Oligonucleotide-conjugated Nanomaterials as Biosensing Platforms to Potential Bioterrorism Tools

Page: [18 - 26] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Availing diseases as warfare began before humans learned that microorganisms are involved in the dissemination of infections. In the past, war brigades had the intention to weaken rival groups by using festering corpses with the premeditated purpose of causing disease. Nowadays, the unfortunate improvement of biowarfare is indubitably linked to our extensive collaborative work in exploring the use of microorganisms and their derivatives to create products and services that are beneficial to society. Natural defense barriers such as innate immunity and the immune specific adaptive response come to mind when thinking of bacteria and virus potentially being operated as tools for biological warfare. On the other hand, some bacterial toxins disrupt the immune cell functions and others do not trigger sufficient immune response, thus being not suitable for immunotherapy applications. As an alternative to these drawbacks, the systematic evolution of ligands by exponential enrichment (SELEX) develops specific nucleic acid or peptides for a variety of targets, including toxins. These aptamers are efficiently produced in vitro using enzymes or synthetical synthesis within days, low cost, and reproducibility. Oligonucleotide aptamers are a nanotechnological high spot because of their physicochemical characteristics such as resilience, pH responsiveness, and addressability at the nanoscale. Additionally, they induce no immunogenicity and can be modified by association with nanoparticles to increase their stability in biological environments. In this review, we explore the recent trends and perspectives on biosensor construction based on oligonucleotide aptamer-conjugated nanomaterials as effective biosecurity devices and their relevance to the development of risk-assessment protocols that could be used as intelligent barriers to provide continuous, cheap, and easy monitoring to prevent unexpected attacks.

Keywords: Sensor and Actuator, Aptamers, Virulent factors, Small Scale Devices, Biomolecules, harmful biological agents.

Graphical Abstract

[1]
Riedel, S. Biological warfare and bioterrorism: A historical review. Proc. Bayl. Univ. Med. Cent., 2004, 17(4), 400-406.
[http://dx.doi.org/10.1080/08998280.2004.11928002] [PMID: 16200127]
[2]
Warfield, K.L.; Aman, M.J. Role of small biotechnology companies in the fledgling biodefense vaccine industry. Expert Rev. Vaccines, 2016, 15(9), 1079-1082.
[http://dx.doi.org/10.1586/14760584.2016.1168702] [PMID: 26998722]
[3]
Cornish, N.E.; Anderson, N.L.; Arambula, D.G.; Arduino, M.J.; Bryan, A.; Burton, N.C.; Chen, B.; Dickson, B.A.; Giri, J.G.; Griffith, N.K.; Pentella, M.A.; Salerno, R.M.; Sandhu, P.; Snyder, J.W.; Tormey, C.A.; Wagar, E.A.; Weirich, E.G.; Campbell, S. Clinical laboratory biosafety gaps: Lessons learned from past outbreaks reveal a path to a safer future. Clin. Microbiol. Rev., 2021, 34(3), e0012618.
[http://dx.doi.org/10.1128/CMR.00126-18] [PMID: 34105993]
[4]
Rathish, B.; Pillay, R.; Wilson, A.; Pillay, V.V. Comprehensive review of bioterrorism., 2021.
[5]
LeClaire, R.D.; Pitt, M.L.M. Biological Weapons Defense. Biological Weapons Defense; Springer, 2005, pp. 41-61.
[http://dx.doi.org/10.1385/1-59259-764-5:041]
[6]
Nelson, C.A.; Meaney-Delman, D.; Fleck-Derderian, S.; Cooley, K.M.; Yu, P.A.; Mead, P.S. Antimicrobial treatment and prophylaxis of plague: Recommendations for naturally acquired infections and bioterrorism response. MMWR Recomm. Rep., 2021, 70(3), 1-27.
[http://dx.doi.org/10.15585/mmwr.rr7003a1] [PMID: 34264565]
[7]
Carneiro, H.A.; Mylonakis, E. Google trends: A web-based tool for real-time surveillance of disease outbreaks. Clin. Infect. Dis., 2009, 49(10), 1557-1564.
[http://dx.doi.org/10.1086/630200] [PMID: 19845471]
[8]
Arias-Carrasco, R.; Giddaluru, J.; Cardozo, L.E.; Martins, F.; Maracaja-Coutinho, V.; Nakaya, H.I. Outbreak: A user-friendly georeferencing online tool for disease surveillance. Biol. Res., 2021, 54(1), 20.
