A Glance at Dysprosium Oxide Free Powders

Page: [85 - 94] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Dysprosium oxide (Dy2O3) gathers a set of profitable properties with a wide range of applications, including energy and astronomy. Particular characteristics directly influence the formation and features of materials by colloidal processing. The main purpose of this paper is to carry out a powder characterization of Dy2O3particles. The findings reported are worthwhile parameters to advance in the formulation of new smart materials for radiation dosimetry.

Methods: Dy2O3 powders were characterized by XRD, PCS, SEM, pynometric density (ρ), FTIR, ICP, EPR, and zeta potential (ζ).

Results: The powdered samples exhibited as main features a cubic C-type structure following the RE-polymorphic diagram, a mean particle size distribution with d50 of 389nm, and pynometric density of 7.94g.cm-3. The EPR spectra revealed three distinct peaks, p1, p2, and p3, with the following g values: 2.3121, 2.1565, and 2.1146. In addition, the nanoparticles presented high stability at pH 5.5 and a ζ-value of |49.7|mV.

Conclusion: The powder characterization of Dy2O3 powders was reported. The results achieved in this study may be considered worthwhile parameters to advance in the formulation of Dy2O3- based materials for radiation dosimetry.

Keywords: Dysprosium oxide, rare earths, lanthanides, nanoparticles, radiation dosimetry, and ceramic processing.

