Heterogeneous Photocatalysis using Electroless Deposition of Ni/NiO Nanoparticles on Silicon Nanowires for the Degradation of Methyl Orange

Page: [432 - 443] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Aims: This work uses the MACE method to synthesize SiNWs- NiNPs/NiONPs to degrade organic pollutants by photocatalysis.

Background: Photocatalytic degradation has been applied as an attractive solution to remove several organic pollutants. Heterostructured nanomaterials have become an interesting platform for investigation. Metal-assisted chemical etching (MACE) stands out as a promising technique because it is simple, low cost, and fast.

Objective: Attain the degradation of methyl orange (MO) in the presence of silicon nanowires (SiNWs) in heterojunction with Nickel/Nickel Oxide nanoparticles (NiNPs-NiONPs).

Methods: SiNWs were synthesized by metal (Ag) assisted chemical etching (MACE) of monocrystalline silicon wafers. NiNPs were non-electrolytically deposited on the SiNWs (electroless method). The morphology of the SiNWs- NiNPs/NiONPs was observed by SEM.

Results: Heterogeneous photocatalytic degradation of methyl orange (C14H14N3NaO3S) in an aqueous solution at a concentration of 20 ppm had an efficiency of 66.5% after 180 min under UV irradiation. The MO degradation percentage was determined using UV-visible spectrophotometry.

Conclusion: The SiNWs-NiNPs/NiONPs were obtained composed mainly of Si covered by SiO2 decorated on the tips with Ni (II) in the form of NiO and a small amount of nickel metal. The removal efficiency obtained at 180 min of light exposure was 66.5%. After the photocatalysis tests, further oxidation of the NiNPS into NiONPs, was attributed to the reactive oxygen species in the aqueous medium based on the changes of the oxygen and Ni2p3/2 peaks by XPS.

Other: Through XPS, the oxidation state of the SiNWs- NiNPs/NiONPs was analyzed.

Keywords: Silicon nanowires, nickel oxide, photocatalysis, methyl orange, metal-assisted chemical etching, MACE.

Graphical Abstract

[1]
Rafiq, A.; Ikram, M.; Ali, S.; Niaz, F.; Khan, M.; Khan, Q.; Maqbool, M. Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J. Ind. Eng. Chem., 2021, 97, 111-128.
[http://dx.doi.org/10.1016/j.jiec.2021.02.017]
[2]
Narasaiah, B.P.; Mandal, B.K. Waste to wealth: A solution to textile dyes related pollution. Mater. Res. Express, 2020, 7(2), 024001.
[http://dx.doi.org/10.1088/2053-1591/ab6c22]
[3]
Liu, Q. Pollution and treatment of dye waste-water. IOP Conf. Ser. Earth Environ. Sci., 2020, 514(5), 052001.
[http://dx.doi.org/10.1088/1755-1315/514/5/052001]
[4]
Rosyida, A.; Suranto, S.; Masykuri, M.; Margono, M. Minimisation of pollution in the cotton fabric dyeing process with natural dyes by the selection of mordant type. Res. J. Text. Appar., 2021, 26(1), 41-56.
[http://dx.doi.org/10.1108/RJTA-08-2020-0098]
[5]
Hammouche, J.; Daoudi, K.; Columbus, S.; Ziad, R.; Ramachandran, K.; Gaidi, M. Structural and morphological optimization of Ni Doped ZnO decorated silicon nanowires for photocatalytic degradation of methylene blue. Inorg. Chem. Commun., 2021, 131, 108763.
[http://dx.doi.org/10.1016/j.inoche.2021.108763]
[6]
Hsiao, P.H.; Li, T.C.; Chen, C.Y. ZnO/Cu2O/Si nanowire arrays as ternary heterostructure-based photocatalysts with enhanced photodegradation performances. Nanoscale Res. Lett., 2019, 14(1), 244.
