Exploring Synthesis and Chemotherapeutic Potential of Thiosemicarbazide Analogs

Page: [60 - 75] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: Cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020. Researchers are continually finding new and more effective medications to battle the diseases.

Objective: The objective of this study is to identify the emerging role of Thiosemicarbazide analogs for different types of cancer targets with a glance at different novel synthetic routes reported for their synthesis.

Methods: A systematic literature review was conducted from various sources over the last 15 years with the inclusion of published research and review articles that involves the synthesis and use of thiosemicarbazide analogs for different targets of cancer. Data from the literature review for synthesis and anticancer potential for specific targets for cancer studies of thiosemicarbazide analogs are summarized in the paper.

Results: There are several emerging studies for new synthetic routes of thiosemicarbazide derivatives with their role in various types of cancers. The main limitation is the lack of clinical trial of the key findings for the emergence of new anticancer medication with thiosemicarbazide moiety.

Conclusion: Emerging therapies exist for use of a limited number of medications for the treatment of cancer; results of the ongoing studies will provide more robust evidence in the future.

Keywords: Thiosemicarbazide, cancer, target, synthesis, diseases, clinical trial.

Graphical Abstract

[1]
Ali, N.A.; O’Brien, J.M., Jr; Blum, W.; Byrd, J.C.; Klisovic, R.B.; Marcucci, G.; Phillips, G.; Marsh, C.B.; Lemeshow, S.; Grever, M.R. Hyperglycemia in patients with acute myeloid leukemia is associated with increased hospital mortality. Cancer, 2007, 110(1), 96-102.
[http://dx.doi.org/10.1002/cncr.22777] [PMID: 17534900]
[2]
Galanski, M.; Arion, V.B.; Jakupec, M.A.; Keppler, B.K. Recent developments in the field of tumor-inhibiting metal complexes. Curr. Pharm. Des., 2003, 9(25), 2078-2089.
[http://dx.doi.org/10.2174/1381612033454180] [PMID: 14529417]
[3]
Hill, J.M.; Speer, R.J. Organo-platinum complexes as antitumor agents (review). Anticancer Res., 1982, 2(3), 173-186.
[PMID: 6751211]
[4]
García-Valverde, M.; Torroba, T. Sulfur-nitrogen heterocycles. Molecules, 2005, 10(2), 318-320.
[http://dx.doi.org/10.3390/10020318]
[5]
Bhavsar, Z.A.; Acharya, P.T.; Jethava, D.J.; Patel, H.D. Recent advances in development of anthelmintic agents: Synthesis and biological screening. Synth. Commun., 2020, 50(7), 917-946.
[http://dx.doi.org/10.1080/00397911.2019.1695276]
[6]
Bhat, M.A.; Khan, A.A.; Ghabbour, H.A.; Quah, C.K.; Fun, H.K. Synthesis, characterization, x-ray structure and antimicrobial activity of N-(4-chlorophenyl)-2-(pyridin-4-ylcarbonyl) hydrazinecarbothioamide. Trop. J. Pharm. Res., 2016, 15(8), 1751-1757.
[http://dx.doi.org/10.4314/tjpr.v15i8.22]
[7]
Beraldo, H.; Gambino, D. The wide pharmacological versatility of semicarbazones, thiosemicarba-zones and their metal complexes. Mini Rev. Med. Chem., 2004, 4(1), 31-39.
[http://dx.doi.org/10.2174/1389557043487484] [PMID: 14754441]
[8]
Sardari, S.; Feizi, S.; Rezayan, A.H.; Azerang, P.; Shahcheragh, S.M.; Ghavami, G.; Habibi, A. Synthesis and biological evaluation of thiosemicarbazide derivatives endowed with high activity toward Mycobacterium bovis. Iran. J. Pharm. Res., 2017, 16(3), 1128-1140.
[PMID: 29201099]
[9]
Metwally, M.A.; Bondock, S.; El-Azap, H.; Kandeel, E.E. Thiosemicarbazides: Synthesis and reactions. J. Sulfur Chem., 2011, 32(5), 489-519.
[http://dx.doi.org/10.1080/17415993.2011.601869]
[10]
Mustafa, S.M.; Nair, V.A.; Chittoor, J.P.; Krishnapillai, S. Synthesis of 1, 2, 4-triazoles and thiazoles from thiosemicarbazide and its derivatives. Mini Rev. Org. Chem., 2004, 1(4), 375-385.
[http://dx.doi.org/10.2174/1570193043403082]
[11]
Gou, Y. Wang, J.; Chen, S.; Zhang, Z.; Zhang, Y.; Zhang, W.; Yang, F. α-N-heterocyclic thiosemicarbazone Fe(III) complex: Characterization of its antitumor activity and identification of anticancer mechanism. Eur. J. Med. Chem., 2016, 123, 354-364.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.041] [PMID: 27487566]
[12]
Bisceglie, F.; Tavone, M.; Mussi, F.; Azzoni, S.; Montalbano, S.; Franzoni, S.; Tarasconi, P.; Buschini, A.; Pelosi, G. Effects of polar substituents on the biological activity of thiosemicarbazone metal complexes. J. Inorg. Biochem., 2018, 179, 60-70.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.11.009] [PMID: 29175629]
[13]
Huang, H.; Chen, Q.; Ku, X.; Meng, L.; Lin, L.; Wang, X.; Zhu, C.; Wang, Y.; Chen, Z.; Li, M.; Jiang, H.; Chen, K.; Ding, J.; Liu, H. A series of α-heterocyclic carboxaldehyde thiosemicarbazones inhibit topoisomerase IIalpha catalytic activity. J. Med. Chem., 2010, 53(8), 3048-3064.