[http://dx.doi.org/10.1186/s40659-021-00343-5] [PMID: 34238385]
[9]
Folta, P.A.; McBride, M.T. Transition-Ready Technologies and Expertise from the Chemical and Biological National Security Program at LLNL; Lawrence Livermore National Laboratory; LLNL: Livermore, CA, 2006.
[http://dx.doi.org/10.2172/898510]
[10]
Schieffelin, J.; Moses, L.M.; Shaffer, J.; Goba, A.; Grant, D.S. Clinical validation trial of a diagnostic for Ebola Zaire antigen detection: Design rationale and challenges to implementation. Clin. Trials, 2016, 13(1), 66-72.
[http://dx.doi.org/10.1177/1740774515621013] [PMID: 26768566]
[11]
Akki, S.U.; Werth, C.J. Critical review: DNA aptasensors, are they ready for monitoring organic pollutants in natural and treated water sources? Environ. Sci. Technol., 2018, 52(16), 8989-9007.
[http://dx.doi.org/10.1021/acs.est.8b00558] [PMID: 30016080]
[12]
Bakhshpour, M.; Chiodi, E.; Celebi, I.; Saylan, Y.; Ünlü, N.L.; Ünlü, M.S.; Denizli, A. Sensitive and real-time detection of IgG using interferometric reflecting imaging sensor system. Biosens. Bioelectron., 2022, 201, 113961.
[http://dx.doi.org/10.1016/j.bios.2021.113961] [PMID: 35026547]
[13]
Thevenot, D.; Toth, K.; Durst, R.; Wilson, G.; Thevenot, D.; Toth, K.; Durst, R.; Wilson, G. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron., 2001, 16(1-2), 121-31.

[14]
Purohit, B.; Vernekar, P.R.; Shetti, N.P.; Chandra, P. Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis. Sensors International, 2020, 1, 100040.
[http://dx.doi.org/10.1016/j.sintl.2020.100040]
[15]
Clark, L.C. Monitor and control of blood and tissue oxygen tensions. Am. Soc. Artif. Int. Organs, 1956, 2, 41-446.
[16]
Baracu, A.M.; Dinu Gugoasa, L.A. Review-recent advances in microfabrication, design and applications of amperometric sensors and biosensors. J. Electrochem. Soc., 2021, 168(3), 037503.
[http://dx.doi.org/10.1149/1945-7111/abe8b6]
[17]
Rezaei, B.; Irannejad, N. Electrochemical Detection Techniques in Biosensor Applications. Electrochemical Biosensors; Elsevier Inc., 2019, pp. 11-43.
[http://dx.doi.org/10.1016/B978-0-12-816491-4.00002-4]
[18]
Lv, Y.; Zhang, X.; Zhang, P.; Wang, H.; Ma, Q.; Tao, X. Comparison between voltammetric detection methods for abalone-flavoring liquid. Open Life Sci., 2021, 16(1), 354-361.
[http://dx.doi.org/10.1515/biol-2021-0035] [PMID: 33954255]
[19]
Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ., 2018, 95(2), 197-206.
[http://dx.doi.org/10.1021/acs.jchemed.7b00361]
[20]
Perera, G.S.; Ahmed, T.; Heiss, L.; Walia, S.; Bhaskaran, M.; Sriram, S. Rapid and selective biomarker detection with conductometric sensors. Small, 2021, 17(7), e2005582.
[http://dx.doi.org/10.1002/smll.202005582] [PMID: 33502115]
[21]
Zhang, X.; Wang, X.; Yang, Q.; Jiang, X.; Li, Y.; Zhao, J.; Qu, K. Conductometric sensor for viable Escherichia coli and Staphylococcus aureus based on magnetic analyte separation via aptamer. Mikrochim. Acta, 2019, 187(1), 43.
[http://dx.doi.org/10.1007/s00604-019-3880-0] [PMID: 31832780]
[22]
Ding, J.; Qin, W. Recent advances in potentiometric biosensors. Trends Analyt. Chem., 2020, 124, 115803.
[http://dx.doi.org/10.1016/j.trac.2019.115803]
[23]
Kushwaha, C.S.; Singh, P.; Abbas, N.S.; Shukla, S.K. Self-activating zinc oxide encapsulated polyaniline-grafted chitosan composite for potentiometric urea sensor. J. Mater. Sci. Mater. Electron., 2020, 31(14), 11887-11896.