[http://dx.doi.org/10.1186/s11671-019-3093-9] [PMID: 31338679]
[7]
Torres, I.Z.; De Jesus Pérez Bueno, J.; Torres Opez, C.Y.; Rojas, L.L.; Mendoza Opez, M.L.; Vong, Y.M.; De Jesús Pérez Bueno, J.; Torres López, C.Y.; Rojas, L.L.; Mendoza López, M.L. Nanotubes with anatase nanoparticulate walls obtained from NH4TiOF3 nanotubes prepared by anodizing Ti. RSC Advances, 2016, 6(47), 41637-41643.
[http://dx.doi.org/10.1039/C6RA05738A]
[8]
Ildefonso, Z.T.; José De Jesús, P.B.; Celeste Yunueth, T.L.; Luis, L.R.; Maria Luisa, M.L.; Yunny, M.V. A Phenomenon of degradation of methyl orange observed during the reaction of NH4TiOF3 nanotubes with the aqueous medium to produce TiO2 anatase nanoparticles. RSC Advances, 2016, 6(80), 76167-76173.
[http://dx.doi.org/10.1039/C6RA15149C]
[9]
Brieño-Enriquez, K.M.; Ledesma-García, J.; Perez-Bueno, J.J.; Godinez, L.A.; Terrones, H.; Ángeles-Chavez, C. Perez- Bueno, J. J.; Godinez, L. A.; Terrones, H.; Ángeles- Chavez, C. Bonding Titanium on Multi-Walled Carbon Nanotubes for Hydrogen Storage: An electrochemical approach. Mater. Chem. Phys., 2009, 115(2-3), 521-525.
[http://dx.doi.org/10.1016/j.matchemphys.2009.02.004]
[10]
Rani, S.; Shukla, A.K. Investigation of Silver Decorated Silicon nanowires as ultrasensitive and cost-effective surface-enhanced Raman Substrate. Thin Solid Films, 2020, 2021(723), 138595.
[http://dx.doi.org/10.1016/j.tsf.2021.138595]
[11]
Lian, Z.; Tao, Y.; Liu, Y.; Zhang, Y.; Zhu, Q.; Li, G.; Li, H. Efficient self-driving photoelectrocatalytic reactor for synergistic water purification and H2 evolution. ACS Appl. Mater. Interfaces, 2020, 12(40), 44731-44742.
[http://dx.doi.org/10.1021/acsami.0c12828] [PMID: 32931240]
[12]
J, A.B.; Rabha, M.B.; Ali, F.A.A.; Mokraoui, S.; Khezami, L.J.; A. B., Rabha; M., Ben; Ali, F. A. A.; Mokraoui, S.; Khezami, L. Nanostructure, optical and optoelectronic properties of silver nanoparticle- based chemical etching on monocrystalline silicon for solar cell applications. Curr. Nanosci., 2021, 17(6), 881-885.
[http://dx.doi.org/10.2174/1573413717666210505122435]
[13]
Tung, C-W.; Chuang, Y.; Chen, H-C.; Chan, T-S.; Li, J-Y.; Chen, H.M. Tunable electrodeposition of Ni electrocatalysts onto Si microwires array for photoelectrochemical water oxidation. Part. Part. Syst. Charact., 2018, 35(1), 1700321.
[http://dx.doi.org/10.1002/ppsc.201700321]
[14]
Tao, B.; Zhao, K.; Miao, F.; Jin, Z.; Yu, J.; Chu, P.K. Fabrication of ordered porous silicon nanowires electrode modified with palladium-nickel nanoparticles and electrochemical characteristics in direct alkaline fuel cell of carbohydrates. Ionics, 2016, 22(10), 1891-1898.
[http://dx.doi.org/10.1007/s11581-016-1717-y]
[15]
Gaidi, M.; Daoudi, K.; Columbus, S.; Hajjaji, A.; Khakani, M.A.E.; Bessais, B. Enhanced photocatalytic activities of silicon nanowires/graphene oxide nanocomposite: Effect of etching parameters. J. Environ. Sci. (China), 2021, 101, 123-134.