[http://dx.doi.org/10.1021/jm9014394] [PMID: 20353152]
[14]
Xie, W.; Xie, S.; Zhou, Y.; Tang, X.; Liu, J.; Yang, W.; Qiu, M. Design and synthesis of novel 5,6-disubstituted pyridine-2,3-dione-3-thiosemicarbazone derivatives as potential anticancer agents. Eur. J. Med. Chem., 2014, 81, 22-27.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.001] [PMID: 24819956]
[15]
Lui, G.Y.; Kovacevic, Z.V.; Menezes, S.; Kalinowski, D.S.; Merlot, A.M.; Sahni, S.; Richardson, D.R. Novel thiosemicarbazones regulate the signal transducer and activator of transcription 3 (STAT3) pathway: Inhibition of constitutive and interleukin 6-induced activation by iron depletion. Mol. Pharmacol., 2015, 87(3), 543-560.
[http://dx.doi.org/10.1124/mol.114.096529] [PMID: 25561562]
[16]
Feun, L.; Modiano, M.; Lee, K.; Mao, J.; Marini, A.; Savaraj, N.; Plezia, P.; Almassian, B.; Colacino, E.; Fischer, J.; MacDonald, S. Phase I and pharmacokinetic study of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) using a single intravenous dose schedule. Cancer Chemother. Pharmacol., 2002, 50(3), 223-229.
[http://dx.doi.org/10.1007/s00280-002-0480-0] [PMID: 12203104]
[17]
Mackenzie, M.J.; Saltman, D.; Hirte, H.; Low, J.; Johnson, C.; Pond, G.; Moore, M.J. A Phase II study of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) and gemcitabine in advanced pancreatic carcinoma. A trial of the Princess Margaret hospital Phase II consortium. Invest. New Drugs, 2007, 25(6), 553-558.
[http://dx.doi.org/10.1007/s10637-007-9066-3] [PMID: 17585372]
[18]
Yu, Y.; Rahmanto, Y.S.; Hawkins, C.L.; Richardson, D.R. The potent and novel thiosemicarbazone chelators, Dp44mT and Bp44mT, affect crucial thiol systems required for ribonucleotide reductase activity. Mol. Pharmacol., 2011, 1, 1-34.
[19]
Rao, V.A.; Klein, S.R.; Agama, K.K.; Toyoda, E.; Adachi, N.; Pommier, Y.; Shacter, E.B. The iron chelator Dp44mT causes DNA damage and selective inhibition of topoisomerase IIalpha in breast cancer cells. Cancer Res., 2009, 69(3), 948-957.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1437] [PMID: 19176392]
[20]
Malarz, K.; Mrozek-Wilczkiewicz, A.; Serda, M.; Rejmund, M.; Polanski, J.; Musiol, R. The role of oxidative stress in activity of anticancer thiosemicarbazones. Oncotarget, 2018, 9(25), 17689-17710.
[http://dx.doi.org/10.18632/oncotarget.24844] [PMID: 29707141]
[21]
Rejmund, M.; Mrozek-Wilczkiewicz, A.; Malarz, K.; Pyrkosz-Bulska, M.; Gajcy, K.; Sajewicz, M.; Musiol, R.; Polanski, J. Piperazinyl fragment improves anticancer activity of Triapine. PLoS One, 2018, 13(4), e0188767.
[http://dx.doi.org/10.1371/journal.pone.0188767] [PMID: 29652894]
[22]
Whitnall, M.; Howard, J.; Ponka, P.; Richardson, D.R. A class of iron chelators with a broad spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics. Proc. Natl. Acad. Sci, 2006, 103(40), 14901-14906.
[http://dx.doi.org/10.1073/pnas.0604979103] [PMID: 17003122]
[23]
Sharma, V.K.; Srivastava, S. Synthesis, magnetic and spectral studies of chromium (III), manganese (III), iron (III) and cobalt (III) complexes of thiosemicarbazones derived from benzil α-monoxime and unsubstituted/substituted thiosemicarbazides as biological agents. J. Coord. Chem., 2008, 61(2), 178-191.
[http://dx.doi.org/10.1080/00958970701318426]
[24]
Thanh, N.D.; Giang, N.T.K.; Quyen, T.H.; Huong, D.T.; Toan, V.N. Synthesis and evaluation of in vivo antioxidant, in vitro antibacterial, MRSA and antifungal activity of novel substituted isatin N-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)thiosemicarbazones. Eur. J. Med. Chem., 2016, 123, 532-543.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.074] [PMID: 27517802]
[25]
Abou-Melha, K.S. Octahedral Co (II) and Ni (II) complexes of schiff bases, semicarbazone and thiosemicarbazone, synthesis, biological, spectral, and thermal studies. J. Coord. Chem., 2008, 61(13), 2053-2067.
