Cyclin-Dependent Kinase 4/6 Inhibitors Against Breast Cancer

Page: [412 - 428] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Breast cancer is the most frequently diagnosed and leading cause of cancer-related deaths in women worldwide. Based on global cancer (GLOBOCAN) 2020 statistics, 1 in 4 cancer cases and 1 in 6 cancer deaths are attributable to breast cancer, leading both in incidence and mortality. To address the increasing burden of cancer, novel therapeutic approaches that target key hallmarks of cancer are explored in cancer drug discovery. Cyclin-dependent kinase (CDK) inhibitors are generally purine and pyrimidine analogues validated for the treatment of cancer due to their unique roles in cancer deregulation and novel therapeutic potentials. So far, three orally administered, potent and highly selective CDK4/6 inhibitors (palbociclib, ribociclib, abemaciclib) have been approved by the FDA for the targeted treatment of advanced or metastatic breast cancer in combination with endocrine therapy. Furthermore, several compounds derived from various synthetic scaffolds are being explored with promising results and positive outcomes in various stages of clinical trials. In this review, we highlight these CDK4/6 inhibitor compounds with potent anti-CDK4/6, in vitro and in vivo activities on breast cancer cells. With the remarkable prospects of these compounds, there is great optimism further novel CDK inhibitor compounds will be discovered in the future that could boost therapeutic options for cancer treatment.

Keywords: Cyclin-dependent kinase inhibitors, CDK4/6, cell cycle, cyclin-D, synthetic scaffolds, breast cancer.

Graphical Abstract

[1]
Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer, 2021, 127(16), 3029-3030.
[http://dx.doi.org/10.1002/cncr.33587] [PMID: 34086348]
[2]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[3]
Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory. Cancer Today, https://gco.iarc.fr/today/home
[4]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[5]
WHO. World Health Organization.. Cancer, https://www.who.int/news-room/fact-sheets/detail/cancer
[6]
Occhipinti, G.; Romagnoli, E.; Santoni, M.; Cimadamore, A.; Sorgentoni, G.; Cecati, M.; Giulietti, M.; Battelli, N.; Maccioni, A.; Storti, N.; Cheng, L.; Principato, G.; Montironi, R.; Piva, F. Sequential or concomitant inhibition of cyclin-dependent kinase 4/6 before MTOR pathway in hormone-positive HER2 negative breast cancer: biological insights and clinical implications. Front. Genet., 2020, 11, 349.
[http://dx.doi.org/10.3389/fgene.2020.00349] [PMID: 32351542]
[7]
Malumbres, M. Cyclin-dependent kinases. Genome Biol., 2014, 15(6), 122.
[http://dx.doi.org/10.1186/gb4184] [PMID: 25180339]
[8]
Malumbres, M.; Harlow, E.; Hunt, T.; Hunter, T.; Lahti, J.M.; Manning, G.; Morgan, D.O.; Tsai, L.H.; Wolgemuth, D.J. Cyclin-dependent kinases: A family portrait. Nat. Cell Biol., 2009, 11(11), 1275-1276.
[http://dx.doi.org/10.1038/ncb1109-1275] [PMID: 19884882]
[9]
Lolli, G. Structural dissection of cyclin dependent kinases regulation and protein recognition properties. Cell Cycle, 2010, 9(8), 1551-1561.
[http://dx.doi.org/10.4161/cc.9.8.11195] [PMID: 20372077]
[10]
Floquet, N.; Costa, M.G.S.; Batista, P.R.; Renault, P.; Bisch, P.M.; Raussin, F.; Martinez, J.; Morris, M.C.; Perahia, D. Conformational equilibrium of CDK/Cyclin complexes by molecular dynamics with excited normal modes. Biophys. J., 2015, 109(6), 1179-1189.
[http://dx.doi.org/10.1016/j.bpj.2015.07.003] [PMID: 26255588]
[11]
Pavletich, N.P. Mechanisms of cyclin-dependent kinase regulation: Structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J. Mol. Biol., 1999, 287(5), 821-828.
[http://dx.doi.org/10.1006/jmbi.1999.2640] [PMID: 10222191]
[12]
Whittaker, S.R.; Mallinger, A.; Workman, P.; Clarke, P.A. Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacol. Ther., 2017, 173, 83-105.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.008] [PMID: 28174091]
[13]
Sánchez-Martínez, C.; Gelbert, L.M.; Lallena, M.J.; de Dios, A. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs. Bioorg. Med. Chem. Lett., 2015, 25(17), 3420-3435.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.100] [PMID: 26115571]
[14]
Marak, B.N.; Dowarah, J.; Khiangte, L.; Singh, V.P. A comprehensive insight on the recent development of cyclic dependent kinase inhibitors as anticancer agents. Eur. J. Med. Chem., 2020, 203, 112571.