[http://dx.doi.org/10.1016/j.jes.2020.08.010] [PMID: 33334508]
[16]
Naffeti, M.; Postigo, P.A.; Chtourou, R.; Zaïbi, M.A.; Zaibi, M.A. Elucidating the effect of etching time Key-Parameter toward optically and electrically-active Silicon Nanowires. Nanomaterials (Basel), 2020, 10(3), 18.
[http://dx.doi.org/10.3390/nano10030404] [PMID: 32106503]
[17]
Daoudi, K.; Gaidi, M.; Alawadhi, H.; Columbus, S.; Zhang, D.; Allagui, A.; Shameer, M.; Taieb, A. Structural effects of silver-nanoprism-decorated Si nanowires on surface-enhanced Raman scattering. Nanotechnology, 2020, 31(25), 255706.
[http://dx.doi.org/10.1088/1361-6528/ab80fa] [PMID: 32187584]
[18]
Romano, L.; Kagias, M.; Vila-Comamala, J.; Jefimovs, K.; Tseng, L.T.; Guzenko, V.A.; Stampanoni, M. Metal assisted chemical etching of silicon in the gas phase: A nanofabrication platform for X-ray optics. Nanoscale Horiz., 2020, 5(5), 869-879.
[http://dx.doi.org/10.1039/C9NH00709A] [PMID: 32100775]
[19]
Rafique, M.; Hamza, M.; Shakil, M.; Irshad, M.; Tahir, M.B.; Kabli, M.R. Highly efficient and Visible Light- Driven Nickel-doped vanadium oxide photocatalyst for degradation of Rhodamine B Dye. Appl. Nanosci., 2020, 10(7), 2365-2374.
[http://dx.doi.org/10.1007/s13204-020-01429-4]
[20]
Thimsen, E.; Martinson, A.B.F.; Elam, J.W.; Pellin, M.J. Energy levels, electronic properties, and rectification in ultrathin p-NiO films synthesized by atomic Layer Deposition. J. Phys. Chem. C, 2012, 116(32), 16830-16840.
[http://dx.doi.org/10.1021/jp302008k]
[21]
Kim, J.; Jung, C.L.; Kim, M.; Kim, S.; Kang, Y.; Lee, H.S.; Park, J.; Jun, Y.; Kim, D. Electrocatalytic activity of NiO on silicon nanowires with a carbon shell and its application in dye-sensitized solar cell counter electrodes. Nanoscale, 2016, 8(14), 7761-7767.
[http://dx.doi.org/10.1039/C5NR08265J] [PMID: 27001286]
[22]
Wisitsoraat, A.; Tuantranont, A.; Comini, E.; Sberveglieri, G.; Wlodarski, W. Characterization of N-Type and p-Type semiconductor gas sensors based on NiOx Doped TiO2 Thin Films. Thin Solid Films, 2009, 517(8), 2775-2780.
[http://dx.doi.org/10.1016/j.tsf.2008.10.090]
[23]
Zhang, Z.; Shao, C.; Li, X.; Wang, C.; Zhang, M.; Liu, Y. Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. ACS Appl. Mater. Interfaces, 2010, 2(10), 2915-2923.
[http://dx.doi.org/10.1021/am100618h] [PMID: 20936796]
[24]
Hu, C.-C.; Teng, H. Structural Features of P-Type Semiconducting NiO as a Co-Catalyst for Photocatalytic Water Splitting., 2010.
[http://dx.doi.org/10.1016/j.jcat.2010.03.020]
[25]
Hu, C.; Chu, K.; Zhao, Y.; Teoh, W.Y. Efficient photoelectrochemical water splitting over anodized p-type NiO porous films. ACS Appl. Mater. Interfaces, 2014, 6(21), 18558-18568.
