.org/10.1016/j.arr.2017.08.001] [PMID: 28789901]
[25]
Mattson MP. Hormesis defined. Ageing Res Rev 2008; 7(1): 1-7.
[http://dx.doi.org/10.1016/j.arr.2007.08.007] [PMID: 18162444]
[26]
Pall ML, Levine S. Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotec-tive mechanisms, is raised by health promoting factors. Sheng Li Xue Bao 2015; 67(1): 1-18.
[PMID: 25672622]
[27]
Calabrese EJ, Kozumbo WJ. The hormetic dose-response mechanism: Nrf2 activation. Pharmacol Res 2021; 167: 105526.
[http://dx.doi.org/10.1016/j.phrs.2021.105526] [PMID: 33667690]
[28]
Ristow M, Zarse K. How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 2010; 45(6): 410-8.
[http://dx.doi.org/10.1016/j.exger.2010.03.014] [PMID: 20350594]
[29]
Hybertson BM, Gao B, Bose SK, McCord JM. Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation. Mol Aspects Med 2011; 32(4-6): 234-46.
[http://dx.doi.org/10.1016/j.mam.2011.10.006] [PMID: 22020111]
[30]
Al-Sawaf O, Clarner T, Fragoulis A. et al. Nrf2 in health and disease: Current and future clinical implications. Clin Sci 2015; 129(12): 989-99.
[http://dx.doi.org/10.1042/CS20150436] [PMID: 26386022]
[31]
Cuadrado A, Manda G, Hassan A. et al. Transcription factor NRF2 as a therapeutic target for chronic diseases: A systems medicine approach. Pharmacol Rev 2018; 70(2): 348-83.
[http://dx.doi.org/10.1124/pr.117.014753] [PMID: 29507103]
[32]
Coulston AM, Peragallo-Dittko V. Insulin resistance syn-drome: A potent culprit in cardiovascular disease. J Am Diet Assoc 2004; 104(2): 176-9.
[http://dx.doi.org/10.1016/j.jada.2003.12.011] [PMID: 14760563]
[33]
Craft S, Watson GS. Insulin and neurodegenerative disease: Shared and specific mechanisms. Lancet Neurol 2004; 3(3): 169-78.
[http://dx.doi.org/10.1016/S1474-4422(04)00681-7] [PMID: 14980532]
[34]
Anisimov VN, Bartke A. The key role of growth hormone-insulin-IGF-1 signaling in aging and cancer. Crit Rev Oncol Hematol 2013; 87(3): 201-23.
[http://dx.doi.org/10.1016/j.critrevonc.2013.01.005] [PMID: 23434537]
[35]
Csaba G. Hormesis and immunity: A review. Acta Microbiol Immunol Hung 2019; 66(2): 155-68.
[http://dx.doi.org/10.1556/030.65.2018.036] [PMID: 30014704]
[36]
Dantzer R, Cohen S, Russo SJ, Dinan TG. Resilience and immunity. Brain Behav Immun 2018; 74: 28-42.
[http://dx.doi.org/10.1016/j.bbi.2018.08.010] [PMID: 30102966]
[37]
Moskalev A, Stambler I, Caruso C. Innate and adaptive immunity in aging and longevity: The foundation of resilience. Aging Dis 2020; 11(6): 1363-73.
[http://dx.doi.org/10.14336/AD.2020.0603]
[38]
Lima de Moura Cal SF, Glustak ME. Mittermayer barreto S. psychological resilience and immunity in innovative immunology. 2015; 2
[39]
Calabrese EJ. Hormesis: Path and progression to significance. Int J Mol Sci 2018; 19(10): 2871.
[http://dx.doi.org/10.3390/ijms19102871] [PMID: 30248927]
[40]
Bárcena C, Mayoral P, Quirós PM. Mitohormesis, an antiaging paradigm. Int Rev Cell Mol Biol 2018; 340: 35-77.
[http://dx.doi.org/10.1016/bs.ircmb.2018.05.002] [PMID: 30072093]
[41]
Santoro A, Martucci M, Conte M, Capri M, Franceschi C, Salvioli S. Inflammaging, hormesis and the rationale for anti-aging strategies. Ageing Res Rev 2020; 64: 101142.
[http://dx.doi.org/10.1016/j.arr.2020.101142] [PMID: 32814129]
[42]
Mattson MP. Dietary factors, hormesis and health. Ageing Res Rev 2008; 7(1): 43-8.