Graphical Abstract

[1]
Department of the Interior, U.S.G.S. A Federal Strategy to Ensure Secure and Reliable Supplies of Critical Minerals, United States. 2018. Available from: https://www.usgs.gov/news/interior-releases-2018-s-final-list-35-minerals-deemed-critical-us-national-security-and
[2]
Union TE, Union O. of the E. Report on critical raw materials and the circular economy. Eur Union 2018.
[http://dx.doi.org/10.2873/167813]
[3]
Hofmann M, Hofmann H, Hagelüken C, Hool A. Critical raw materials: A perspective from the materials science community. Sustain Mater Technol 2018; 17: e00074.
[http://dx.doi.org/10.1016/j.susmat.2018.e00074]
[4]
Tesfaye F, Peng H, Zhang M. Advances in the circular economy of lanthanides. J Miner Met Mater Soc 2021; 73(1): 16-8.
[http://dx.doi.org/10.1007/s11837-020-04493-x]
[5]
Bhosale RR. Thermodynamic study of the effect of partial thermal reduction of dysprosium oxide on solar-to-fuel energy conversion efficiency. Fuel 2020; 278: 118249.
[http://dx.doi.org/10.1016/j.fuel.2020.118249]
[6]
Powell-Turner J, Antill PD. Will future resource demand cause significant and unpredictable dislocations for the UK Ministry of Defence? Resour Policy 2015; 45: 217-26.
[http://dx.doi.org/10.1016/j.resourpol.2015.05.002]
[7]
Aryanto D, Sudiro T, Thosin ZK, et al. diffusion phenomenon of dysprosium element during electro-deposition process on the bonded Nd2Fe14B magnet. mater today proc 2019; 13: 5-12.
[http://dx.doi.org/10.1016/j.matpr.2019.03.178]
[8]
Belousov YA, Korshunov VM, Metlin MT, et al. Towards bright dysprosium emitters: Single and combined effects of environmental symmetry, deuteration, and gadolinium dilution. Dye Pigment 2022; 199: 110078.
[9]
Recktenwald D, Mardare CC, Mardare AI, Jinga L-I, Socol G, Hassel AW. Combinatorial screening of dysprosiummagnesium-zinc alloys for bioresorptive implants. Electrochim Acta 2020; 363: 137106.
[http://dx.doi.org/10.1016/j.electacta.2020.137106]
[10]
Jain A, Sharma A, Gupta P, Wadhawan S, Mehta SK. Biosynthesis driven dysprosium oxide nanoparticles as a sensor for picric acid. Curr Res Green Sustain Chem 2021; 4: 100080.
[11]
Kumar KG, Bhargav PB, Aravinth K, Ramasamy P, Sen S, Arumugam R. Tunable photoluminescence properties of Dy3+ doped LLZO phosphors for WLED and dosimetry applications. Ceram Int 2022; 48(1): 1402-7.
[http://dx.doi.org/10.1016/j.ceramint.2021.09.226]
[12]
Saha D, Akkoyunlu SD, Thorpe R, Hensley DK, Chen J. Adsorptive recovery of neodymium and dysprosium in phosphorous functionalized nanoporous carbon. J Environ Chem Eng 2017; 5(5): 4684-92.
[http://dx.doi.org/10.1016/j.jece.2017.09.009]
[13]
Ippolito NM, Amato A, Innocenzi V, et al. Integrating life cycle assessment and life cycle costing of fluorescent spent lamps recycling by hydrometallurgical processes aimed at the rare earths recovery. J Environ Chem Eng 2022; 10(1): 107064.
[http://dx.doi.org/10.1016/j.jece.2021.107064]
[14]
Zhang B, Xue X, Yang H. A novel process for recovery of scandium, rare earth and niobium from Bayan Obo tailings: NaCl-Ca(OH)2-coal roasting and acid leaching. Miner Eng 2022; 178: 107401.
[http://dx.doi.org/10.1016/j.mineng.2022.107401]
[15]
Wu Y, Song M, Zhang Q, Wang W. Review of rare-earths recovery from polishing powder waste. Resour Conserv Recycling 2021; 171: 105660.
[http://dx.doi.org/10.1016/j.resconrec.2021.105660]
[16]
Jeon JH, Yoon H-S, Kim C-J, Chung KW, Jyothi RK. Environmentally sound technology development for processing of rare earth elements from waste permanent magnets synthetic leach solutions: Recovery and separation perspectives. Separ Purif Tech 2021; 275: 119225.
[http://dx.doi.org/10.1016/j.seppur.2021.119225]
[17]
Merino-Saum A, Clement J, Wyss R, Baldi MG. Unpacking the Green Economy concept: A quantitative analysis of 140 definitions. J Clean Prod 2020; 242: 118339.
[http://dx.doi.org/10.1016/j.jclepro.2019.118339]
[18]
Lüdeke-Freund F, Gold S, Bocken NMP. A review and typology of circular economy business model patterns. J Ind Ecol 2019; 23(1): 36-61.
[http://dx.doi.org/10.1111/jiec.12763]
[19]
Ahmed SN. 11 - Dosimetry and radiation protection SNBT-P and E of RD. Elsevier 2015; pp. 621-88.
[20]
Govender N, Cleary PW, Wilke DN, Khinast J. The influence of faceted particle shapes on material dynamics in screw conveying. Chem Eng Sci 2021; 243: 116654.
[http://dx.doi.org/10.1016/j.ces.2021.116654]
[21]
Lee C-E, Kim M-J, Park Y-J, Ko J-W, Kim H-N, Bae S. The effect of silicon particle size on the characteristics of porous sintered reaction bonded silicon nitride. Int J Refract Hard Met 2021; 101: 105647.
[http://dx.doi.org/10.1016/j.ijrmhm.2021.105647]
[22]