[http://dx.doi.org/10.1021/am507138b] [PMID: 25325731]
[26]
Renaud, A.; Chavillon, B.; Cario, L.; Le Pleux, L.; Szuwarski, N.; Pellegrin, Y.; Blart, E.; Gautron, E.; Odobel, F.; Jobic, S. Origin of the black color of NiO used as photocathode in P-Type dye-sensitized solar cells. J. Phys. Chem. C, 2013, 117(44), 22478-22483.
[http://dx.doi.org/10.1021/jp4055457]
[27]
Daeneke, T.; Yu, Z.; Lee, G.P.; Fu, D.; Duffy, N.W.; Makuta, S.; Tachibana, Y.; Spiccia, L.; Mishra, A.; Bäuerle, P. Dominating energy losses in NiO P-Type dye-sensitized solar cells. Adv. Energy Mater., 2015, 2015, 1387.
[http://dx.doi.org/10.1002/aenm.201401387]
[28]
Jo, M.R.; Lee, G.H.; Kang, Y.M. Controlling solid-electrolyte-interphase layer by coating P-Type semiconductor NiOx on Li4Ti5O12 for high-energy-density lithium-ion batteries. ACS Appl. Mater. Interfaces, 2015, 7(50), 27934-27939.
[http://dx.doi.org/10.1021/acsami.5b10207] [PMID: 26619966]
[29]
Sato, H.; Minami, T.; Takata, S.; Yamada, T. Transparent conducting P-Type NiO thin films prepared by magnetron sputtering. Thin Solid Films, 1993, 26, 27-31.
[http://dx.doi.org/10.1016/0040-6090(93)90636-4]
[30]
Kokubun, Y.; Kubo, S.; Nakagomi, S. All-Oxide p–n Heterojunction Diodes Comprising p-Type NiO and n-Type β-Ga2O3. Appl. Phys. Express, 2016, 9(9), 91101.
[http://dx.doi.org/10.7567/APEX.9.091101]
[31]
Soylu, M.; Al-Sehemi, A.G.; Kalam, A.; Al-Ghamdi, A.A.; Dere, A.; Yakuphanoglu, F.; Abul, K. Dopant-Induced Photoresponsivity in Coumarin- Dye-Sensitized Nanowire NiO/p-Si Heterojunction. Mater. Sci. Semicond. Process., 2019, 2020(106), 104784.
[http://dx.doi.org/10.1016/j.mssp.2019.104784]
[32]
Ifires, M.; Hadjersi, T.; Chegroune, R.; Lamrani, S.; Moulai, F.; Mebarki, M.; Manseri, A. One-Step Electrodeposition of Superhydrophobic NiO- Co(OH)2 Urchin-like Structures on Si Nanowires as Photocatalyst for RhB Degradation under Visible Light. J. Alloys Compd., 2019, 774, 908-917.
[http://dx.doi.org/10.1016/j.jallcom.2018.10.029]
[33]
Amdouni, S.; Cherifi, Y.; Coffinier, Y.; Addad, A.; Zaïbi, M.A.; Oueslati, M.; Boukherroub, R.; Zaibie, M.A.; Oueslati, M.; Boukherroub, R. Gold nanoparticles coated Silicon nanowires for efficient catalytic and photocatalytic applications. Mater. Sci. Semicond. Process., 2017, 2018(75), 206-213.
[http://dx.doi.org/10.1016/j.mssp.2017.11.036]
[34]
García Robles, M.R.; Pérez Bueno, J.D.J.; Arteaga Syllas, C.S.; Mendoza López, M.L.; Manriquez Guerrero, F.; Garcia Robles, M.R.; Perez Bueno, J. Silver/silicon nanowires/copper nanoparticles heterojunction for methyl orange degradation by heterogeneous photocatalysis under visible irradiation. MRS Adv., 2018, 3(64), 3933-3938.