[http://dx.doi.org/10.1016/j.arr.2007.08.004] [PMID: 17913594]
[43]
Longo VD, Mattson MP. Fasting: Molecular mechanisms and clinical applications. Cell Metab 2014; 19(2): 181-92.
[http://dx.doi.org/10.1016/j.cmet.2013.12.008] [PMID: 24440038]
[44]
Longo VD, Antebi A, Bartke A. et al. Interventions to slow aging in humans: Are we ready? Aging Cell 2015; 14(4): 497-510.
[http://dx.doi.org/10.1111/acel.12338] [PMID: 25902704]
[45]
de Cabo R, Mattson MP. Effects of intermittent fasting on health, aging, and disease. N Engl J Med 2019; 381(26): 2541-51.
[http://dx.doi.org/10.1056/NEJMra1905136] [PMID: 31881139]
[46]
Calabrese V, Cornelius C, Dinkova-Kostova AT. et al. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta 2012; 1822(5): 753-83.
[http://dx.doi.org/10.1016/j.bbadis.2011.11.002] [PMID: 22108204]
[47]
Rattan SI. Hormesis in aging. Ageing Res Rev 2008; 7(1): 63-78.
[http://dx.doi.org/10.1016/j.arr.2007.03.002] [PMID: 17964227]
[48]
Martel J, Ojcius DM, Ko YF. et al. Hormetic effects of phyto-chemicals on health and longevity. Trends Endocrinol Metab 2019; 30(6): 335-46.
[http://dx.doi.org/10.1016/j.tem.2019.04.001] [PMID: 31060881]
[49]
Martel J, Ojcius DM, Ko YF, Young JD. Phytochemicals as prebiotics and biological stress inducers. Trends Biochem Sci 2020; 45(6): 462-71.
[http://dx.doi.org/10.1016/j.tibs.2020.02.008] [PMID: 32413323]
[50]
Dugué B, Leppänen E. Adaptation related to cytokines in man: Effects of regular swimming in ice-cold water. Clin Physiol 2000; 20(2): 114-21.
[http://dx.doi.org/10.1046/j.1365-2281.2000.00235.x] [PMID: 10735978]
[51]
Rattan SI. Mechanisms of hormesis through mild heat stress on human cells. Ann N Y Acad Sci 2004; 1019(1): 554-8.
[http://dx.doi.org/10.1196/annals.1297.103] [PMID: 15247085]
[52]
Calderwood SK, Murshid A, Prince T. The shock of aging: Molecular chaperones and the heat shock response in longevity and aging-a mini-review. Gerontology 2009; 55(5): 550-8.
[http://dx.doi.org/10.1159/000225957] [PMID: 19546513]
[53]
Kyriazis M. Nonlinear stimulation and hormesis in human aging: Practical examples and action mechanisms. Rejuvenation Res 2010; 13(4): 445-52.
[http://dx.doi.org/10.1089/rej.2009.0996] [PMID: 20662589]
[54]
van der Lans AA, Hoeks J, Brans B. et al. Cold acclimation recruits human brown fat and increases nonshivering thermo-genesis. J Clin Invest 2013; 123(8): 3395-403.
[http://dx.doi.org/10.1172/JCI68993] [PMID: 23867626]
[55]
Bujarrabal A, Schumacher B. Hormesis running hot and cold. Cell Cycle 2016; 15(24): 3335-6.
[http://dx.doi.org/10.1080/15384101.2016.1235859] [PMID: 27687575]
[56]
Berry R III, López-Martínez G. A dose of experimental hormesis: When mild stress protects and improves animal performance. Comp Biochem Physiol A Mol Integr Physiol 2020; 242: 110658.
[http://dx.doi.org/10.1016/j.cbpa.2020.110658] [PMID: 31954863]
[57]
Patrick RP, Johnson TL. Sauna use as a lifestyle practice to extend healthspan. Exp Gerontol 2021; 154: 111509.
[http://dx.doi.org/10.1016/j.exger.2021.111509] [PMID: 34363927]
[58]
Gremeaux V, Gayda M, Lepers R, Sosner P, Juneau M, Nigam A. Exercise and longevity. Maturitas 2012; 73(4): 312-7.
[http://dx.doi.org/10.1016/j.maturitas.2012.09.012] [PMID: 23063021]
[59]
Warburton DER, Bredin SSD. Health benefits of physical activity: A systematic review of current systematic reviews. Curr Opin Cardiol 2017; 32(5): 541-56.
[http://dx.doi.org/10.1097/HCO.0000000000000437] [PMID: 28708630]
[60]
Escobar KA, Cole NH, Mermier CM, VanDusseldorp TA. Autophagy and aging: Maintaining the proteome through exer-cise and caloric restriction. Aging Cell 2019; 18(1): e12876.