[http://dx.doi.org/10.1016/j.ejmech.2020.112571] [PMID: 32707525]
[15]
Morgan, D.O. Cyclin-dependent kinases: Engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol., 1997, 13(1), 261-291.
[http://dx.doi.org/10.1146/annurev.cellbio.13.1.261] [PMID: 9442875]
[16]
Mateo, F.; Vidal-Laliena, M.; Canela, N.; Zecchin, A.; Martínez-Balbás, M.; Agell, N.; Giacca, M.; Pujol, M.J.; Bachs, O. The transcriptional co-activator PCAF regulates CDK2 activity. Nucleic Acids Res., 2009, 37(21), 7072-7084.
[http://dx.doi.org/10.1093/nar/gkp777] [PMID: 19773423]
[17]
Chohan, T.A.; Qayyum, A.; Rehman, K.; Tariq, M.; Akash, M.S.H. An insight into the emerging role of cyclin-dependent kinase inhibitors as potential therapeutic agents for the treatment of advanced cancers. Biomed. Pharmacother., 2018, 107, 1326-1341.
[http://dx.doi.org/10.1016/j.biopha.2018.08.116] [PMID: 30257348]
[18]
Ajit Kumar Saxena, G.C. Targetting Cdks in cancer: An overview and new insights. J. Cancer Sci. Ther., 2014, 6(12), 6.
[http://dx.doi.org/10.4172/1948-5956.1000313]
[19]
Jeffrey, P.D.; Tong, L.; Pavletich, N.P. Structural basis of inhibition of CDK-cyclin complexes by INK4 inhibitors. Genes Dev., 2000, 14(24), 3115-3125.
[http://dx.doi.org/10.1101/gad.851100] [PMID: 11124804]
[20]
Peyressatre, M.; Prével, C.; Pellerano, M.; Morris, M.C. Targeting cyclin-dependent kinases in human cancers: From small molecules to peptide inhibitors. 2015, 7, 179-237.
[21]
Cell cycle inhibitor - creative diagnostics. https://www.creative-diagnostics.com/cell-cycle-inhibitor.htm
[22]
Cyclin-Dependent Kinase (CDK) inhibitors. In: Methods and Protocols;; Orzáez, M; Sancho, Medina; Pérez-Payá, E, Eds.; Humana Press, Springer: New York, 2016.
[23]
Sherr, C.J. Cancer cell cycles. Science, 1996, 274(5293), 1672-1677.
[http://dx.doi.org/10.1126/science.274.5293.1672] [PMID: 8939849]
[24]
Ren, B.; Cam, H.; Takahashi, Y.; Volkert, T.; Terragni, J.; Young, R.A.; Dynlacht, B.D. E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev., 2002, 16(2), 245-256.
[http://dx.doi.org/10.1101/gad.949802] [PMID: 11799067]
[25]
Johnson, J.; Thijssen, B.; McDermott, U.; Garnett, M.; Wessels, L.F.A.; Bernards, R. Targeting the RB-E2F pathway in breast cancer. Oncogene, 2016, 35, 4829-4835.
[26]
Hamilton, E.; Infante, J.R. Targeting CDK4/6 in patients with cancer. Cancer Treat. Rev., 2016, 45, 129-138.
[http://dx.doi.org/10.1016/j.ctrv.2016.03.002] [PMID: 27017286]
[27]
Yuan, K.; Wang, X.; Dong, H.; Min, W.; Hao, H.; Yang, P. Selective inhibition of CDK4/6: A safe and effective strategy for developing anticancer drugs. Acta Pharm. Sin. B, 2021, 11(1), 30-54.
[http://dx.doi.org/10.1016/j.apsb.2020.05.001] [PMID: 33532179]
[28]
Arumugasamy, K.; Tripathi, S.K.; Singh, P.; Singh, S.K. Protein-protein interaction for the de novo design of cyclin-dependent kinase peptide inhibitors. Methods Mol. Biol., 2016, 1336, 59-66.
[http://dx.doi.org/10.1007/978-1-4939-2926-9_6] [PMID: 26231708]
[29]
Gali-Muhtasib, H. Cyclin-dependent kinase inhibitors from natural sources: Recent advances and future prospects for cancer treatment. Adv. Phytomedicine, 2006, 2, 155-167.