[http://dx.doi.org/10.1557/adv.2018.641]
[35]
Yang, K.D.; Ha, Y.; Sim, U.; An, J.; Lee, C.W.; Jin, K.; Kim, Y.; Park, J.; Hong, J.S.; Lee, J.H. Graphene quantum sheet catalyzed silicon photocathode for selective CO2 conversion to CO. Adv. Funct. Mater., 2022, 26(2), 233-242.
[http://dx.doi.org/10.1002/adfm.20150275]
[36]
Brahiti, N.; Hadjersi, T.; Amirouche, S.; Menari, H.; ElKechai, O. Photocatalytic degradation of cationic and anionic dyes in water using hydrogen- terminated silicon nanowires as catalyst. Int. J. Hydrogen Energy, 2018, 43(24), 11411-11421.
[http://dx.doi.org/10.1016/j.ijhydene.2018.02.141]
[37]
Hou, Y.; Zhu, Z.; Xu, Y.; Guo, F.; Zhang, J.; Wang, X. Efficient photoelectrochemical hydrogen production over P-Si nanowire arrays coupled with Molybdenum–Sulfur Clusters. Int. J. Hydrogen Energy, 2017, 42(5), 2832-2838.
[http://dx.doi.org/10.1016/j.ijhydene.2016.09.106]
[38]
Liu, D.; Ma, J.; Long, R.; Gao, C.; Xiong, Y. Silicon nanostructures for solar-driven catalytic applications. Nano Today, 2017, 17, 96-116.
[http://dx.doi.org/10.1016/j.nantod.2017.10.013]
[39]
Amdouni, S.; Coffinier, Y.; Szunerits, S.; Zaibi, M.A.; Oueslati, M.; Boukherroub, R. Catalytic activity of silicon nanowires decorated with silver and copper nanoparticles. Semicond. Sci. Technol., 2016, 31(1), 014011.
[http://dx.doi.org/10.1088/0268-1242/31/1/014011]
[40]
Thalluri, S.M.; Borme, J.; Yu, K.; Xu, J.Y.; Amorim, I.; Gaspar, J.; Qiao, L.; Ferreira, P.; Alpuim, P.; Liu, L.F. Conformal and continuous deposition of bifunctional Cobalt Phosphide Layers on P-Silicon nanowire arrays for improved solar hydrogen evolution. Nano Res., 2018, 11(9), 4823-4835.
[http://dx.doi.org/10.1007/s12274-018-2070-4]
[41]
Chien, P.J.; Zhou, Y.C.; Tsai, K.H.; Duong, H.P.; Chen, C.Y.; Hong, H.D.; Chen, C.Y.; Duong, H.P.; Chen, C.Y. Self-Formed Silver nanoparticles on freestanding Silicon nanowire arrays featuring SERS Performances. RSC Advances, 2019, 9(45), 26037-26042.
[http://dx.doi.org/10.1039/C9RA03273H]
[42]
Ouhibi, A.; Saadaoui, M.; Lorrain, N.; Guendouz, M.; Raouafi, N.; Moadhen, A. Application of Doehlert Matrix for an Optimized Preparation of a Surface-Enhanced Raman Spectroscopy (SERS) substrate based on silicon nanowires for ultrasensitive detection of Rhodamine 6G. Appl. Spectrosc., 2020, 74(2), 168-177.
[http://dx.doi.org/10.1177/0003702819881222] [PMID: 31617371]
[43]
Grant, N.E.; Altermatt, P.P.; Niewelt, T.; Post, R.; Kwapil, W.; Schubert, M.C.; Murphy, J.D. Gallium-doped silicon for high-efficiency commercial passivated emitter and rear solar cells. Sol. RRL, 2021, 5(4), 1-8.
[http://dx.doi.org/10.1002/solr.202000754]
[44]
Ghosh, R.; Ghosh, J.; Das, R.; Mawlong, L.P.L.; Paul, K.K.; Giri, P.K. Multifunctional Ag nanoparticle decorated Si nanowires for sensing, photocatalysis and light emission applications. J. Colloid Interface Sci., 2018, 532, 464-473.