[http://dx.doi.org/10.1080/00958970701862167]
[26]
Trotsko, N.; Kosikowska, U.; Paneth, A.; Plech, T.; Malm, A.; Wujec, M. Synthesis and antibacterial activity of new thiazolidine-2, 4-dione-based chlorophenylthiosemicarbazone hybrids. Molecules, 2018, 23(5), 1023.
[http://dx.doi.org/10.3390/molecules23051023] [PMID: 29701728]
[27]
Paneth, A. Stączek, P.; Plech, T.; Strzelczyk, A.; Dzitko, K.; Wujec, M.; Kuśmierz, E.; Kosikowska, U.; Grzegorczyk, A.; Paneth, P. Biological evaluation and molecular modelling study of thiosemicarbazide derivatives as bacterial type IIA topoisomerases inhibitors. J. Enzyme Inhib. Med. Chem., 2016, 31(1), 14-22.
[http://dx.doi.org/10.3109/14756366.2014.1003214] [PMID: 25792505]
[28]
Batista, S.A.; Vandresen, F.; Falzirolli, H.; Britta, E.; de Oliveira, D.N.; Catharino, R.R.; Gonçalves, M.A.; Ramalho, T.C.; La Porta, F.A.; Nakamura, C.V.; da Silva, C.C. Synthesis and comparison of antileishmanial and cytotoxic activities of S- (−)-limonene benzaldehydethiosemicarbazones with their R-(+)-analogues. J. Mol. Struct., 2019, 1179, 252-262.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.017]
[29]
Patel, S.R.; Gangwal, R.; Sangamwar, A.T.; Jain, R. Synthesis, biological evaluation and 3D-QSAR study of hydrazide, semicarbazide and thiosemicarbazide derivatives of 4-(adamantan-1-yl)quinoline as anti-tuberculosis agents. Eur. J. Med. Chem., 2014, 85, 255-267.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.100] [PMID: 25089809]
[30]
Ratsimamanga; Buu-Hoi, N.P.; Dechamps, G.; Bihan, H.L.; Binon, F.; Nigeon-Dureuil, The in vivo antitubercular activity of some thiosemicarbazide derivatives. C. R. Seances Soc. Biol. Fil., 1952, 146(5-6), 354-357.
[PMID: 12988415]
[31]
Haraguchi, S.K.; Silva, A.A.; Vidotti, G.J.; dos Santos, P.V.; Garcia, F.P.; Pedroso, R.B.; Nakamura, C.V.; de Oliveira, C.M.; da Silva, C.C. Antitrypanasomal activity of novel benzaldehyde-thiosemicarbazone derivatives from kaurenoic acid. Molecules, 2011, 16(2), 1166-1180.
[http://dx.doi.org/10.3390/molecules16021166] [PMID: 21270733]
[32]
Paterson, B.M.; Donnelly, P.S. Copper complexes of bis(thiosemicarbazones): From chemotherapeutics to diagnostic and therapeutic radiopharmaceuticals. Chem. Soc. Rev., 2011, 40(5), 3005-3018.
[http://dx.doi.org/10.1039/c0cs00215a] [PMID: 21409228]
[33]
Subhashree, G.R.; Haribabu, J.; Saranya, S.; Yuvaraj, P.; Krishnan, D.A.; Karvembu, R.; Gayathri, D. In vitro antioxidant, antiinflammatory and in silico molecular docking studies of thiosemicarbazones. J. Mol. Struct., 2017, 1145, 160-169.
[http://dx.doi.org/10.1016/j.molstruc.2017.05.054]
[34]
Islam, M.; Khan, A.; Shehzad, M.T.; Hameed, A.; Ahmed, N.; Halim, S.A.; Khiat, M.; Anwar, M.U.; Hussain, J.; Csuk, R.; Shafiq, Z.; Al-Harrasi, A. Synthesis and characterization of new thiosemicarbazones, as potent urease inhibitors: in vitro and in silico studies. Bioorg. Chem., 2019, 87, 155-162.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.008] [PMID: 30884309]
[35]
Hameed, A.; Khan, K.M.; Zehra, S.T.; Ahmed, R.; Shafiq, Z.; Bakht, S.M.; Yaqub, M.; Hussain, M.; de la Vega de León, A.; Furtmann, N.; Bajorath, J.; Shad, H.A.; Tahir, M.N.; Iqbal, J. Synthesis, biological evaluation and molecular docking of N-phenyl thiosemicarbazones as urease inhibitors. Bioorg. Chem., 2015, 61, 51-57.