[http://dx.doi.org/10.1016/S1572-557X(05)02009-X]
[30]
Ammazzalorso, A.; Agamennone, M.; De Filippis, B.; Fantacuzzi, M. Development of CDK4/6 inhibitors: A five years update. Molecules, 2021, 26(5), 1488.
[http://dx.doi.org/10.3390/molecules26051488] [PMID: 33803309]
[31]
Murphy, C.G. The role of CDK4/6 inhibitors in breast cancer. Curr. Treat. Options Oncol., 2019, 20(6), 52.
[http://dx.doi.org/10.1007/s11864-019-0651-4] [PMID: 31101994]
[32]
Asghar, U.; Witkiewicz, A.K.; Turner, N.C.; Knudsen, E.S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov., 2015, 14, 130-146.
[33]
Xu, H.; Yu, S.; Liu, Q.; Yuan, X.; Mani, S.; Pestell, R.G.; Wu, K. Recent advances of highly selective CDK4/6 inhibitors in breast cancer. J. Hematol. Oncol., 2017, 10(1), 97.
[http://dx.doi.org/10.1186/s13045-017-0467-2] [PMID: 28438180]
[35]
Wilson, F.R.; Varu, A.; Mitra, D.; Cameron, C.; Iyer, S. Systematic review and network meta-analysis comparing palbociclib with chemotherapy agents for the treatment of postmenopausal women with HR-positive and HER2-negative advanced/metastatic breast cancer. Breast Cancer Res. Treat., 2017, 166(1), 167-177.
[http://dx.doi.org/10.1007/s10549-017-4404-4] [PMID: 28752187]
[36]
National Center for Biotechnology Information. PubChem compound summary for CID 5330286, Palbociclib. http://pubchem.ncbi.nlm.nih.gov/compound/5330286
[37]
Anders, L.; Ke, N.; Hydbring, P.; Choi, Y.J.; Widlund, H.R.; Chick, J.M.; Zhai, H.; Vidal, M.; Gygi, S.P.; Braun, P.; Sicinski, P. A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cells, 2011, 20(5), 620-634.
[http://dx.doi.org/10.1016/j.ccr.2011.10.001] [PMID: 22094256]
[38]
Park, H.J.; Carr, J.R.; Wang, Z.; Nogueira, V.; Hay, N.; Tyner, A.L.; Lau, L.F.; Costa, R.H.; Raychaudhuri, P. FoxM1, a critical regulator of oxidative stress during oncogenesis. EMBO J., 2009, 28(19), 2908-2918.
[http://dx.doi.org/10.1038/emboj.2009.239] [PMID: 19696738]
[39]
Liu, F.; Korc, M. Cdk4/6 inhibition induces epithelial-mesenchymal transition and enhances invasiveness in pancreatic cancer cells. Mol. Cancer Ther., 2012, 11(10), 2138-2148.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0562] [PMID: 22869556]
[40]
Rocca, A.; Schirone, A.; Maltoni, R.; Bravaccini, S.; Cecconetto, L.; Farolfi, A.; Bronte, G.; Andreis, D. Progress with palbociclib in breast cancer: Latest evidence and clinical considerations. Ther. Adv. Med. Oncol., 2017, 9(2), 83-105.
[http://dx.doi.org/10.1177/1758834016677961] [PMID: 28203301]
[41]
Finn, R.S.; Dering, J.; Conklin, D.; Kalous, O.; Cohen, D.J.; Desai, A.J.; Ginther, C.; Atefi, M.; Chen, I.; Fowst, C.; Los, G.; Slamon, D.J. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res., 2009, 11(5), R77.
[http://dx.doi.org/10.1186/bcr2419] [PMID: 19874578]
[42]
McClendon, A.K.; Dean, J.L.; Rivadeneira, D.B.; Yu, J.E.; Reed, C.A.; Gao, E.; Farber, J.L.; Force, T.; Koch, W.J.; Knudsen, E.S. CDK4/6 inhibition antagonizes the cytotoxic response to anthracycline therapy. Cell Cycle, 2012, 11(14), 2747-2755.