[http://dx.doi.org/10.1111/acel.12876] [PMID: 30430746]
[61]
Kujala UM. Is physical activity a cause of longevity? It is not as straightforward as some would believe. A critical analysis. Br J Sports Med 2018; 52(14): 914-8.
[http://dx.doi.org/10.1136/bjsports-2017-098639] [PMID: 29545237]
[62]
Geidl W, Schlesinger S, Mino E, Miranda L, Pfeifer K. Dose-response relationship between physical activity and mortality in adults with noncommunicable diseases: A systematic re-view and meta-analysis of prospective observational studies. Int J Behav Nutr Phys Act 2020; 17(1): 109.
[http://dx.doi.org/10.1186/s12966-020-01007-5] [PMID: 32843054]
[63]
Schnohr P, O’Keefe JH, Marott JL, Lange P, Jensen GB. Dose of jogging and long-term mortality: The copenhagen city heart study. J Am Coll Cardiol 2015; 65(5): 411-9.
[http://dx.doi.org/10.1016/j.jacc.2014.11.023] [PMID: 25660917]
[64]
Jang TY, Jung AY, Kim YH. Hormetic effect of chronic hypergravity in a mouse model of allergic asthma and rhinitis. Sci Rep 2016; 6(1): 27260.
[http://dx.doi.org/10.1038/srep27260] [PMID: 27251783]
[65]
Shibamoto Y, Nakamura H. Overview of biological, epide-miological, and clinical evidence of radiation hormesis. Int J Mol Sci 2018; 19(8): 2387.
[http://dx.doi.org/10.3390/ijms19082387] [PMID: 30104556]
[66]
Geihs MA, Moreira DC, López-Martínez G. et al. Commentary: Ultraviolet radiation triggers “preparation for oxidative stress” antioxidant response in animals: Similarities and interplay with other stressors. Comp Biochem Physiol A Mol Integr Physiol 2020; 239: 110585.
[http://dx.doi.org/10.1016/j.cbpa.2019.110585] [PMID: 31669953]
[67]
Bocci VA, Zanardi I, Travagli V. Ozone acting on human blood yields a hormetic dose-response relationship. J Transl Med 2011; 9(1): 66.
[http://dx.doi.org/10.1186/1479-5876-9-66] [PMID: 21575276]
[68]
Wiggins CC, Constantini K, Paris HL, Mickleborough TD, Chapman RF. Ischemic preconditioning, O2 kinetics, and per-formance in normoxia and hypoxia. Med Sci Sports Exerc 2019; 51(5): 900-11.
[http://dx.doi.org/10.1249/MSS.0000000000001882] [PMID: 30601792]
[69]
Duke SO. Hormesis with pesticides. Pest Manag Sci 2014; 70(5): 689.
[http://dx.doi.org/10.1002/ps.3756] [PMID: 24729579]
[70]
Raefsky SM, Mattson MP. Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplas-ticity and disease resistance. Free Radic Biol Med 2017; 102: 203-16.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.045] [PMID: 27908782]
[71]
Kyriazis M. Neurons vs. germline: A War of Hormetic Tradeoffs. Curr Aging Sci 2017; 10(4): 242-5.
[http://dx.doi.org/10.2174/1874609810666170413123547] [PMID: 28412924]
[72]
Windle G, Bennett KM, Noyes J. A methodological review of resilience measurement scales. Health Qual Life Outcomes 2011; 9(1): 8.
[http://dx.doi.org/10.1186/1477-7525-9-8] [PMID: 21294858]
[73]
Connor KM, Davidson JR. Development of a new resilience scale: The Connor-Davidson Resilience Scale (CD-RISC). Depress Anxiety 2003; 18(2): 76-82.
[http://dx.doi.org/10.1002/da.10113] [PMID: 12964174]
[74]
Schorr A, Carter C, Ladiges W. The potential use of physical resilience to predict healthy aging. Pathobiol Aging Age Relat Dis 2017; 8(1): 1403844.
[http://dx.doi.org/10.1080/20010001.2017.1403844] [PMID: 29291035]
[75]
Hemington KS, Cheng JC, Bosma RL, Rogachov A, Kim JA, Davis KD. Beyond negative pain-related psychological fac-tors: Resilience is related to lower pain affect in healthy adults. J Pain 2017; 18(9): 1117-28.