[http://dx.doi.org/10.1016/j.bioorg.2015.06.004] [PMID: 26119990]
[36]
Kumar, V.A.; Sarala, Y.; Siddikha, A.; Vanitha, S.; Babu, S.; Reddy, A.V. Synthesis, characterization antimicrobial and antioxidant activities of 2, 4-dihydroxybenzaldehyde-4-phenyl-3-thiosemicarbazone (DHBPTSC) and its Pd (II), Ni (II) dppm Mixed ligand and Cu (II) complex having heterocyclic bases. J. Appl. Pharm. Sci., 2018, 8(04), 071-8.
[37]
Nguyen, D.T.; Le, T.H.; Bui, T.T. Antioxidant activities of thiosemicarbazones from substituted benzaldehydes and N-(tetra-O-acetyl-β-D-galactopyranosyl)thiosemicarbazide. Eur. J. Med. Chem., 2013, 60, 199-207.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.004] [PMID: 23291121]
[38]
Namiecińska, E.; Sobiesiak, M.; Małecka, M.; Guga, P.; Rozalska, B.; Budzisz, E. Antimicrobial and structural properties of metal ions complexes with thiosemicarbazide motif and related heterocyclic compounds. Curr. Med. Chem., 2019, 26(4), 664-693.
[http://dx.doi.org/10.2174/0929867325666180228164656] [PMID: 29493443]
[39]
Sroor, F.M.; Khatab, T.K.; Basyouni, W.M.; El-Bayouki, K.A. Synthesis and molecular docking studies of some new thiosemicarbazone derivatives as HCV polymeraseinhibitors. Synth. Commun., 2019, 49(11), 1444-1456.
[http://dx.doi.org/10.1080/00397911.2019.1605443]
[40]
Kozyra, P.; Korga-Plewko, A.; Karczmarzyk, Z. Hawrył A.; Wysocki, W.; Człapski, M.; Iwan, M.; Ostrowska-Leśko, M.; Fornal, E.; Pitucha, M. Potential anticancer agents against melanoma cells based on an as-synthesized thiosemicarbazide derivative. Biomolecules, 2022, 12(2), 151.
[http://dx.doi.org/10.3390/biom12020151] [PMID: 35204651]
[41]
Serda, M.; Kalinowski, D.S.; Rasko, N. Potůčková, E.; Mrozek-Wilczkiewicz, A.; Musiol, R.; Małecki, J.G.; Sajewicz, M.; Ratuszna, A.; Muchowicz, A.; Gołąb, J.; Simůnek, T.; Richardson, D.R.; Polanski, J. Exploring the anti-cancer activity of novel thiosemicarbazones generated through the combination of retro-fragments: Dissection of critical structure-activity relationships. PLoS One, 2014, 9(10), e110291.
[http://dx.doi.org/10.1371/journal.pone.0110291] [PMID: 25329549]
[42]
Kshirsagar, A.; Toraskar, M.P.; Kulkarni, V.M.; Dhanashire, S.; Kadam, V. Microwave assisted synthesis of potential anti-infective and anticonvulsant thiosemicarbazones. Int. J. Chemtech Res., 2009, 1(3), 696-701.
[43]
Yogeeswari, P.; Sriram, D.; Mehta, S.; Nigam, D.; Kumar, M.M.; Murugesan, S.; Stables, J.P. Anticonvulsant and neurotoxicity evaluation of some 6-substituted benzothiazolyl-2-thiosemicarbazones. Farmaco, 2005, 60(1), 1-5.
[http://dx.doi.org/10.1016/j.farmac.2004.09.001] [PMID: 15652361]
[44]
Liu, J.; Yi, W.; Wan, Y.; Ma, L.; Song, H. 1-(1-Arylethylidene)thiosemicarbazide derivatives: A new class of tyrosinase inhibitors. Bioorg. Med. Chem., 2008, 16(3), 1096-1102.
[http://dx.doi.org/10.1016/j.bmc.2007.10.102] [PMID: 18326070]
[45]
Ishaq, M.; Taslimi, P.; Shafiq, Z.; Khan, S.; Ekhteiari Salmas, R.; Zangeneh, M.M.; Saeed, A.; Zangeneh, A.; Sadeghian, N.; Asari, A.; Mohamad, H. Synthesis, bioactivity and binding energy calculations of novel 3-ethoxysalicylaldehyde based thiosemicarbazone derivatives. Bioorg. Chem., 2020, 100, 103924.
[http://dx.doi.org/10.1016/j.bioorg.2020.103924] [PMID: 32442818]
[46]
Grzegorzewicz, A.E.; Korduláková, J.; Jones, V.; Born, S.E.; Belardinelli, J.M.; Vaquié, A.; Gundi, V.A.; Madacki, J.; Slama, N.; Laval, F.; Vaubourgeix, J.; Crew, R.M.; Gicquel, B.; Daffé, M.; Morbidoni, H.R.; Brennan, P.J.; Quémard, A.; McNeil, M.R.; Jackson, M. A common mechanism of inhibition of the Mycobacterium tuberculosis mycolic acid biosynthetic pathway by isoxyl and thiacetazone. J. Biol. Chem., 2012, 287(46), 38434-38441.