[http://dx.doi.org/10.4161/cc.21127] [PMID: 22751436]
[43]
Beaver, J.A.; Amiri-Kordestani, L.; Charlab, R.; Chen, W.; Palmby, T.; Tilley, A.; Zirkelbach, J.F.; Yu, J.; Liu, Q.; Zhao, L.; Crich, J.; Chen, X.H.; Hughes, M.; Bloomquist, E.; Tang, S.; Sridhara, R.; Kluetz, P.G.; Kim, G.; Ibrahim, A.; Pazdur, R.; Cortazar, P. FDA approval: Palbociclib for the treatment of postmenopausal patients with estrogen receptor-positive, HER2-negative metastatic breast cancer. Clin. Cancer Res., 2015, 21(21), 4760-4766.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1185] [PMID: 26324739]
[44]
Choi, Y.J.; Li, X.; Hydbring, P.; Sanda, T.; Stefano, J.; Christie, A.L.; Signoretti, S.; Look, A.T.; Kung, A.L.; von Boehmer, H.; Sicinski, P. The requirement for cyclin D function in tumor maintenance. Cancer Cell, 2012, 22(4), 438-451.
[http://dx.doi.org/10.1016/j.ccr.2012.09.015] [PMID: 23079655]
[45]
Pollack, A. Guarded optimism after breast cancer drug shows promising results. The New York Times, Available from: http://www.nytimes.com/2014/04/07/business/breast-cancer-drug-shows-groundbreaking-results.html
[46]
Nathan, M.R.; Schmid, P. A review of fulvestrant in breast cancer. Oncol. Ther., 2017, 5(1), 17-29.
[http://dx.doi.org/10.1007/s40487-017-0046-2] [PMID: 28680952]
[49]
Novartis presents new Kisqali® data showing longest median overall survival ever reported in HR+/HER2- advanced breast cancer. Novartis, https://www.novartis.com/news/media-releases/novartis-presents-new-kisqali-data-showing-longest-median-overall-survival-ever-reported-hrher2-advanced-breast-cancer
[50]
Hortobagyi, G.N.; Stemmer, S.M.; Burris, H.A., III; Yap, Y.S.; Sonke, G.S.; Hart, L.; Campone, M.; Petrakova, K.; Winer, E.P.; Janni, W.; Conte, P.F.; Cameron, D.; André, F.; Arteaga, C.; Zarate, J.P.; Chakravartty, A.; Taran, T.; Le Gac, F.; Serra, P.; O’Shaughnessy, J. LBA17 Overall survival (os) results from the phase III MONALEESA-2 (ML-2) trial of postmenopausal patients (pts) with hormone receptor positive/human epidermal growth factor receptor 2 negative (HR+/HER2−) Advanced Breast Cancer (ABC) treated with endocrine therapy (ET) ± ribociclib (RIB). Ann. Oncol., 2021, 32, S1290-S1291.
[http://dx.doi.org/10.1016/j.annonc.2021.08.2090]
[51]
Wood, A.C.; Krytska, K.; Ryles, H.; Sano, R.; Li, N.; King, F.; Smith, T.; Tuntland, T.; Kim, S.; Caponigro, G.; He, Y.Q.; Jennifer, H.; Mosse, Y. Combination CDK4/6 and ALK inhibition demonstrates on-target synergy against neuroblastoma. In: AACR Annual Meeting;; American Association for Cancer Research: San Diego, CA, 2014; 74, .
[52]
Sosman, J.A.; Kittaneh, M.; Lolkema, M.P.J.K.; Postow, M.A.; Schwartz, G.; Franklin, C.; Matano, A.; Bhansali, S.; Parasuraman, S.; Kim, K. A phase 1b/2 study of LEE011 in combination with binimetinib (MEK162) in patients with NRAS -mutant melanoma: Early encouraging clinical activity. In: American Society of Clinical Oncology (ASCO) Annual Meeting I; , 2014; 32, pp. 9009-9009.
[53]
Phase II study of CDK 4/6 inhibitor, LEE011 (ribociclib), in combination with adjuvant endocrine therapy at varying duration for ER-positive breast cancer (LEADER). https://clinicaltrials.gov/ct2/show/NCT03285412?term=ribociclib&cond=cancer&draw=2&rank=1
[54]
Kim, E.S. Abemaciclib: First global approval. Drugs, 2017, 77(18), 2063-2070.
