Abstract
Quinone diazides are a class of diazo compounds, having a planar six-membered ring system
with diazo, carbonyl, and alkene groups in conjugation. It has been used in optical, electronic, and polymer
materials. In the last few years, these diazo compounds explored various rearrangements reactions
and insertion reactions via the formation of metallo-carbenoids. Recently, it has been used to incorporate
phenol moieties into hydrocarbons or arene/heteroarenes systems via transition metalcatalyzed
C-H bond activation. The reactions proceed via C-H bond insertion or migratory insertion of
metal-carbenes. In many cases, the site-selectivities were obtained by the guidance of various directing
groups (removable or non-removable). At the same time, several asymmetric approaches were also
studied to incorporate phenol derivatives to arenes/heteroarenes furnishing compounds showing axial
chirality with high stereoselectivity. This review will mainly focus on directed regioselective arylation
with quinone diazides under transition metal catalysis through C-H bond activation.
Keywords:
C-H bond activation, quinone diazides, carbene, arylation, transition metal, spiroannulation, asymmetric arylation.
Graphical Abstract
[3]
a) Daugulis, O.; Do, H-Q.; Shabashov, D. Palladium- and copper-catalyzed arylation of carbon-hydrogen bonds.
Acc. Chem. Res., 2009,
42(8), 1074-1086.
[
http://dx.doi.org/10.1021/ar9000058] [PMID:
19552413];
b) Colby, D.A.; Bergman, R.G.; Ellman, J.A. Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation.
Chem. Rev., 2010,
110(2), 624-655.
[
http://dx.doi.org/10.1021/cr900005n] [PMID:
19438203];
c) Lyons, T.W.; Sanford, M.S. Palladium-catalyzed ligand-directed C-H functionalization reactions.
Chem. Rev., 2010,
110(2), 1147-1169.
[
http://dx.doi.org/10.1021/cr900184e] [PMID:
20078038];
d) McGlacken, G.P.; Bateman, L.M. Recent advances in aryl-aryl bond formation by direct arylation.
Chem. Soc. Rev., 2009,
38(8), 2447-2464.
[
http://dx.doi.org/10.1039/b805701j] [PMID:
19623360];
e) Ackermann, L.; Vicente, R.; Kapdi, A.R. Transition-metal-catalyzed direct arylation of (hetero) arenes by C-H bond cleavage.
Angew. Chem. Int. Ed. Engl., 2009,
48(52), 9792-9826.
[
http://dx.doi.org/10.1002/anie.200902996] [PMID:
19998294];
f) Satoh, T.; Miura, M. Transition-Metal-Catalyzed regioselective arylation and vinylation of carboxylic acids.
Synthesis, 2010,
2010(20), 3395-3409.
[
http://dx.doi.org/10.1055/s-0030-1258225];
g) Yeung, C.S.; Dong, V.M. Catalytic dehydrogenative cross-coupling: Forming carbon-carbon bonds by oxidizing two carbon-hydrogen bonds.
Chem. Rev., 2011,
111(3), 1215-1292.
[
http://dx.doi.org/10.1021/cr100280d] [PMID:
21391561];
h) Kuhl, N.; Hopkinson, M.N.; Wencel-Delord, J.; Glorius, F. Beyond directing groups: Transition-metal-catalyzed C-H activation of simple arenes.
Angew. Chem. Int. Ed. Engl., 2012,
51(41), 10236-10254.
[
http://dx.doi.org/10.1002/anie.201203269] [PMID:
22996679];
i) Sun, C-L.; Li, B-J.; Shi, Z-J. Direct C-H transformation via iron catalysis.
Chem. Rev., 2011,
111(3), 1293-1314.
[
http://dx.doi.org/10.1021/cr100198w] [PMID:
21049955];
j) Wencel-Delord, J.; Glorius, F. C-H bond activation enables the rapid construction and late-stage diversification of functional molecules.
Nat. Chem., 2013,
5(5), 369-375.
[
http://dx.doi.org/10.1038/nchem.1607] [PMID:
23609086]
[12]
The chemistry of phenols; John Wiley & Sons Ltd.: Chichester, U.K., 2003.