Manotham S, Tesavibul P. Effect of particle size on mechanical properties of alumina ceramic processed by photosensitive binder jetting with powder spattering technique. J Eur Ceram Soc 2022; 42(4): 1608-17.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2021.11.062]
[23]
Patterson AL. The scherrer formula for X-ray particle size determination. Phys Rev 1939; 56(10): 978-82.
[http://dx.doi.org/10.1103/PhysRev.56.978]
[24]
Tscharnuter W. Photon Correlation Spectroscopy in Particle Sizing. (1st ed.), United States of America: John Wiley & Sons Ltd 2000.
[http://dx.doi.org/10.1002/9780470027318.a1512]
[25]
Seville J, Wu C-Y. Chapter 2 Bulk Solid Characterization. Oxford: Butterworth-Heinemann 2016; pp. 17-38.
[26]
Davies MJ. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods. Methods 2016; 109: 21-30.
[http://dx.doi.org/10.1016/j.ymeth.2016.05.013] [PMID: 27211009]
[27]
Santos SC, Junior OR, Campos L. Microstructure evolution of yttria compacts by powder technology. Curr Smart Mater 2021; 05(2): 1.
[http://dx.doi.org/10.2174/2405465805666210120102315]
[28]
Santos SC, Rodrigues O Jr, Campos LL. Colloidal processing of thulium-yttria microceramics. J Phys Chem Solids 2022; 161: 110420.
[http://dx.doi.org/10.1016/j.jpcs.2021.110420]
[29]
Santos SC, Rodrigues O Jr, Campos LL. Bio-prototyping of europium-yttria based rods for radiation dosimetry. Mater Chem Phys 2017; 199: 557-66.
[http://dx.doi.org/10.1016/j.matchemphys.2017.07.063]
[30]
Shevchenko AV, Lopato LM, Kir’yakova IE. The reactions of HfO2 with Y2O3, Ho2O3, Er2O3, Tm2 O3, Yb2O3 and Lu2O3 at high temperatures. Izv Akad Nauk SSSR Neorg Mater 1984; 20: 1991-6.
[31]
Andrievskaya ER, Kovylyaev VV, Lopato LM, Shevchenko AV, Frolov AA. Liquidus Surface of the ZrO2-Y2O3-Eu2O3 Phase Diagram. Powder Metall Met Ceram 2014; 53: 312-22.
[32]
Alonso-De la Garza DA, Guzmán AM, Gómez-Rodríguez C, Martínez DI, Elizondo N. Influence of Al2O3 and SiO2 nanoparticles addition on the microstructure and mechanophysical properties of ceramic tiles. Ceram Int 2022.
[http://dx.doi.org/10.1016/j.ceramint.2022.01.140]
[33]
Liu Y, Wang Y, Bian D, Wu W, Guo P, Zhao Y. Impact of TiO2 nanoparticles and nanowires on corrosion protection performance of chemically bonded phosphate ceramic coatings. Ceram Int 2022; 48(4): 5091-9.
[http://dx.doi.org/10.1016/j.ceramint.2021.11.047]
[34]
Lange FF. Densification of powder compacts: An unfinished story. J Eur Ceram Soc 2008; 28(7): 1509-16.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2007.12.016]
[35]
Kellett BJ, Lange FF. Thermodynamics of densification: I, Sintering of simple particle arrays, equilibrium configurations, pore stability, and shrinkage. J Am Ceram Soc 1989; 72(5): 725-34.
[http://dx.doi.org/10.1111/j.1151-2916.1989.tb06208.x]
[36]
Lange FF, Kellett BJ. Thermodynamics of densification: II, Grain growth in porous compacts and relation to densification. J Am Ceram Soc 1989; 72(5): 735-41.
[http://dx.doi.org/10.1111/j.1151-2916.1989.tb06209.x]
[37]
Pillai AG, Gali ML. Role of particle shape on the shear strength of sand-GCL interfaces under dry and wet conditions. Geotext Geomembranes 2021.
[38]
Tomina VV, Stolyarchuk NV, Katelnikovas A, et al. Preparation and luminescence properties of europium(III)-loaded aminosilica spherical particles. Colloids Surf A Physicochem Eng Asp 2021; 608: 125552.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125552]
[39]
Dupont A, Largeteau A, Parent C, Le Garrec B, Heintz JM. Influence of the yttria powder morphology on its densification ability. J Eur Ceram Soc 2005; 25(12): 2097-103.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.016]
[40]
Amri NE, Roger K. Polyvinylpyrrolidone (PVP) impurities drastically impact the outcome of nanoparticle syntheses. J Colloid Interface Sci 2020; 576: 435-43.
[http://dx.doi.org/10.1016/j.jcis.2020.04.113] [PMID: 32460102]
[41]
Hu B-L, Han J-Y, Ge S-W, et al. Secondary phases strengthening-toughening effects in the Mo-TiC-La2O3 alloys. Mater Sci Eng A 2022; 831: 142271.
[http://dx.doi.org/10.1016/j.msea.2021.142271]
[42]
Clavier N, Cherkaski Y, Brissonneau L, Dacheux N. Impact of impurities on the fabrication and performances of yttrium-doped thoria electrolyte ceramics. J Nucl Mater 2022; 560: 153499.
[http://dx.doi.org/10.1016/j.jnucmat.2021.153499]
[43]
Zhang C, Huang L, Danaei A, Chen G, Huang L, Luo X. Effect of impurity trappers on the distribution and removal of phosphorus from Si with Si-Cu solvent. Mater Lett 2022; 308: 131126.
[http://dx.doi.org/10.1016/j.matlet.2021.131126]
[44]
Hizhnyi Y, Borysyuk V, Chornii V, et al. Role of native and impurity defects in optical absorption and luminescence of Li2MoO4 scintillation crystals. J Alloys Compd 2021; 867: 159148.