[http://dx.doi.org/10.1007/s10854-020-03743-7]
[24]
Stevenson, H.; Radha Shanmugam, N.; Paneer Selvam, A.; Prasad, S. The anatomy of a nonfaradaic electrochemical biosensor. SLAS Technol., 2018, 23(1), 5-15.
[http://dx.doi.org/10.1177/2472630317738700] [PMID: 29095669]
[25]
Strong, M.E.; Richards, J.R.; Torres, M.; Beck, C.M.; La Belle, J.T. Faradaic electrochemical impedance spectroscopy for enhanced analyte detection in diagnostics. Biosens. Bioelectron., 2021, 177(177), 112949.
[http://dx.doi.org/10.1016/j.bios.2020.112949] [PMID: 33429205]
[26]
Bertok, T.; Lorencova, L.; Chocholova, E.; Jane, E.; Vikartovska, A.; Kasak, P.; Tkac, J. Electrochemical impedance spectroscopy based biosensors: Mechanistic principles, analytical examples and challenges towards commercialization for assays of protein cancer biomarkers. ChemElectroChem, 2019, 6(4), 989-1003.
[http://dx.doi.org/10.1002/celc.201800848]
[27]
Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications. Sensors (Basel), 2021, 21(19), 6578.
[http://dx.doi.org/10.3390/s21196578] [PMID: 34640898]
[28]
Srivastava, I.; Misra, S.K.; Bangru, S.; Boateng, K.A.; Soares, J.A.N.T.; Schwartz-Duval, A.S.; Kalsotra, A.; Pan, D. Complementary oligonucleotide conjugated multicolor carbon dots for intracellular recognition of biological events. ACS Appl. Mater. Interfaces, 2020, 12(14), 16137-16149.
[http://dx.doi.org/10.1021/acsami.0c02463] [PMID: 32182420]
[29]
Toubanaki, D.K.; Karagouni, E. Oligonucleotide-conjugated gold nanoparticles for application on lateral flow biosensors: Evaluation and optimization of low PH and salt-aging conjugation methods. Anal. Lett., 2016, 49(17), 2833-2850.
[http://dx.doi.org/10.1080/00032719.2016.1161046]
[30]
Seeman, N.C. Nucleic acid junctions and lattices. J. Theor. Biol., 1982, 99(2), 237-247.
[http://dx.doi.org/10.1016/0022-5193(82)90002-9] [PMID: 6188926]
[31]
Rothemund, P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature, 2006, 440(7082), 297-302.http://www.nature.com/nature/journal/v440/n7082/suppinfo/nature04586_S1.html
[http://dx.doi.org/10.1038/nature04586] [PMID: 16541064]
[32]
Ma, Y.; Yang, X.; Wei, Y.; Yuan, Q. Applications of DNA nanotechnology in synthesis and assembly of inorganic nanomaterials. Chin. J. Chem., 2016, 34(3), 291-298.
[http://dx.doi.org/10.1002/cjoc.201500835]
[33]
Yan, S.; Wong, K-C. Future DNA computing device and accompanied tool stack: Towards high-throughput computation. Future Gener. Comput. Syst., 2021, 117, 111-124.
[http://dx.doi.org/10.1016/j.future.2020.10.038]
[34]
Downs, M.E.A.; Kobayashi, S.; Karube, I. New DNA technology and the DNA biosensor. Anal. Lett., 1987, 20(12), 1897-1927.
[http://dx.doi.org/10.1080/00032718708078036]
[35]
Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968), 505-510.
[http://dx.doi.org/10.1126/science.2200121]
[36]
Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822.
[http://dx.doi.org/10.1038/346818a0] [PMID: 1697402]
[37]
White, R.R.; Sullenger, B.A.; Rusconi, C.P. Developing aptamers into therapeutics. J. Clin. Invest., 2000, 106(8), 929-934.
[http://dx.doi.org/10.1172/JCI11325] [PMID: 11032851]
[38]
Lyu, C.; Khan, I.M.; Wang, Z. Capture-SELEX for aptamer selection: A short review. Talanta, 2021, 229, 122274.
[http://dx.doi.org/10.1016/j.talanta.2021.122274] [PMID: 33838776]
[39]
Citartan, M.; Gopinath, S.C.B.; Tominaga, J.; Tan, S-C.; Tang, T-H. Assays for aptamer-based platforms. Biosens. Bioelectron., 2012, 34(1), 1-11.