[http://dx.doi.org/10.1016/j.jcis.2018.07.123] [PMID: 30099309]
[45]
Díaz-Flores, L.L.; Pérez-Bueno, J.J.; Ramírez-Bon, R.; Espinoza-Beltrán, F.J.; Vorobiev, Y.V.; González-Hernández, J. González- Hernández, J. Improved light stability of colored SiO2 coatings containing organic and metalorganic dye molecules. J. Vac. Sci. Technol. A, 2000, 18(4), 1579-1583.
[http://dx.doi.org/10.1116/1.582388]
[46]
Pérez-Bueno, J.J.; Diaz-Florez, L.L.; Pérez-Robles, J.F.; Espinoza-Beltrán, F.J.; Manzano-Ramírez, A.; Ramírez-Bon, R.; González-Hernández, J.; Vorobiev, Y.V. Optical processes in SiO2 sol-gel glass colored with organic dyes I. Inorg. Mater., 2000, 36(I0), 1060-1069.
[http://dx.doi.org/10.1007/BF02757985]
[47]
Amri, C.; Ezzaouia, H.; Ouertani, R. Photoluminescence origin of lightly doped silicon nanowires treated with acid vapor etching. Zhongguo Wuli Xuekan, 2020, 63, 325-336.
[http://dx.doi.org/10.1016/j.cjph.2019.12.008]
[48]
Chhetri, N.; Haldar, S.; Chatterjee, S. Morphological and electrical study of P-Type Silicon nanowires synthesised by Ag-assisted electroless chemical etching. Mater. Res. Express, 2019, 6(12), 13.
[http://dx.doi.org/10.1088/2053-1591/ab6c11]
[49]
Huang, L.; Xiang, J.W.; Zhang, W.; Chen, C.J.; Xu, H.H.; Huang, Y.H. 3D Interconnected porous NiMoO4 nanoplate arrays on Ni foam as high-performance binder-free electrode for supercapacitors. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(44), 22081-22087.
[http://dx.doi.org/10.1039/C5TA05644F]
[50]
Wu, F.L.; Liao, Q.L.; Cao, F.R.; Li, L.; Zhang, Y. Non-Noble Bimetallic NiMoO4 Nanosheets Integrated Si photoanodes for highly efficient and stable solar water splitting. Nano Energy, 2017, 34, 8-14.
[http://dx.doi.org/10.1016/j.nanoen.2017.02.004]
[51]
Gao, F.; Tu, X.; Ma, X.; Xie, Y.; Zou, J.; Huang, X.; Qu, F.; Yu, Y.; Lu, L. NiO@Ni-MOF nanoarrays modified Ti mesh as ultrasensitive electrochemical sensing platform for luteolin detection. Talanta, 2020, 215, 120891.
[http://dx.doi.org/10.1016/j.talanta.2020.120891] [PMID: 32312436]
[52]
Zhang, L.N.; Ojo, O.A. Corrosion behavior of wire arc additive manufactured inconel 718 Superalloy. J. Alloys Compd., 2020, 829, 11.
[http://dx.doi.org/10.1016/j.jallcom.2020.154455]
[53]
Kitchamsetti, N.; Ma, Y.R.; Shirage, P.M.; Devan, R.S. Mesoporous perovskite of interlocked nickel titanate nanoparticles for efficient electrochemical supercapacitor electrode. J. Alloys Compd., 2020, 833, 9.
[http://dx.doi.org/10.1016/j.jallcom.2020.155134]
[54]
Li, J.K.; Sun, C.; Roostaei, M.; Mahmoudi, M.; Fattahpour, V.; Zeng, H.B.; Luo, J.L. insights into the electrochemical corrosion behavior and mechanism of electroless Ni-P coating in the CO2/H2S/Cl- environment. Corrosion, 2022, 76(6), 578-590.