[http://dx.doi.org/10.1007/s40265-017-0840-z] [PMID: 29128965]
[55]
FDA approves abemaciclib as initial therapy for HR-positive, HER2-negative metastatic breast cancer. FDA, https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-abemaciclib-initial-therapy-hr-positive-her2-negative-metastatic-breast-cancer
[56]
National Center for Biotechnology Information. PubChem compound summary for CID 46220502 abemaciclib., https://pubchem.ncbi.nlm.nih.gov/compound/46220502
[57]
Patnaik, A.; Rosen, L.S.; Tolaney, S.M.; Tolcher, A.W.; Goldman, J.W.; Gandhi, L.; Papadopoulos, K.P.; Beeram, M.; Rasco, D.W.; Hilton, J.F.; Nasir, A.; Beckmann, R.P.; Schade, A.E.; Fulford, A.D.; Nguyen, T.S.; Martinez, R.; Kulanthaivel, P.; Li, L.Q.; Frenzel, M.; Cronier, D.M.; Chan, E.M.; Flaherty, K.T.; Wen, P.Y.; Shapiro, G.I. Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non–small cell lung cancer, and other solid tumors. Cancer Discov., 2016, 6(7), 740-753.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0095] [PMID: 27217383]
[58]
Sledge, G.W., Jr; Toi, M.; Neven, P.; Sohn, J.; Inoue, K.; Pivot, X.; Burdaeva, O.; Okera, M.; Masuda, N.; Kaufman, P.A.; Koh, H.; Grischke, E.M.; Frenzel, M.; Lin, Y.; Barriga, S.; Smith, I.C.; Bourayou, N.; Llombart-Cussac, A. MONARCH 2: Abemaciclib in combination with fulvestrant in women with HR+/HER2-advanced breast cancer who had progressed while receiving endocrine therapy. J. Clin. Oncol., 2017, 35(25), 2875-2884.
[http://dx.doi.org/10.1200/JCO.2017.73.7585] [PMID: 28580882]
[59]
FDA approves new treatment for certain advanced or metastatic breast cancers. FDA, https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-certain-advanced-or-metastatic-breast-cancers
[60]
Gelbert, L.M.; Cai, S.; Lin, X.; Sanchez-Martinez, C.; Del Prado, M.; Lallena, M.J.; Torres, R.; Ajamie, R.T.; Wishart, G.N.; Flack, R.S.; Neubauer, B.L.; Young, J.; Chan, E.M.; Iversen, P.; Cronier, D.; Kreklau, E.; de Dios, A. Preclinical characterization of the CDK4/6 inhibitor LY2835219: In-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Invest. New Drugs, 2014, 32(5), 825-837.
[http://dx.doi.org/10.1007/s10637-014-0120-7] [PMID: 24919854]
[61]
Hino, H.; Iriyama, N.; Kokuba, H.; Kazama, H.; Moriya, S.; Takano, N.; Hiramoto, M.; Aizawa, S.; Miyazawa, K. Abemaciclib induces atypical cell death in cancer cells characterized by formation of cytoplasmic vacuoles derived from lysosomes. Cancer Sci., 2020, 111(6), 2132-2145.
[http://dx.doi.org/10.1111/cas.14419] [PMID: 32304130]
[62]
Dickler, M.N.; Tolaney, S.M.; Rugo, H.S.; Cortés, J.; Diéras, V.; Patt, D.; Wildiers, H.; Hudis, C.A.; O’Shaughnessy, J.; Zamora, E.; Yardley, D.A.; Frenzel, M.; Koustenis, A.; Baselga, J. MONARCH 1, a phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR+/HER2- metastatic breast cancer. Clin. Cancer Res., 2017, 23(17), 5218-5224.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0754] [PMID: 28533223]
[63]
Goetz, M.P.; Toi, M.; Campone, M.; Sohn, J.; Paluch-Shimon, S.; Huober, J.; Park, I.H.; Trédan, O.; Chen, S.C.; Manso, L.; Freedman, O.C.; Garnica Jaliffe, G.; Forrester, T.; Frenzel, M.; Barriga, S.; Smith, I.C.; Bourayou, N.; Di Leo, A. MONARCH 3: Abemaciclib as initial therapy for advanced breast cancer. J. Clin. Oncol., 2017, 35(32), 3638-3646.
[http://dx.doi.org/10.1200/JCO.2017.75.6155] [PMID: 28968163]
[64]
Tolaney, S.M.; Lin, N.U.; Thornton, D.; Klise, S.; Costigan, T.M.; Turner, P.K.; Anders, C.K. Abemaciclib for the treatment of brain metastases (BM) secondary to hormone receptor positive (HR+), HER2 negative breast cancer. J. Clin. Oncol., 2017, 35(15)(Suppl.), 1019-1019.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.1019]
[65]
Adon, T.; Shanmugarajan, D.; Kumar, H.Y. CDK4/6 inhibitors: A brief overview and prospective research directions. RSC Advances, 2021, 11(47), 29227-29246.