[http://dx.doi.org/10.1074/jbc.M112.400994] [PMID: 23002234]
[47]
Grzegorzewicz, A.E.; Eynard, N.; Quémard, A.; North, E.J.; Margolis, A.; Lindenberger, J.J.; Jones, V.; Korduláková, J.; Brennan, P.J.; Lee, R.E.; Ronning, D.R.; McNeil, M.R.; Jackson, M. Covalent modification of the Mycobacterium tuberculosis FAS-II dehydratase by Isoxyl and Thiacetazone. ACS Infect. Dis., 2015, 1(2), 91-97.
[http://dx.doi.org/10.1021/id500032q] [PMID: 25897434]
[48]
Cihan-Üstündağ G.; Gürsoy, E.; Naesens, L.; Ulusoy-Güzeldemirci, N.; Çapan, G. Synthesis and antiviral properties of novel indole-based thiosemicarbazides and 4-thiazolidinones. Bioorg. Med. Chem., 2016, 24(2), 240-246.
[http://dx.doi.org/10.1016/j.bmc.2015.12.008] [PMID: 26707844]
[49]
Tsimberidou, A.M.; Alvarado, Y.; Giles, F.J. Evolving role of ribonucleoside reductase inhibitors in hematologic malignancies. Expert Rev. Anticancer Ther., 2002, 2(4), 437-448.
[http://dx.doi.org/10.1586/14737140.2.4.437] [PMID: 12647987]
[50]
Hernández, W.; Carrasco, F.; Vaisberg, A.; Spodine, E.; Manzur, J.; Icker, M.; Krautscheid, H.; Beyer, L. Synthesis, spectroscopic characterization, structural studies, and in vitro antitumor activities of pyridine-3-carbaldehyde thiosemicarbazone derivatives. J. Chem., 2020, 2020
[http://dx.doi.org/10.1155/2020/2960165]
[51]
Sibuh, B.Z.; Taneja, P.; Khanna, S. Effects of substituents on anticancer activity of thiosemicarbazone against MCF-7 human breast cancer cell line. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.02.19.955690]
[52]
Yousef, T.A.; El-Reash, G.A. Synthesis, and biological evaluation of complexes based on thiosemicarbazone ligand. J. Mol. Struct., 2020, 1201, 127180.
[http://dx.doi.org/10.1016/j.molstruc.2019.127180]
[53]
Khan, T.; Dixit, S.; Ahmad, R.; Raza, S.; Azad, I.; Joshi, S.; Khan, A.R. Molecular docking, PASS analysis, bioactivity score prediction, synthesis, characterization and biological activity evaluation of a functionalized 2-butanone thiosemicarbazone ligand and its complexes. J. Chem. Biol., 2017, 10(3), 91-104.
[http://dx.doi.org/10.1007/s12154-017-0167-y] [PMID: 28684996]
[54]
Abhale, Y.K.; Shinde, A.; Deshmukh, K.K.; Nawale, L.; Sarkar, D.; Mhaske, P.C. Synthesis, antitubercular and antimicrobial potential of some new thiazole substituted thiosemicarbazide derivatives. Med. Chem. Res., 2017, 26(10), 2557-2567.
[http://dx.doi.org/10.1007/s00044-017-1955-1]
[55]
Altintop, M.D.; Sever, B.; Özdemir, A. Kuş G.; Oztopcu-Vatan, P.; Kabadere, S.; Kaplancikli, Z.A. Synthesis and evaluation of naphthalene-based thiosemicarbazone derivatives as new anticancer agents against LNCaP prostate cancer cells. J. Enzyme Inhib. Med. Chem., 2016, 31(3), 410-416.
[PMID: 25826149]
[56]
Altıntop, M.D.; Atlı Ö.; Ilgın, S.; Demirel, R.; Özdemir, A.; Kaplancıklı Z.A. Synthesis and biological evaluation of new naphthalene substituted thiosemicarbazone derivatives as potent antifungal and anticancer agents. Eur. J. Med. Chem., 2016, 108, 406-414.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.041] [PMID: 26706351]
[57]
Salib, S.B. Synthesis and antitumor activity of novel thienopyrimidine derivatives containing thiosemicarbazide moiety. Open Access Library J., 2016, 3(07), 1.
[http://dx.doi.org/10.4236/oalib.1102876]
[58]
Pitucha, M. Woś M.; Miazga-Karska, M.; Klimek, K.; Mirosław, B.; Pachuta-Stec, A.; Gładysz, A.; Ginalska, G. Synthesis, antibacterial and antiproliferative potential of some new 1-pyridinecarbonyl-4-substituted thiosemicarbazide derivatives. Med. Chem. Res., 2016, 25(8), 1666-1677.
[http://dx.doi.org/10.1007/s00044-016-1599-6] [PMID: 27499604]
[59]
Al-Mutairi, A.A.; Al-Alshaikh, M.A.; Al-Omary, F.A.M.; Hassan, H.M.; El-Mahdy, A.M.; El-Emam, A.A. Synthesis, antimicrobial, and antiproliferative activities of novel 4-(adamantan-1-yl)-1-arylidene-3-thiosemicarbazides, 4-arylmethyl N′-(Adamantan-1-yl) piperidine-1-carbothioimidates, and related derivatives. Molecules, 2019, 24(23), 4308.