[http://dx.doi.org/10.1016/j.jpain.2017.04.009] [PMID: 28506777]
[76]
Ernst G. Hidden signals-the history and methods of heart rate variability. Front Public Health 2017; 5: 265.
[http://dx.doi.org/10.3389/fpubh.2017.00265] [PMID: 29085816]
[77]
Botsva N, Naishtetik I, Khimion L, Chernetchenko D. Predic-tors of aging based on the analysis of heart rate variability. Pacing Clin Electrophysiol 2017; 40(11): 1269-78.
[http://dx.doi.org/10.1111/pace.13180] [PMID: 28983984]
[78]
Malik M, Bigger JT, Camm AJ. et al. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J 1996; 17(3): 354-81.
[http://dx.doi.org/10.1093/oxfordjournals.eurheartj.a014868] [PMID: 8737210]
[79]
Kemp AH, Koenig J, Thayer JF. From psychological moments to mortality: A multidisciplinary synthesis on heart rate variability spanning the continuum of time. Neurosci Biobehav Rev 2017; 83: 547-67.
[http://dx.doi.org/10.1016/j.neubiorev.2017.09.006] [PMID: 28888535]
[80]
Dong SY, Lee M, Park H, Youn I. Stress resilience measurement with heart-rate variability during mental and physical stress. Annu Int Conf IEEE Eng Med Biol Soc 2018; 2018: 5290-3.
[http://dx.doi.org/10.1109/EMBC.2018.8513531] [PMID: 30441531]
[81]
Hernández-Vicente A, Hernando D, Santos-Lozano A. et al. Heart rate variability and exceptional longevity. Front Physiol 2020; 11: 566399.
[http://dx.doi.org/10.3389/fphys.2020.566399] [PMID: 33041862]
[82]
An E, Nolty AAT, Amano SS, Rizzo AA, Buckwalter JG, Rensberger J. Heart rate variability as an index of resilience. Mil Med 2020; 185(3-4): 363-9.
[http://dx.doi.org/10.1093/milmed/usz325] [PMID: 31642481]
[83]
Lau WKW, Tai APL, Chan JNM, Lau BWM, Geng X. Integrative psychobiophysiological markers in predicting psychological resilience. Psychoneuroendocrinology 2021; 129: 105267.
[http://dx.doi.org/10.1016/j.psyneuen.2021.105267] [PMID: 34015682]
[84]
Colucci R, Di Ionna G, Cavezzi A. Heart rate variability: An overview and a few immediate/short-term assessments. Heart Mind 2018; 2(4): 111-8.
[http://dx.doi.org/10.4103/hm.hm_27_19]
[85]
Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health 2017; 5: 258.
[http://dx.doi.org/10.3389/fpubh.2017.00258]
[86]
Chrousos GP. Stress and disorders of the stress system. Nat Rev Endocrinol 2009; 5(7): 374-81.
[http://dx.doi.org/10.1038/nrendo.2009.106] [PMID: 19488073]
[87]
McEwen BS, Gianaros PJ. Central role of the brain in stress and adaptation: Links to socioeconomic status, health, and disease. Ann N Y Acad Sci 2010; 1186(1): 190-222.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05331.x] [PMID: 20201874]
[88]
Madeline L. Pfau, Russo Scott J. Peripheral and central mechanisms of stress resilience. Neurobiology of Stress 2015; 1: 66-79.
[http://dx.doi.org/10.1016/j.ynstr.2014.09.004]
[89]
Lehrer P, Eddie D. Dynamic processes in regulation for bio-feedback and biobehavioral interventions. Psychophysiol Bi-ofeedback 2013; 38(2): 143-55.
[http://dx.doi.org/10.1007/s10484-013-9217-6] [PMID: 23572244]
[90]
Walker FR, Pfingst K, Carnevali L, Sgoifo A, Nalivaiko E. In the search for integrative biomarker of resilience to psycho-logical stress Neurosci Biobehavior. 2017; 74, Part B:: pp. 310-20.
[91]
Shaffer F, McCraty R, Zerr CL. A healthy heart is not a met-ronome: An integrative review of the heart’s anatomy and heart rate variability. Front Psychol 2014; 5: 1040.
[http://dx.doi.org/10.3389/fpsyg.2014.01040] [PMID: 25324790]
[92]
Mager DE, Wan R, Brown M. et al. Caloric restriction and intermittent fasting alter spectral measures of heart rate and blood pressure variability in rats. FASEB J 2006; 20(6): 631-7.