[http://dx.doi.org/10.1039/D1RA03820F] [PMID: 35479560]
[66]
Wang, Y.; Zhi, Y.; Jin, Q.; Lu, S.; Lin, G.; Yuan, H.; Yang, T.; Wang, Z.; Yao, C.; Ling, J.; Guo, H.; Li, T.; Jin, J.; Li, B.; Zhang, L.; Chen, Y.; Lu, T. Discovery of 4-((7H-Pyrrolo[2,3-d]pyrimidin-4-yl)amino)-N-(4-((4-methylpiperazin-1-yl)methyl)phenyl)-1H-pyrazole-3-carboxamide (FN-1501), an FLT3- and CDK-kinase inhibitor with potentially high efficiency against acute Myelocytic Leukemia. J. Med. Chem., 2018, 61(4), 1499-1518.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01261] [PMID: 29357250]
[67]
Zhi, Y.; Wang, Z.; Yao, C.; Li, B.; Heng, H.; Cai, J.; Xiang, L.; Wang, Y.; Lu, T.; Lu, S. Design and synthesis of 4-(Heterocyclic substituted amino)-1H-pyrazole-3-carboxamide derivatives and their potent activity against acute myeloid leukemia (AML). Int. J. Mol. Sci., 2019, 20(22), 5739.
[http://dx.doi.org/10.3390/ijms20225739] [PMID: 31731727]
[68]
Jorda, R.; Schütznerová, E. Cankař P.; Brychtová, V.; Navrátilová, J.; Kryštof, V. Novel arylazopyrazole inhibitors of cyclin-dependent kinases. Bioorg. Med. Chem., 2015, 23(9), 1975-1981.
[http://dx.doi.org/10.1016/j.bmc.2015.03.025] [PMID: 25835357]
[69]
Zhao, H.; Hu, X.; Cao, K.; Zhang, Y.; Zhao, K.; Tang, C.; Feng, B. Synthesis and SAR of 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as potent and selective CDK4/6 inhibitors. Eur. J. Med. Chem., 2018, 157, 935-945.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.043] [PMID: 30165341]
[70]
Tadesse, S.; Yu, M.; Mekonnen, L.B.; Lam, F.; Islam, S.; Tomusange, K.; Rahaman, M.H.; Noll, B.; Basnet, S.K.C.; Teo, T.; Albrecht, H.; Milne, R.; Wang, S. Highly potent, selective, and orally bioavailable 4-Thiazol-N-(pyridin-2-yl)pyrimidin-2-amine cyclin-dependent kinases 4 and 6 inhibitors as anticancer drug candidates: Design, synthesis, and evaluation. J. Med. Chem., 2017, 60(5), 1892-1915.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01670] [PMID: 28156111]
[71]
Abbas, S.E.S.; George, R.F.; Samir, E.M.; Aref, M.M.A.; Abdel-Aziz, H.A. Synthesis and anticancer activity of some pyrido[2,3-d]pyrimidine derivatives as apoptosis inducers and cyclin-dependent kinase inhibitors. Future Med. Chem., 2019, 11(18), 2395-2414.
[http://dx.doi.org/10.4155/fmc-2019-0050] [PMID: 31544523]
[72]
Shi, C.; Wang, Q.; Liao, X.; Ge, H.; Huo, G.; Zhang, L.; Chen, N.; Zhai, X.; Hong, Y.; Wang, L.; Han, Y.; Xiao, W.; Wang, Z.; Shi, W.; Mao, Y.; Yu, J.; Xia, G.; Liu, Y. Discovery of 6-(2-(dimethylamino)ethyl)-N-(5-fluoro-4-(4-fluoro-1-isopropyl-2-methyl-1H-benzo[d]imidazole-6-yl)pyrimidin-2-yl)-5,6,7,8-tetrahydro-1,6-naphthyridin-2-amine as a highly potent cyclin-dependent kinase 4/6 inhibitor for treatment of cancer. Eur. J. Med. Chem., 2019, 178, 352-364.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.005] [PMID: 31200237]
[73]
Li, S.; Yang, W.; Ji, M.; Cai, J.; Chen, J. A new and efficient protocol for the synthesis of the key intermediate of palbociclib. J. Chem. Res., 2019, 43(1-2), 14-19.
[http://dx.doi.org/10.1177/1747519819831858]
[74]
Konar, D.; Maru, S.; Kar, S.; Kumar, K. Synthesis and clinical development of palbociclib: An overview. Med. Chem., 2022, 18(1), 2-25.