[http://dx.doi.org/10.1016/j.bios.2012.01.002] [PMID: 22326894]
[40]
Gholikhani, T.; Brito, B.J.; Livingston, F.; Kumar, S. The potential use of aptamers in the process of drug development. Ulum-i Daruyi, 2021.
[http://dx.doi.org/10.34172/PS.2021.17]
[41]
Golden, M.C.; Collins, B.D.; Willis, M.C.; Koch, T.H. Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers. J. Biotechnol., 2000, 81(2-3), 167-178.
[http://dx.doi.org/10.1016/S0168-1656(00)00290-X] [PMID: 10989176]
[42]
Odeh, F.; Nsairat, H.; Alshaer, W.; Ismail, M.A.; Esawi, E.; Qaqish, B.; Bawab, A.A.; Ismail, S.I. Aptamers chemistry: Chemical modifications and conjugation strategies. Molecules, 2019, 25(1), 3.
[http://dx.doi.org/10.3390/molecules25010003] [PMID: 31861277]
[43]
Naresh, V.; Lee, N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors (Basel), 2021, 21(4), 1109.
[http://dx.doi.org/10.3390/s21041109] [PMID: 33562639]
[44]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9(1), 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[45]
Yoon, J.; Shin, M.; Lee, T.; Choi, J-W. Highly sensitive biosensors based on biomolecules and functional nanomaterials depending on the types of nanomaterials: A perspective review. Materials (Basel), 2020, 13(2), 299.
[http://dx.doi.org/10.3390/ma13020299] [PMID: 31936530]
[46]
Zhao, J.; Wang, L.; Fu, D.; Zhao, D.; Wang, Y.; Yuan, Q.; Zhu, Y.; Yang, J.; Yang, F. Gold nanoparticles amplified microcantilever biosensor for detecting protein biomarkers with high sensitivity. Sens. Actuators A Phys., 2021, 321, 112563.
[http://dx.doi.org/10.1016/j.sna.2021.112563]
[47]
Liang, Y.; Wu, C.; Figueroa-Miranda, G.; Offenhäusser, A.; Mayer, D. Amplification of aptamer sensor signals by four orders of magnitude via interdigitated organic electrochemical transistors. Biosens. Bioelectron., 2019, 144, 111668.
[http://dx.doi.org/10.1016/j.bios.2019.111668] [PMID: 31522101]
[48]
Zhao, Y.; Li, L.; Yan, X.; Wang, L.; Ma, R.; Qi, X.; Wang, S.; Mao, X. Emerging roles of the aptasensors as superior bioaffinity sensors for monitoring shellfish toxins in marine food chain. J. Hazard. Mater., 2022, 421, 126690.
[http://dx.doi.org/10.1016/j.jhazmat.2021.126690] [PMID: 34315019]
[49]
Wu, L.; Wang, Y.; Xu, X.; Liu, Y.; Lin, B.; Zhang, M.; Zhang, J.; Wan, S.; Yang, C.; Tan, W. Aptamer-based detection of circulating targets for precision medicine. Chem. Rev., 2021, 121(19), 12035-12105.
[http://dx.doi.org/10.1021/acs.chemrev.0c01140] [PMID: 33667075]
[50]
Thiviyanathan, V.; Gorenstein, D.G. Aptamers and the next generation of diagnostic reagents. Proteomics Clin. Appl., 2012, 6(11-12), 563-573.
[http://dx.doi.org/10.1002/prca.201200042] [PMID: 23090891]
[51]
Ferreira, C.S.M.; Missailidis, S. Aptamer-based therapeutics and their potential in radiopharmaceutical design. Braz. Arch. Biol. Technol., 2007, 50(spe), 63-76.
[http://dx.doi.org/10.1590/S1516-89132007000600008]
[52]
Queirós, R.B.; Gouveia, C.; Fernandes, J.R.A.; Jorge, P.A.S. Evanescent wave DNA-aptamer biosensor based on long period gratings for the specific recognition of E. coli outer membrane proteins. Biosens. Bioelectron., 2014, 62, 227-233.
[http://dx.doi.org/10.1016/j.bios.2014.06.062] [PMID: 25016253]
[53]
Lakhin, A.V.; Tarantul, V.Z.; Gening, L.V. Aptamers: Problems, solutions and prospects. Acta Nat. (Engl. Ed.), 2013, 5(4), 34-43.