[13]
Ershov, V.V.; Nikiforvo, G.A.; De Jonge, C.R.H.I. Studies in organic chemistry: Quinonediazides; Elsevier: Amsterdam, 1981. Griesbeck, A.G.; Zimmermann, E. Science of synthesis; Griesbeck, A.G., Ed.; Thieme: Stuttgart, 2000, Vol. 28, p. 807.
[29]
a) Hu, F.; Xia, Y.; Ma, C.; Zhang, Y.; Wang, J. C-H bond functionalization based on metal carbene migratory insertion.
Chem. Commun. (Camb.), 2015,
51(38), 7986-7995.
[
http://dx.doi.org/10.1039/C5CC00497G] [PMID:
25739369];
b) Wang, J.; Wang, M.; Chen, K.; Zha, S.; Song, C.; Zhu, J. C-H Activation-based traceless synthesis via electrophilic removal of a directing group. Rhodium(III)-catalyzed entry into indoles from N-nitroso and α-diazo-β-keto compounds.
Org. Lett., 2016,
18(5), 1178-1181.
[
http://dx.doi.org/10.1021/acs.orglett.6b00310] [PMID:
26909684];
c) Zhou, T.; Li, B.; Wang, B. Rhodium-catalyzed C-H activation of 3-(indolin-1-yl)-3-oxopropanenitriles with diazo compounds and tandem cyclization leading to hydrogenated azepino[3,2,1-hi]indoles.
Chem. Commun. (Camb.), 2016,
52(98), 14117-14120.
[
http://dx.doi.org/10.1039/C6CC07758G] [PMID:
27858004];
d) Chen, X.; Hu, X.; Bai, S.; Deng, Y.; Jiang, H.; Zeng, W. Rh(Iii)-catalyzed [4 + 2] annulation of indoles with diazo compounds: Access to pyrimido[1,6-a]indole-1(2h)-ones.
Org. Lett., 2016,
18(2), 192-195.
[
http://dx.doi.org/10.1021/acs.orglett.5b03231] [PMID:
26710082];
e) Allu, S.; Ravi, M.; Kumara Swamy, K.C. Rhodium(III)-Catalysed Carbenoid C(sp2)-H functionalisation of aniline substrates with α-Diazo esters: formation of oxindoles and characterisation/utility of an intermediate-like rhodacycle.
Eur. J. Org. Chem., 2016,
2016(34), 5697-5705.
[
http://dx.doi.org/10.1002/ejoc.201600968];
f) Li, L.; Brennessel, W.W.; Jones, W.D. An efficient low-temperature route to polycyclic isoquinoline salt synthesis via C-H activation with [Cp*MCl2]2 (M = Rh, Ir).
J. Am. Chem. Soc., 2008,
130(37), 12414-12419.
[
http://dx.doi.org/10.1021/ja802415h] [PMID:
18714995];
g) Brasse, M.; Cámpora, J.; Ellman, J.A.; Bergman, R.G. Mechanistic study of the oxidative coupling of styrene with 2-phenylpyridine derivatives catalyzed by cationic rhodium(III) via C-H activation.
J. Am. Chem. Soc., 2013,
135(17), 6427-6430.
[
http://dx.doi.org/10.1021/ja401561q] [PMID:
23590843];
h) Walsh, A.P.; Jones, W.D. Mechanistic insights of a concerted metalation–deprotonation reaction with [Cp*RhCl2]2.
Organometallics, 2015,
34(13), 3400-3407.
[
http://dx.doi.org/10.1021/acs.organomet.5b00369]
[33]
Thomas, B. C.; James, C. A.; Karol, D. E.; Ulrich, S. Naphthalene derivatives PCT. Int. Appl.,, 2002.
[38]
a) Bolognese, A.; Correale, G.; Manfra, M.; Esposito, A.; Novellino, E.; Lavecchia, A. Antitumor agents 6. Synthesis, structure-activity relationships, and biological evaluation of spiro[imidazolidine-4,3′-thieno[2,3-g]quinoline]-tetraones and spiro[thieno[2,3-g]quinoline-3,5′-[1,2,4]triazinane]-tetraones with potent antiproliferative activity.