[http://dx.doi.org/10.2174/1573406417666201204161243] [PMID: 33280599]
[75]
Li, X.; Sun, P.; Lan, J.; Peng, J.; Chen, Y.; Wang, B.; Dong, Q. Pyridino[2,3-d]pyrimidin-7(8H)-one derivatives as CDK4 and/or CDK6 inhibitors and their preparation, pharmaceutical compositions and use in the treatment of diseases. W.O. Patent 2014183520A1, November 20, 2014.
[76]
Long, F.; He, Y.; Fu, H.; Li, Y.; Bao, X.; Wang, Q.; Wang, Y.; Xie, C.; Lou, L. Preclinical characterization of SHR6390, a novel CDK 4/6 inhibitor, in vitro and in human tumor xenograft models. Cancer Sci., 2019, 110(4), 1420-1430.
[http://dx.doi.org/10.1111/cas.13957] [PMID: 30724426]
[77]
Wang, P.; Huang, J.; Wang, K.; Gu, Y. New palbociclib analogues modified at the terminal piperazine ring and their anticancer activities. Eur. J. Med. Chem., 2016, 122, 546-556.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.020] [PMID: 27448913]
[78]
Wan, H.; Xu, Z.; Shi, C.; Li, C.; Xu, Z.; Xia, G. Preparation of fused heterocyclic compounds for treatment of cyclin-dependent kinase related diseases C.N. Patent 105481858A, April 11, 2016.
[79]
Reddy, M.V.R.; Akula, B.; Cosenza, S.C.; Athuluridivakar, S.; Mallireddigari, M.R.; Pallela, V.R.; Billa, V.K.; Subbaiah, D.R.C.V.; Bharathi, E.V.; Vasquez-Del Carpio, R.; Padgaonkar, A.; Baker, S.J.; Reddy, E.P. Discovery of 8-cyclopentyl-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-7-oxo-7,8-dihydro-pyrido[2,3-d]pyrimidine-6-carbonitrile (7x) as a potent inhibitor of cyclin-dependent kinase 4 (CDK4) and AMPK-related kinase 5 (ARK5). J. Med. Chem., 2014, 57(3), 578-599.
[http://dx.doi.org/10.1021/jm401073p] [PMID: 24417566]
[80]
Besong, G.; Brain, C.; Brooks, C.; Congreve, M.; Dagostin, C.; He, G. Preparation of pyrrolopyrimidine compounds as CDK inhibitors. W.O Patent 2010020675A1, February 25, 2010.
[81]
Liu, B.; Zhang, Y.; Nie, L.; Bai, S.; Guan, M.; Li, X. 6-[2- (Pyridinyl-2-Ylamino)pyrimidin-4-yl]imidazole compounds as CDK inhibitors and their preparation. W.O. Patent 2016015605A1, February 4, 2016.
[82]
Wang, S.; Chen, K.; Liu, X.; Hu, Y.; Liu, B.; Peng, Y.; Et, A. Preparation of substituted pyrrolopyrimidine derivative as CDK inhibitor. W.O. Patent 2017162215A1, September 28, 2017.
[83]
Knudsen, E.S.; Hutcheson, J.; Vail, P.; Witkiewicz, A.K. Biological specificity of CDK4/6 inhibitors: Dose response relationship, in vivo signaling, and composite response signature. Oncotarget, 2017, 8(27), 43678-43691.
[http://dx.doi.org/10.18632/oncotarget.18435] [PMID: 28620137]
[84]
O’Leary, B.; Finn, R.S.; Turner, N.C. Treating cancer with selective CDK4/6 inhibitors. Nat. Rev. Clin. Oncol., 2016, 13, 416-430.