[http://dx.doi.org/10.1096/fj.05-5263com] [PMID: 16581971]
[93]
Cipak Gasparovic A, Zarkovic N, Zarkovic K. et al. Biomarkers of oxidative and nitro-oxidative stress: Conventional and novel approaches. Br J Pharmacol 2017; 174(12): 1771-83.
[http://dx.doi.org/10.1111/bph.13673] [PMID: 27864827]
[94]
Rühle PF, Klein G, Rung T. et al. Impact of radon and combi-natory radon/carbon dioxide spa on pain and hypertension: Results from the explorative RAD-ON01 study. Mod Rheumatol 2019; 29(1): 165-72.
[http://dx.doi.org/10.1080/14397595.2018.1442640] [PMID: 29451048]
[95]
Noronha Osório D, Viana-Soares R, Marto JP. et al. Autonomic nervous system response to remote ischemic conditioning: Heart rate variability assessment. BMC Cardiovasc Disord 2019; 19(1): 211.
[http://dx.doi.org/10.1186/s12872-019-1181-5] [PMID: 31500561]
[96]
Trapé ÁA, Camacho-Cardenosa M, Camacho-Cardenosa A. et al. Effects of moderate-intensity intermittent hypoxic training on health outcomes of patients recovered from COVID-19: The AEROBICOVID study protocol for a randomized controlled trial. Trials 2021; 22(1): 534.
[http://dx.doi.org/10.1186/s13063-021-05414-2] [PMID: 34384461]
[97]
Bratic A, Larsson NG. The role of mitochondria in aging. J Clin Invest 2013; 123(3): 951-7.
[http://dx.doi.org/10.1172/JCI64125] [PMID: 23454757]
[98]
Jang JY, Blum A, Liu J, Finkel T. The role of mitochondria in aging. J Clin Invest 2018; 128(9): 3662-70.
[http://dx.doi.org/10.1172/JCI120842] [PMID: 30059016]
[99]
Know L. Mitochondria and the future of medicine. Chelsea Green Publishing 2018.
[100]
Palmeira CM, Teodoro JS, Amorim JA, Steegborn C, Sinclair DA, Rolo AP. Mitohormesis and metabolic health: The interplay between ROS, cAMP and sirtuins. Free Radic Biol Med 2019; 141: 483-91.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.07.017] [PMID: 31349039]
[101]
Chen G, Kroemer G, Kepp O. Mitophagy: An emerging role in aging and age-associated diseases. Front Cell Dev Biol 2020; 8: 200.
[http://dx.doi.org/10.3389/fcell.2020.00200] [PMID: 32274386]
[102]
Picard M, McEwen BS, Epel ES, Sandi C. An energetic view of stress: Focus on mitochondria. Front Neuroendocrinol 2018; 49: 72-85.
[http://dx.doi.org/10.1016/j.yfrne.2018.01.001] [PMID: 29339091]
[103]
Picard M, McEwen BS. Psychological stress and mitochondria: A conceptual framework. Psychosom Med 2018; 80(2): 126-40.
[http://dx.doi.org/10.1097/PSY.0000000000000544] [PMID: 29389735]
[104]
Eisner V, Picard M, Hajnóczky G. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat Cell Biol 2018; 20(7): 755-65.
[http://dx.doi.org/10.1038/s41556-018-0133-0] [PMID: 29950571]
[105]
Picard M, Sandi C. The social nature of mitochondria: Implications for human health. Neurosci Biobehav Rev 2021; 120: 595-610.
[http://dx.doi.org/10.1016/j.neubiorev.2020.04.017] [PMID: 32651001]
[106]
Turkson S, Kloster A, Hamilton PJ, Neigh GN. Neuroendocrine drivers of risk and resilience: The influence of metabolism & mitochondria. Front Neuroendocrinol 2019; 54: 100770.
[http://dx.doi.org/10.1016/j.yfrne.2019.100770] [PMID: 31288042]
[107]
Gaetani S, Galzignati L, Marcati M. et al. Mitochondrial function as related to psychological distress in health care professionals. Psychosom Med 2021; 84(1): 40-9.
[http://dx.doi.org/10.1097/PSY.0000000000001000] [PMID: 34419997]
[108]
Cavezzi A. Medicine and phlebolymphology: Time to change? J Clin Med 2020; 9(12): 4091.
[http://dx.doi.org/10.3390/jcm9124091] [PMID: 33353052]
[109]
Picard M, Trumpff C, Burelle Y. Mitochondrial psychobiology: Foundations and applications. Curr Opin Behav Sci 2019; 28: 142-51.
[http://dx.doi.org/10.1016/j.cobeha.2019.04.015] [PMID: 32637466]