J. Med. Chem., 2008,
51(24), 8148-8157.
[
http://dx.doi.org/10.1021/jm8007689] [PMID:
19053767];
b) Tanaka, N.; Kashiwada, Y.; Kim, S.Y.; Hashida, W.; Sekiya, M.; Ikeshiro, Y.; Takaishi, Y. Acylphloroglucinol, biyouyanagiol, biyouyanagin B, and related spiro-lactones from Hypericum Chinense.
J. Nat. Prod., 2009,
72(8), 1447-1452.
[
http://dx.doi.org/10.1021/np900109y] [PMID:
19606850];
c) Trieselmann, T.; Wagner, H.; Fuchs, K.; Hamprecht, D.; Berta, D.; Cremonesi, P.; Streicher, R.; Luippold, G.; Volz, A.; Markert, M.; Nar, H. Potent cholesteryl ester transfer protein inhibitors of reduced lipophilicity: 1,1′-spiro-substituted hexahydrofuroquinoline derivatives.
J. Med. Chem., 2014,
57(21), 8766-8776.
[
http://dx.doi.org/10.1021/jm500431d] [PMID:
25265559]
[40]
a) Hummel, J.R.; Boerth, J.A.; Ellman, J.A. Transition-Metal-Catalyzed C-H bond addition to carbonyls, imines, and related polarized π bonds.
Chem. Rev., 2017,
117(13), 9163-9227.
[
http://dx.doi.org/10.1021/acs.chemrev.6b00661] [PMID:
27936637];
b) Yang, Y.; Lan, J.; You, J. Oxidative C-H/C-H coupling reactions between two (hetero)arenes.
Chem. Rev., 2017,
117(13), 8787-8863.
[
http://dx.doi.org/10.1021/acs.chemrev.6b00567] [PMID:
28085272];
c) Li, H.; Gontla, R.; Flegel, J.; Merten, C.; Ziegler, S.; Antonchick, A.P.; Waldmann, H. Enantioselective formal C(sp3)-H bond activation in the synthesis of bioactive spiropyrazolone derivatives.
Angew. Chem. Int. Ed. Engl., 2019,
58(1), 307-311.
[
http://dx.doi.org/10.1002/anie.201811041] [PMID:
30511449];
d) Liu, B.; Hu, P.; Zhang, Y.; Li, Y.; Bai, D.; Li, X. Rh(III)-Catalyzed diastereodivergent spiroannulation of cyclic imines with activated alkenes Org. Lett.2017, 19, 5402. f) Zhao, Y.; He, Z.; Li, S.; Tang, J.; Gao, G.; Lan, J.; You, J. An air-stable half-sandwich RuII complex as an efficient catalyst for [3+2] annulation of 2-arylcyclo-2-enones with alkynes.
Chem. Commun. (Camb.), 2016,
52, 4613.;
e) Lv, N.; Liu, Y.; Xiong, C.; Liu, Z.; Zhang, Y. Cobalt-catalyzed oxidant-free spirocycle synthesis by liberation of hydrogen.
Org. Lett., 2017,
19(17), 4640-4643.
[
http://dx.doi.org/10.1021/acs.orglett.7b02266] [PMID:
28825486];
f) Li, D.Y.; Jiang, L.L.; Chen, S.; Huang, Z.L.; Dang, L.; Wu, X.Y.; Liu, P.N. Cascade reaction of alkynols and 7-Oxabenzonorbornadienes involving transient hemiketal group directed C-H activation and synergistic RhIII/ScIII catalysis.
Org. Lett., 2016,
18(19), 5134-5137.
[
http://dx.doi.org/10.1021/acs.orglett.6b02587] [PMID:
27647431]
[50]
a) Privileged Chiral Ligands and Catalysts; Wiley-VCH: Weinheim, 2011. ;
b) Hartwig, J. Organotransition metal chemistry: from bonding to catalysis; University Science Books: Sausalito, CA, 2010.