[http://dx.doi.org/10.3390/molecules24234308] [PMID: 31779091]
[60]
Dadaş Y.; Coşkun, G.P.; Bingöl-Akpinar, O.; Ozsavci, D.; Küçükgüzel, S.G. Synthesis and anticancer activity of some novel tolmetin thiosemicarbazides. Marmara Pharm. J., 2015, 19, 259-267.
[http://dx.doi.org/10.12991/mpj.201519328306]
[61]
de Almeida, S.M.; Lafayette, E.A.; da Silva, L.P.; Amorim, C.A.; de Oliveira, T.B.; Ruiz, A.L.; de Carvalho, J.E.; de Moura, R.O.; Beltrão, E.I. de Lima, Mdo.C.; de Carvalho Júnior, L.B. Synthesis, DNA binding, and antiproliferative activity of novel acridine-thiosemicarbazone derivatives. Int. J. Mol. Sci., 2015, 16(6), 13023-13042.
[http://dx.doi.org/10.3390/ijms160613023] [PMID: 26068233]
[62]
Taşdemir, D.; Karaküçük-İyidoğan, A.; Ulaşli, M.; Taşkin-Tok, T.; Oruç-Emre, E.E.; Bayram, H. Synthesis, molecular modeling, and biological evaluation of novel chiral thiosemicarbazone derivatives as potent anticancer agents. Chirality, 2015, 27(2), 177-188.
[http://dx.doi.org/10.1002/chir.22408] [PMID: 25399965]
[63]
Gan, C.; Cui, J.; Su, S.; Lin, Q.; Jia, L.; Fan, L.; Huang, Y. Synthesis and antiproliferative activity of some steroidal thiosemicarbazones, semicarbazones and hydrozones. Steroids, 2014, 87, 99-107.
[http://dx.doi.org/10.1016/j.steroids.2014.05.026] [PMID: 24928726]
[64]
Nammalwar, B.; Bunce, R.A.; Berlin, K.D.; Benbrook, D.M.; Toal, C. Synthesis and biological evaluation of SHetA2 (NSC-721689) analogs against the ovarian cancer cell line A2780. Eur. J. Med. Chem., 2019, 170, 16-27.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.010] [PMID: 30878829]
[65]
Abdelhafez, O.M.; Ahmed, E.Y.; Abdel Latif, N.A.; Arafa, R.K.; Abd Elmageed, Z.Y.; Ali, H.I. Design and molecular modeling of novel P38α MAPK inhibitors targeting breast cancer, synthesized from oxygen heterocyclic natural compounds. Bioorg. Med. Chem., 2019, 27(7), 1308-1319.
[http://dx.doi.org/10.1016/j.bmc.2019.02.027] [PMID: 30792101]
[66]
Han, I.M.; Tunc, C.U.; Atalay, P.; Erdogan, O.; Unal, G.; Bozkurt, M.; Aydin, O.; Cevik, O.; Kucukguzel, S.G. Design, synthesis, and in vitro and in vivo anticancer activity studies of new (S)-Naproxen thiosemicarbazide/1,2,4-triazole derivatives. New J. Chem., 2022, 46, 6046-6059.
[http://dx.doi.org/10.1039/D1NJ05899A]
[67]
Carcelli, M.; Tegoni, M.; Bartoli, J.; Marzano, C.; Pelosi, G.; Salvalaio, M.; Rogolino, D.; Gandin, V. In vitro and in vivo anticancer activity of tridentate thiosemicarbazone copper complexes: Unravelling an unexplored pharmacological target. Eur. J. Med. Chem., 2020, 194, 112266.
[http://dx.doi.org/10.1016/j.ejmech.2020.112266] [PMID: 32248006]
[68]
Saranya, S.; Haribabu, J.; Palakkeezhillam, V.N.; Jerome, P.; Gomathi, K.; Rao, K.K.; Babu, V.H.; Karvembu, R.; Gayathri, D. Molecular structures, Hirshfeld analysis and biological investigations of isatin based thiosemicarbazones. J. Mol. Struct., 2019, 1198, 126904.
[http://dx.doi.org/10.1016/j.molstruc.2019.126904]
[69]
Reddy, A.S.; Mao, J.; Krishna, L.S.; Badavath, V.N.; Maji, S. Synthesis, spectral investigation, molecular docking and biological evaluation of Cu (II), Ni (II) and Mn (II) complexes of (E)-2-((2-butyl-4-chloro-1H-imidazol-5-yl) methylene)-N-methylhydrazinecarbothioamide (C10H16N5ClS) and its DFT studies. J. Mol. Struct., 2019, 1196, 338-347.
[http://dx.doi.org/10.1016/j.molstruc.2019.06.085]
[70]
Haribabu, J.; Sabapathi, G.; Tamizh, M.M.; Balachandran, C.; Bhuvanesh, N.S.; Venuvanalingam, P.; Karvembu, R. Water-soluble mono-and binuclear Ru (η6-p-cymene) complexes containing indolethiosemicarbazones: Synthesis, DFT modeling, biomolecular interactions, and in vitro anticancer activity through apoptosis. Organometallics, 2018, 37(8), 1242-1257.