[http://dx.doi.org/10.32607/20758251-2013-5-4-34-43] [PMID: 24455181]
[54]
Qiang, L.; Zhang, Y.; Guo, X.; Gao, Y.; Han, Y.; Sun, J.; Han, L. A rapid and ultrasensitive colorimetric biosensor based on aptamer functionalized au nanoparticles for detection of saxitoxin. RSC Advances, 2020, 10(26), 15293-15298.
[http://dx.doi.org/10.1039/D0RA01231A]
[55]
Qi, X.; Yan, X.; Zhao, L.; Huang, Y.; Wang, S.; Liang, X. A facile label-free electrochemical aptasensor constructed with nanotetrahedron and aptamer-triplex for sensitive detection of small molecule: Saxitoxin. J. Electroanal. Chem. (Lausanne), 2020, 858
[http://dx.doi.org/10.1016/j.jelechem.2019.113805]
[56]
Gu, H.; Hao, L.; Duan, N.; Wu, S.; Xia, Y.; Ma, X.; Wang, Z. A competitive fluorescent aptasensor for okadaic acid detection assisted by rolling circle amplification. Mikrochim. Acta, 2017, 184(8), 2893-2899.
[http://dx.doi.org/10.1007/s00604-017-2293-1]
[57]
Zhang, J.; Xu, X.; Qiang, Y. Ultrasensitive electrochemical aptasensor for ochratoxin a detection using agpt bimetallic nanoparticles decorated iron-porphyrinic metal-organic framework for signal amplification. Sens. Actuators B Chem., 2020, 312, 127964.
[http://dx.doi.org/10.1016/j.snb.2020.127964]
[58]
Jia, M.; Jia, B.; Liao, X.; Shi, L.; Zhang, Z.; Liu, M.; Zhou, L.; Li, D.; Kong, W.A. CdSe@CdS quantum dots based electrochemiluminescence aptasensor for sensitive detection of ochratoxin A. Chemosphere, 2022, 287(Pt 1), 131994.
[http://dx.doi.org/10.1016/j.chemosphere.2021.131994] [PMID: 34478969]
[59]
Mazzaracchio, V.; Neagu, D.; Porchetta, A.; Marcoccio, E.; Pomponi, A.; Faggioni, G.; D’Amore, N.; Notargiacomo, A.; Pea, M.; Moscone, D.; Palleschi, G.; Lista, F.; Arduini, F. A label-free impedimetric aptasensor for the detection of Bacillus anthracis spore simulant. Biosens. Bioelectron., 2019, 126, 640-646.
[http://dx.doi.org/10.1016/j.bios.2018.11.017] [PMID: 30522085]
[60]
Janardhanan, P.; Mello, C.M.; Singh, B.R.; Lou, J.; Marks, J.D.; Cai, S. RNA aptasensor for rapid detection of natively folded type A botulinum neurotoxin. Talanta, 2013, 117, 273-280.
[http://dx.doi.org/10.1016/j.talanta.2013.09.012] [PMID: 24209341]
[61]
Wei, F.; Bai, B.; Ho, C-M. Rapidly optimizing an aptamer based BoNT sensor by feedback system control (FSC) scheme. Biosens. Bioelectron., 2011, 30(1), 174-179.
[http://dx.doi.org/10.1016/j.bios.2011.09.014] [PMID: 21993141]
[62]
Caratelli, V.; Fillo, S.; D’Amore, N.; Rossetto, O.; Pirazzini, M.; Moccia, M.; Avitabile, C.; Moscone, D.; Lista, F.; Arduini, F. Paper-based electrochemical peptide sensor for on-site detection of botulinum neurotoxin serotype A and C. Biosens. Bioelectron., 2021, 183, 113210.
[http://dx.doi.org/10.1016/j.bios.2021.113210] [PMID: 33852978]
[63]
Hong, S-L.; Xiang, M-Q.; Tang, M.; Pang, D-W.; Zhang, Z-L. Ebola virus aptamers: From highly efficient selection to application on magnetism-controlled chips. Anal. Chem., 2019, 91(5), 3367-3373.
[http://dx.doi.org/10.1021/acs.analchem.8b04623] [PMID: 30740973]
[64]
Fahrajia, Z.; Nasirizadehb, N.; Seifati, S.M.; Azimzadeh, M. A simple and sensitive electrochemical DNA biosensor of the bacteria chlamydia. Anal. Bioanal. Chem. Res., 2022, 9(2), 163-171.