[85]
Wang, Y.; Liu, W.J.; Yin, L.; Li, H.; Chen, Z.H.; Zhu, D.X.; Song, X.Q.; Cheng, Z.Z.; Song, P.; Wang, Z.; Li, Z.G. Design and synthesis of 4-(2,3-dihydro-1H-benzo[d]pyrrolo[1,2-a]imidazol-7-yl)-N-(5-(piperazin-1-ylmethyl)pyridine-2-yl)pyrimidin-2-amine as a highly potent and selective cyclin-dependent kinases 4 and 6 inhibitors and the discovery of structure-activity relationships. Bioorg. Med. Chem. Lett., 2018, 28(5), 974-978.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.068] [PMID: 29429832]
[86]
Zha, C.; Deng, W.; Fu, Y.; Tang, S.; Lan, X.; Ye, Y.; Su, Y.; Jiang, L.; Chen, Y.; Huang, Y.; Ding, J.; Geng, M.; Huang, M.; Wan, H. Design, synthesis and biological evaluation of tetrahydronaphthyridine derivatives as bioavailable CDK4/6 inhibitors for cancer therapy. Eur. J. Med. Chem., 2018, 148, 140-153.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.022] [PMID: 29459274]
[87]
Horiuchi, T.; Chiba, J.; Uoto, K.; Soga, T. Discovery of novel thieno[2,3-d]pyrimidin-4-yl hydrazone-based inhibitors of Cyclin D1-CDK4: Synthesis, biological evaluation, and structure-activity relationships. Bioorg. Med. Chem. Lett., 2009, 19(2), 305-308.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.090] [PMID: 19091560]
[88]
Horiuchi, T.; Takeda, Y.; Haginoya, N.; Miyazaki, M.; Nagata, M.; Kitagawa, M.; Akahane, K.; Uoto, K. Discovery of novel Thieno[2,3-d]pyrimidin-4-yl hydrazone-based cyclin-dependent kinase 4 inhibitors: Synthesis, biological evaluation and structure-activity relationships. Chem. Pharm. Bull. (Tokyo), 2011, 59(8), 991-1002.
[http://dx.doi.org/10.1248/cpb.59.991] [PMID: 21804244]
[89]
Ates-Alagoz, Z.; Kisla, M.M.; Karadayi, F.Z.; Baran, S. Doğan, T.S.; Mutlu, P. Design, synthesis, molecular docking and adme studies of novel indole-thiazolidinedione derivatives and their antineoplastic activity as CDK6 inhibitors. New J. Chem., 2021, 45(38), 18025-18038.
[http://dx.doi.org/10.1039/D1NJ02808A]
[90]
Bisi, J.E.; Sorrentino, J.A.; Roberts, P.J.; Tavares, F.X.; Strum, J.C. Preclinical characterization of G1T28: A novel CDK4/6 inhibitor for reduction of chemotherapy-induced myelosuppression. Mol. Cancer Ther., 2016, 15(5), 783-793.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0775] [PMID: 26826116]
[91]
FDA approves drug to reduce bone marrow suppression caused by chemotherapy. FDA, https://www.fda.gov/news-events/press-announcements/fda-approves-drug-reduce-bone-marrow-suppression-caused-chemotherapy
[92]
Bisi, J.E.; Sorrentino, J.A.; Jordan, J.L.; Darr, D.D.; Roberts, P.J.; Tavares, F.X.; Strum, J.C. Preclinical development of G1T38: A novel, potent and selective inhibitor of cyclin dependent kinases 4/6 for use as an oral antineoplastic in patients with CDK4/6 sensitive tumors. Oncotarget, 2017, 8(26), 42343-42358.
[http://dx.doi.org/10.18632/oncotarget.16216] [PMID: 28418845]
[93]
G1T38, a CDK 4/6 inhibitor, in combination with fulvestrant in hormone receptor-positive, HER2-negative locally advanced or metastatic breast cancer. https://clinicaltrials.gov/ct2/show/NCT02983071
[94]
Kamal, A.; Mahesh, R.; Nayak, V.L.; Babu, K.S.; Kumar, G.B.; Shaik, A.B.; Kapure, J.S.; Alarifi, A. Discovery of pyrrolospirooxindole derivatives as novel Cyclin Dependent Kinase 4 (CDK4) inhibitors by catalyst-free, green approach. Eur. J. Med. Chem., 2016, 108, 476-485.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.046] [PMID: 26708114]
[95]
Chiou, C.T.; Lee, W.C.; Liao, J.H.; Cheng, J.J.; Lin, L.C.; Chen, C.Y.; Song, J.S.; Wu, M.H.; Shia, K.S.; Li, W.T. Synthesis and evaluation of 3-ylideneoxindole acetamides as potent anticancer agents. Eur. J. Med. Chem., 2015, 98, 1-12.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.062] [PMID: 25988923]
[96]
Yin, L.; Yao, Z.; Wang, Y.; Huang, Y-H.; Mazuranic, M.; Yin, A. 4MO Preclinical evaluation of novel CDK4/6 inhibitor GLR2007 in breast and lung cancer models. Ann. Oncol., 2021, 32, S362.
[http://dx.doi.org/10.1016/j.annonc.2021.08.282]
[97]
Perez-Garcia, J.M.; Cortes, J.; Llombart-Cussac, A. CDK4/6 inhibitors in breast cancer: Spotting the difference. Nat. Med., 2021, 27(11), 1868-1869.
[http://dx.doi.org/10.1038/s41591-021-01570-9] [PMID: 34750558]