[http://dx.doi.org/10.5006/3371]
[55]
Saikia, P.; Gogoi, C.; Kalita, P.J.; Goswamee, R.L. Catalytic conversion of high-GWP gases N2O and CH4 to syngas (H2 + CO) on SiO2@Ni-Cr layered nano-oxide-coated monolithic catalyst. Environ. Sci. Pollut. Res. Int., 2020, 27(20), 24939-24953.
[http://dx.doi.org/10.1007/s11356-020-08589-4] [PMID: 32342412]
[56]
Sun, C.; Li, J.K.; Shuang, S.; Zeng, H.B.; Luo, J.L. Effect of defect on corrosion behavior of electroless Ni-P Coating in CO2-Saturated NaCl Solution. Corros. Sci., 2018, 134, 23-37.
[http://dx.doi.org/10.1016/j.corsci.2018.01.041]
[57]
Dalavi, D.S.; Devan, R.S.; Patil, R.S.; Ma, Y.R.; Patil, P.S. Electrochromic performance of sol-gel deposited NiO Thin Film. Mater. Lett., 2013, 90, 60-63.
[http://dx.doi.org/10.1016/j.matlet.2012.08.108]
[58]
Trotte, N.S.F.; Aben-Athar, M.T.G.; Carvalho, N.M.F. Yerba Mate Tea Extract: A Green Approach for the Synthesis of Silica Supported Iron Nanoparticles for Dye Degradation. J. Braz. Chem. Soc., 2016, 27(11), 2093-2104.
[http://dx.doi.org/10.5935/0103-5053.20160100]
[59]
Chen, Y.J.; Zhu, P.F.; Duan, M.; Li, J.; Ren, Z.H.; Wang, P.P. Fabrication of a Magnetically Separable and Dual Z-Scheme PANI/Ag3PO4/NiFe2O4 Composite with Enhanced Visible-Light Photocatalytic Activity for Organic Pollutant Elimination. Appl. Surf. Sci., 2019, 486, 198-211.
[http://dx.doi.org/10.1016/j.apsusc.2019.04.232]
[60]
Sabouri, Z.; Akbari, A.; Hosseini, H.A.; Khatami, M.; Darroudi, M. Tragacanth-mediate synthesis of NiO nanosheets for cytotoxicity and photocatalytic degradation of organic dyes. Bioprocess Biosyst. Eng., 2020, 43(7), 1209-1218.
[http://dx.doi.org/10.1007/s00449-020-02315-7] [PMID: 32144597]
[61]
Wang, G.J.; Li, Z.C.; Li, M.Y.; Feng, Y.M.; Li, W.; Lv, S.S.; Liao, J.C. Synthesizing vertical porous ZnO nanowires arrays on Si/ITO substrate for enhanced photocatalysis. Ceram. Int., 2018, 44(2), 1291-1295.
[http://dx.doi.org/10.1016/j.ceramint.2017.08.035]
[62]
Rogozea, E.A.; Petcu, A.R.; Olteanu, N.L.; Lazar, C.A.; Cadar, D.; Mihaly, M. Tandem adsorption-photodegradation activity induced by light on NiO- ZnO p–n couple modified silica nanomaterials. Mater. Sci. Semicond. Process., 2016, 2017(57), 1-11.
[http://dx.doi.org/10.1016/j.mssp.2016.10.006]
[63]
Yang, R.Q.; Ji, Y.C.; Li, Q.; Zhao, Z.H.; Zhang, R.T.; Liang, L.L.; Liu, F.; Chen, Y.K.; Han, S.W.; Yu, X.; Liu, H. Ultrafine Si nanowires/Sn3O4 Nanosheets 3D hierarchical heterostructured array as a photoanode with high-efficient photoelectrocatalytic performance. Appl. Catal. B, 2019, 256(February), 117798.
[http://dx.doi.org/10.1016/j.apcatb.2019.117798]
[64]
Cao, Y.; Gu, X.; Yu, H.; Zeng, W.; Liu, X.; Jiang, S.; Li, Y. Degradation of organic dyes by Si/SiOx core-shell nanowires: Spontaneous generation of superoxides without light irradiation. Chemosphere, 2016, 144(C), 836-841.