[65]
Alipour, E.; Norouzi, S.; Moradi, S. The development of an electrochemical DNA biosensor based on quercetin as a new electroactive indicator for DNA hybridization detection. Anal. Methods, 2021, 13(5), 719-729.
[http://dx.doi.org/10.1039/D0AY01993C] [PMID: 33491010]
[66]
Yeter, E.Ç. ; Şahin, S.; Caglayan, M.O.; Üstündağ, Z. An electrochemical label-free DNA impedimetric sensor with AuNPmodified glass fiber/carbonaceous electrode for the detection of HIV-1 DNA Chem. Zvesti, 2021, 75(1), 77-87.
[http://dx.doi.org/10.1007/s11696-020-01280-5] [PMID: 32836707]
[67]
Fani, M.; Rezayi, M.; Pourianfar, H.R.; Meshkat, Z.; Makvandi, M.; Gholami, M.; Rezaee, S.A. Rapid and label-free electrochemical DNA biosensor based on a facile one-step electrochemical synthesis of rGO-PPy-(L-Cys)-AuNPs nanocomposite for the HTLV-1 oligonucleotide detection. Biotechnol. Appl. Biochem., 2021, 68(3), 626-635.
[http://dx.doi.org/10.1002/bab.1973] [PMID: 32542764]
[68]
Suea-Ngam, A.; Howes, P.D.; deMello, A.J. An amplification-free ultra-sensitive electrochemical CRISPR/Cas biosensor for drug-resistant bacteria detection. Chem. Sci. (Camb.), 2021, 12(38), 12733-12743.
[http://dx.doi.org/10.1039/D1SC02197D] [PMID: 34703560]
[69]
Vivekananda, J.; Kiel, J.L. Anti-Francisella tularensis DNA aptamers detect tularemia antigen from different subspecies by aptamer-linked immobilized sorbent assay. Lab. Invest., 2006, 86(6), 610-618.
[http://dx.doi.org/10.1038/labinvest.3700417] [PMID: 16550191]
[70]
Farlow, J.; Wagner, D.M.; Dukerich, M.; Stanley, M.; Chu, M.; Kubota, K.; Petersen, J.; Keim, P. Francisella tularensis in the United States. Emerg. Infect. Dis., 2005, 11(12), 1835-1841.
[http://dx.doi.org/10.3201/eid1112.050728] [PMID: 16485467]
[71]
Gnanam, A.J.; Hall, B.; Shen, X.; Piasecki, S.; Vernados, A.; Galyov, E.E.; Smither, S.J.; Kitto, G.B.; Titball, R.W.; Ellington, A.D.; Brown, K.A. Development of aptamers specific for potential diagnostic targets in Burkholderia pseudomallei. Trans. R. Soc. Trop. Med. Hyg., 2008, 102(Suppl. 1), S55-S57.
[http://dx.doi.org/10.1016/S0035-9203(08)70015-4] [PMID: 19121689]
[72]
Towner, J.S.; Khristova, M.L.; Sealy, T.K.; Vincent, M.J.; Erickson, B.R.; Bawiec, D.A.; Hartman, A.L.; Comer, J.A.; Zaki, S.R.; Ströher, U.; Gomes da Silva, F.; del Castillo, F.; Rollin, P.E.; Ksiazek, T.G.; Nichol, S.T. Marburgvirus genomics and association with a large hemorrhagic fever outbreak in Angola. J. Virol., 2006, 80(13), 6497-6516.
[http://dx.doi.org/10.1128/JVI.00069-06] [PMID: 16775337]
[73]
Mantip, S.E.; Sigismeau, A.; Nanven, M.; Joel, A.; Qasim, A.M.; Aliyu, S.; Musa, I.; Ezeanyika, O.; Faramade, I.; Ahmed, G.; Woma, T.Y.; Shamaki, D.; Libeau, G.; Farougou, S.; Bataille, A. Wide circulation of peste des petits ruminants virus in sheep and goats across Nigeria. Onderstepoort J. Vet. Res., 2021, 88(1), e1-e7.
[http://dx.doi.org/10.4102/ojvr.v88i1.1899] [PMID: 34636619]
[74]
Shoaib, M.; Shehzad, A.; Mukama, O.; Raza, H.; Niazi, S.; Khan, I.M.; Ali, B.; Akhtar, W.; Wang, Z. Selection of potential aptamers for specific growth stage detection of yersinia enterocolitica. RSC Advances, 2020, 10(41), 24743-24752.
[http://dx.doi.org/10.1039/D0RA00683A]