[http://dx.doi.org/10.1021/acs.organomet.8b00004]
[71]
Malki, A.; Elbayaa, R.Y.; Ashour, H.M.; Loffredo, C.A.; Youssef, A.M. Novel thiosemicarbazides induced apoptosis in human MCF-7 breast cancer cells via JNK signaling. J. Enzyme Inhib. Med. Chem., 2015, 30(5), 786-795.
[http://dx.doi.org/10.3109/14756366.2014.971781] [PMID: 25363687]
[72]
Farghaly, T.A.; El-Metwaly, N.; Al-Soliemy, A.M.; Katouah, H.A.; Muhammad, Z.A.; Sabour, R. Synthesis, molecular docking and antitumor activity of new dithiazoles. Polycycl. Aromat. Compd., 2019, 1-7.
[73]
Ertas, M.; Sahin, Z.; Bulbul, E.F.; Bender, C.; Biltekin, S.N.; Berk, B.; Yurttas, L.; Nalbur, A.M.; Celik, H. Demirayak, Ş Potent ribonucleotide reductase inhibitors: Thiazole-containing thiosemicarbazone derivatives. Arch. Pharm. (Weinheim), 2019, 352(11), e1900033.
[http://dx.doi.org/10.1002/ardp.201900033] [PMID: 31475759]
[74]
Divar, M.; Khalafi-Nezhad, A.; Zomorodian, K.; Sabet, R.; Faghih, Z.; Jamali, M.; Pournaghz, H.; Khabnadideh, S. Synthesis of some novel semicarbazone and thiosemicarbazone derivatives of isatin as possible biologically active agents. J. Pharm. Res. Int., 2017, 1-3.
[http://dx.doi.org/10.9734/JPRI/2017/35243]
[75]
Hmood, K.S.; Kubba, A.A.; Al-bayati, R.I.; Saleh, A.M. Synthesis, and anti-tumor evaluation of some new flurbiprofen derivatives against MCF-7 and WRL-68 cell lines. Indones. J. Pharm., 2021, 32(1), 17-34.
[76]
de Oliveira, J.F.; da Silva, A.L.; Vendramini-Costa, D.B.; da Cruz Amorim, C.A.; Campos, J.F.; Ribeiro, A.G.; Olímpio de Moura, R.; Neves, J.L.; Ruiz, A.L.; Ernesto de Carvalho, J. Alves de Lima, Mdo.C. Synthesis of thiophene-thiosemicarbazone derivatives and evaluation of their in vitro and in vivo antitumor activities. Eur. J. Med. Chem., 2015, 104, 148-156.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.036] [PMID: 26454648]
[77]
Dincel, E.D.; Guzeldemirci, N.U. Synthesis and computer-aided drug design studies of novel thiosemicarbazide derivatives as potent and target-oriented anticancer agents. Medicine (Baltimore), 2020, 9(2), 305-313.
[78]
Khalil, O.M.; Gedawy, E.M.; El-Malah, A.A.; Adly, M.E. Novel nalidixic acid derivatives targeting topoisomerase II enzyme; Design, synthesis, anticancer activity and effect on cell cycle profile. Bioorg. Chem., 2019, 83, 262-276.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.058] [PMID: 30391699]
[79]
Abdelaziz, O.A.; El Husseiny, W.M.; Selim, K.B.; Eisa, H.M. Dihydrofolate reductase inhibition effect of 5-substituted pyrido[2,3-d]pyrimidines: Synthesis, antitumor activity and molecular modeling study. Bioorg. Chem., 2019, 90, 103076.
[http://dx.doi.org/10.1016/j.bioorg.2019.103076] [PMID: 31260878]
[80]
Hekal, M.H.; Abu El-Azm, F.S.; Atta-Allah, S.R. Ecofriendly and highly efficient microwave-induced synthesis of novel quinazolinone-undecyl hybrids with in vitro antitumor activity. Synth. Commun., 2019, 49(20), 2630-2641.
[http://dx.doi.org/10.1080/00397911.2019.1637001]
[81]
Ribeiro, A.G.; Almeida, S.M.V.; de Oliveira, J.F.; Souza, T.R.C.L.; Santos, K.L.D.; Albuquerque, A.P.B.; Nogueira, M.C.B.L.; Carvalho, Junior, L.B.; Moura, R.O.; da Silva, A.C.; Pereira, V.R.A.; Castro, M.C.A.B.; Lima, M.D.C.A. Novel 4-quinoline-thiosemicarbazone derivatives: Synthesis, antiproliferative activity, in vitro and in silico biomacromolecule interaction studies and topoisomerase inhibition. Eur. J. Med. Chem., 2019, 182, 111592.
[http://dx.doi.org/10.1016/j.ejmech.2019.111592] [PMID: 31421632]
[82]
Bakherad, Z.; Safavi, M.; Fassihi, A.; Sadeghi-Aliabadi, H.; Bakherad, M.; Rastegar, H.; Saeedi, M.; Ghasemi, J.B.; Saghaie, L.; Mahdavi, M. Design and synthesis of novel cytotoxic indole-thiosemicarbazone derivatives: biological evaluation and docking study. Chem. Biodivers., 2019, 16(4), e1800470.