[http://dx.doi.org/10.1016/j.chemosphere.2015.09.067] [PMID: 26421622]
[65]
Han, H.X.; Shi, C.; Yuan, L.; Sheng, G.P. Enhancement of Methyl Orange degradation and power generation in a photoelectrocatalytic microbial fuel cell. Appl. Energy, 2017, 204, 382-389.
[http://dx.doi.org/10.1016/j.apenergy.2017.07.032]
[66]
Yang, X.; Zhong, H.; Zhu, Y.; Jiang, H.; Shen, J.; Huang, J.; Li, C. Highly efficient reusable catalyst based on Silicon nanowire arrays decorated with Copper Nanoparticles. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(24), 9040-9047.
[http://dx.doi.org/10.1039/c4ta00119b]
[67]
Wu, Y.; Dong, R.; Zhang, Q.; Ren, B. Dye-enhanced self-electrophoretic propulsion of light-driven TiO2-Au Janus Micromotors. Nano-Micro Lett., 2017, 9(3), 30.
[http://dx.doi.org/10.1007/s40820-017-0133-9] [PMID: 30393725]
[68]
Ye, H.; Wang, Y.; Xu, D.; Liu, X.; Liu, S.; Ma, X. Design and fabrication of micro/nano-motors for environmental and sensing applications. Appl. Mater. Today, 2021, 23, 101007.
[http://dx.doi.org/10.1016/j.apmt.2021.101007]
[69]
Li, Y.H.; Li, J.Y.; Xu, Y.J. Bimetallic nanoparticles as cocatalysts for versatile photoredox catalysis. EnergyChem, 2021, 3(1), 100047.
[http://dx.doi.org/10.1016/j.enchem.2020.100047]
[70]
Xie, H.; Ye, X.; Duan, K.; Xue, M.; Du, Y.; Ye, W.; Wang, C. Functionalized graphene-based materials as innovative adsorbents of organic pollutants: A concise overview. Braz. J. Chem. Eng., 2015, 36(1), 1.
[http://dx.doi.org/10.1016/j.jallcom.2015.0]
[71]
Hai, Z.; Kolli, E.L.N.; Chen, J.; Remita, H. Radiolytic synthesis of Au–Cu bimetallic nanoparticles supported on TiO2: Application in photocatalysis. New J. Chem., 2014, 38(11), 5279-5286.
[http://dx.doi.org/10.1039/C4NJ00883A]
[72]
Misra, M.; Kapur, P.; Nayak, M.K.; Singla, M. Synthesis and visible photocatalytic activities of a Au@Ag@ZnO triple layer core–shell nanostructure. New J. Chem., 2014, 38(9), 4197-4203.
[http://dx.doi.org/10.1039/C4NJ00569D]
[73]
Tiwari, V.S.; Jiang, J.; Sethi, V.; Biswas, P. One-Step synthesis of noble metal_titanium dioxide nanocomposites in a flame aerosol reactor. Appl. Catal. Appl. Catal. A Gen., 2008, 345(2), 241-246.
[http://dx.doi.org/10.1016/j.apcata.2008.05.003]
[74]
Yang, L.L.; Han, Q.F.; Wang, X.; Zhu, J.W. Highly efficient removal of aqueous chromate and organic dyes by ultralong HCOOBiO nanowires. Chem. Eng. J., 2015, 262, 169–178. Curr. Nanosci., 2022, 2022, 13.
[http://dx.doi.org/10.1016/j.cej.2014.09.078]
[75]
Makuła, P.; Pacia, M.; Macyk, W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis Spectra. J. Phys. Chem. Lett., 2018, 9(23), 6814-6817.
[http://dx.doi.org/10.1021/acs.jpclett.8b02892] [PMID: 30990726]