[http://dx.doi.org/10.1016/j.jallcom.2021.159148]
[45]
Konnik MT, Panerai F, Stephani KA. The role of impurities and degradation on the thermal conductivity of carbon fiber and amor-phous carbon. Carbon Trends 2022; p. 100151.
[46]
Kumar P, Singh BK, Pal BN, Pandey PC. Correlation between structural, optical and magnetic properties of Mn-doped ZnO. Appl Phys, A Mater Sci Process 2016; 122(8): 1-12.
[http://dx.doi.org/10.1007/s00339-016-0265-7]
[47]
Ritz M, Zdrálková J, Valášková M. Vibrational spectroscopy of acid treated vermiculites. Vib Spectrosc 2014; 70: 63-9.
[http://dx.doi.org/10.1016/j.vibspec.2013.11.007]
[48]
Farmer VC. Vibrational spectroscopy in mineral chemistry Miner Soc Monogr 4 Infrared Spectra Miner 1974; 1: 1.
[49]
Ike PO, Folley DE, Agwu KK, Chithambo ML, Chikwembani S, Ezema FI. Influence of dysprosium doping on the structural, thermoluminescence and optical properties of lithium aluminium borate. J Lumin 2021; 233: 117932.
[http://dx.doi.org/10.1016/j.jlumin.2021.117932]
[50]
Santos SC, Jr OR, Ll C. Evaluation of rare-earth sesquioxides nanoparticles as a bottom-up strategy toward the formation of functional structures. Curr Appl Mater 2022; 1: 1.
[51]
Molochnikov LS, Borodin KI, Yermakov AE, et al. Magnetism and temperature dependence of nano-TiO2: Fe EPR spectra. Mater Chem Phys 2022; 276: 125327.
[http://dx.doi.org/10.1016/j.matchemphys.2021.125327]
[52]
Peña-Garcia R, Guerra Y, Castro-Lopes S, et al. Morphological, magnetic and EPR studies of ZnO nanostructures doped and co-doped with Ni and Sr. Ceram Int 2021; 47(20): 28714-22.
[http://dx.doi.org/10.1016/j.ceramint.2021.07.030]
[53]
Santos SC, Rodrigues O, Campos L. Dispersion of thulium-yttria nanoparticles to build up smart structures. Mater Today Commun 2020; 101749.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101749]
[54]
Cacua K, Ordoñez F, Zapata C, Herrera B, Pabón E, Buitrago-Sierra R. Surfactant concentration and pH effects on the zeta potential values of alumina nanofluids to inspect stability. Colloids Surf A Physicochem Eng Asp 2019; 583: 123960.
[http://dx.doi.org/10.1016/j.colsurfa.2019.123960]
[55]
Damasceno JPV, Kubota LT. Colloidal chemistry as a guide to design intended dispersions of carbon nanomaterials. Mater Today Chem 2021; 21: 100526.
[http://dx.doi.org/10.1016/j.mtchem.2021.100526]
[56]
Khalili S, Nourmohammadi A, Milani M. Influence of process parameters in gel casting of a pure yttria nanopowder to fabricate transparent ceramics. Ceram Int 2021; 47(21): 29977-87.
[http://dx.doi.org/10.1016/j.ceramint.2021.07.172]
[57]
Moreno R. Reología de suspensiones cerámicas. (1st ed.), Spain: Consejo Superior de Investigaciones Científicas 2005.
[58]
Varenne F, Hillaireau H, Bataille J, Smadja C, Barratt G, Vauthier C. Application of validated protocols to characterize size and zeta potential of dispersed materials using light scattering methods. Colloids Surf A Physicochem Eng Asp 2019; 560: 418-25.
[http://dx.doi.org/10.1016/j.colsurfa.2018.09.006]
[59]
Santos SC, Yamagata C, Silva AC, Setz LFG, Mello-Castanho SRH. Yttrium disilicate micro-cellular architecture from biotemplating of Luffa Cylindrica. J Ceram Sci Technol 2014; 5: 203-8.
[http://dx.doi.org/10.4416/JCST2014-00008]
[60]
Dong G, An Y, Yan P, Wu J, Li C, Liu T. A zeta potentialbased homogeneous assay for amplified detection of telomerase in cancer cells. Sens Actuators B Chem 2022; 350: 130881.
[http://dx.doi.org/10.1016/j.snb.2021.130881]
[61]
Awan FUR, Al-Yaseri A, Akhondzadeh H, Iglauer S, Keshavarz A. Influence of mineralogy and surfactant concentration on zeta potential in intact sandstone at high pressure. J Colloid Interface Sci 2022; 607(Pt 1): 401-11.
[http://dx.doi.org/10.1016/j.jcis.2021.08.015] [PMID: 34509114]
[62]
Salimi E, Le-Vinh B, Zahir-Jouzdani F, Matuszczak B, Ghaee A, Bernkop-Schnürch A. Self-emulsifying drug delivery systems changing their zeta potential via a flip-flop mechanism. Int J Pharm 2018; 550(1-2): 200-6.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.046] [PMID: 30149127]
[63]
Feng Y, Kilker SR, Lee Y. Chapter Seven - Surface charge (zeta-potential) of nanoencapsulated food ingredients. In: Jafari NFI, Ed. Nanoencapsulation Food Ind. Academic Press 2020; pp. 213-41.
[64]
Ferreyra Maillard APV, Espeche JC, Maturana P, Cutro AC, Hollmann A. Zeta potential beyond materials science: Applications to bacterial systems and to the development of novel antimicrobials. Biochim Biophys Acta Biomembr 2021; 1863(6): 183597.
[http://dx.doi.org/10.1016/j.bbamem.2021.183597] [PMID: 33652005]