[http://dx.doi.org/10.1002/cbdv.201800470] [PMID: 30845369]
[83]
Geng, P.F.; Liu, X.Q.; Zhao, T.Q.; Wang, C.C.; Li, Z.H.; Zhang, J.; Wei, H.M.; Hu, B.; Ma, L.Y.; Liu, H.M. Design, synthesis and in vitro biological evaluation of novel [1,2,3]triazolo[4,5-d]pyrimidine derivatives containing a thiosemicarbazide moiety. Eur. J. Med. Chem., 2018, 146, 147-156.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.031] [PMID: 29407946]
[84]
Gaber, A.A.; Bayoumi, A.H.; El-Morsy, A.M.; Sherbiny, F.F.; Mehany, A.B.M.; Eissa, I.H. Design, synthesis and anticancer evaluation of 1H-pyrazolo[3,4-d]pyrimidine derivatives as potent EGFRWT and EGFRT790M inhibitors and apoptosis inducers. Bioorg. Chem., 2018, 80, 375-395.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.017] [PMID: 29986185]
[85]
Wos, M.; Miazga-Karska, M.; Kaczor, A.A.; Klimek, K.; Karczmarzyk, Z.; Kowalczuk, D.; Wysocki, W.; Ginalska, G.; Urbanczyk-Lipkowska, Z.; Morawiak, M.; Pitucha, M. Novel thiosemicarbazide derivatives with 4-nitrophenyl group as multi-target drugs: Α-glucosidase inhibitors with antibacterial and antiproliferative activity. Biomed. Pharmacother., 2017, 93, 1269-1276.
[http://dx.doi.org/10.1016/j.biopha.2017.07.049] [PMID: 28747001]
[86]
Wang, Y.; Gu, W.; Shan, Y.; Liu, F.; Xu, X.; Yang, Y.; Zhang, Q.; Zhang, Y.; Kuang, H.; Wang, Z.; Wang, S. Design, synthesis and anticancer activity of novel nopinone-based thiosemicarbazone derivatives. Bioorg. Med. Chem. Lett., 2017, 27(11), 2360-2363.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.024] [PMID: 28431878]
[87]
de Oliveira, J.F.; Lima, T.S.; Vendramini-Costa, D.B.; de Lacerda Pedrosa, S.C.B.; Lafayette, E.A.; da Silva, R.M.F.; de Almeida, S.M.V.; de Moura, R.O.; Ruiz, A.L.T.G.; de Carvalho, J.E.; de Lima, M.D.C.A. Thiosemicarbazones and 4-thiazolidinones indole-based derivatives: Synthesis, evaluation of antiproliferative activity, cell death mechanisms and topoisomerase inhibition assay. Eur. J. Med. Chem., 2017, 136, 305-314.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.023] [PMID: 28505535]
[88]
Abd El-Meguid, E.A.; Ali, M.M. Synthesis of some novel 4-benzothiazol-2-yl-benzoyl-1H-pyrazoles, and evaluation as antiangiogenic agents. Res. Chem. Intermed., 2016, 42(2), 1521-1536.
[http://dx.doi.org/10.1007/s11164-015-2100-8]
[89]
Pahontu, E.; Fala, V.; Gulea, A.; Poirier, D.; Tapcov, V.; Rosu, T. Synthesis and characterization of some new Cu(II), Ni(II) and Zn(II) complexes with salicylidene thiosemicarbazones: Antibacterial, antifungal and in vitro antileukemia activity. Molecules, 2013, 18(8), 8812-8836.
[http://dx.doi.org/10.3390/molecules18088812] [PMID: 23887722]
[90]
Siwek, A. Stączek, P.; Wujec, M.; Bielawski, K.; Bielawska, A.; Paneth, P. Cytotoxic effect and molecular docking of 4-ethoxycarbonylmethyl-1-(piperidin-4-ylcarbonyl)-thiosemicarbazide--a novel topoisomerase II inhibitor. J. Mol. Model., 2013, 19(3), 1319-1324.
[http://dx.doi.org/10.1007/s00894-012-1679-6] [PMID: 23187686]
[91]
He, J.; Wang, X.; Zhao, X.; Liang, Y.; He, H.; Fu, L. Synthesis and antitumor activity of novel quinazoline derivatives containing thiosemicarbazide moiety. Eur. J. Med. Chem., 2012, 54, 925-930.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.003] [PMID: 22749192]
[92]
Dilović I.; Rubcić M.; Vrdoljak, V.; Kraljević Pavelić S.; Kralj, M.; Piantanida, I.; Cindrić M. Novel thiosemicarbazone derivatives as potential antitumor agents: Synthesis, physicochemical and structural properties, DNA interactions and antiproliferative activity. Bioorg. Med. Chem., 2008, 16(9), 5189-5198.
[http://dx.doi.org/10.1016/j.bmc.2008.03.006] [PMID: 18358728]