Biology of Bone Morphogenetic Proteins in Skeleton Disease: Osteonecrosis in Sickle Cell Disease Patients

Page: [264 - 270] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Sickle cell disease (SCD) is an autosomal recessive trait of genetic hemoglobin disorder whose prevalence is varied from 5 to 25 % of the world population. It is characterized by the presence of hemoglobin (HbS) instead of normal hemoglobin (HbA). An individual suffering from sickle cell disease is likely to be at risk of osteonecrosis, which is a form of ischemic bone infarction which causes intolerable degenerative joint problems and can affect 30-50% of people with sickle cell disease. The femoral head is the most frequent epiphyseal location in osteonecrosis with sickle cell disease. In this review, the Bone morphogenetic protein (BMP)-a subfamily of transforming growth factor-β (TGF-β) characteristics outlined the osteoblastogenesis potentiality via using combinatorial or advanced treatment approaches. In this review, we aim to describe the Bone morphogenetic proteins' role in Skeleton diseases and discuss the potent osteogenic BMPs (majorly BMP-2, BMP-6, and BMP-7) with therapeutic benefits.

Keywords: Osteonecrosis, sickle cell anemia, bone morphogenetic proteins, osteoblastogenesis, hemoglobin (HbS), Sickle cell disease (SCD).

Graphical Abstract

[1]
Hernigou, P.; Flouzat-Lachaniette, C.H.; Daltro, G.; Galacteros, F. Talar osteonecrosis related to adult sickle cell disease: Natural evolution from early to late stages. J. Bone Joint Surg. Am., 2016, 98(13), 1113-1121.
[http://dx.doi.org/10.2106/JBJS.15.01074] [PMID: 27385685]
[2]
Larson, E.; Jones, L.C.; Goodman, S.B.; Koo, K-H.; Cui, Q. Early-stage osteonecrosis of the femoral head: where are we and where are we going in year 2018? Int. Orthop., 2018, 42(7), 1723-1728.
[http://dx.doi.org/10.1007/s00264-018-3917-8] [PMID: 29619500]
[3]
Rathod, T.N.; Tayade, M.B.; Shetty, S.D.; Jadhav, P.; Sathe, A.H.; Mohanty, S.S. Association of thrombophilic factors in pathogenesis of osteonecrosis of femoral head in indian population. Indian J. Orthop., 2020, 54(S1)(Suppl. 1), 33-38.
[http://dx.doi.org/10.1007/s43465-020-00181-9] [PMID: 32952907]
[4]
Hernigou, P.; Daltro, G. Osteonecrosis in sickle-cell disease. In: Osteonecrosis; Springer, 2014; pp. 125-131.
[http://dx.doi.org/10.1007/978-3-642-35767-1_16]
[5]
Flouzat-Lachaniete, C.H.; Roussignol, X.; Poignard, A.; Mukasa, M.M.; Manicom, O.; Hernigou, P. Multifocal joint osteonecrosis in sickle cell disease. Open Orthop. J., 2009, 3(1), 32-35.
[http://dx.doi.org/10.2174/1874325000903010032] [PMID: 19572037]
[6]
(a)Adesina, O.O.; Neumayr, L.D. Osteonecrosis in sickle cell disease: An update on risk factors, diagnosis, and management. Hematology (Am. Soc. Hematol. Educ. Program), 2019, 2019(1), 351-358.
[http://dx.doi.org/10.1182/hematology.2019000038] [PMID: 31808856]
(b)Jack, C.M.; Howard, J.; Aziz, E.S.; Kesse-Adu, R.; Bankes, M.J. Cementless total hip replacements in sickle cell disease. Hip Int., 2016, 26(2), 186-192.
[7]
Adesina, O.; Brunson, A.; Keegan, T.H.M.; Wun, T. Osteonecrosis of the femoral head in sickle cell disease: Prevalence, comorbidities, and surgical outcomes in California. Blood Adv., 2017, 1(16), 1287-1295.
[http://dx.doi.org/10.1182/bloodadvances.2017005256] [PMID: 29296770]
[8]
Ollivier, M.; Lunebourg, A.; Abdel, M.P.; Parratte, S.; Argenson, J-N. Anatomical findings in patients undergoing total hip arthroplasty for idiopathic femoral head osteonecrosis. J. Bone Joint Surg. Am., 2016, 98(8), 672-676.
[http://dx.doi.org/10.2106/JBJS.14.01099]
[9]
Baldwin, C.; Nolan, V.G.; Wyszynski, D.F.; Ma, Q.L.; Sebastiani, P.; Embury, S.H.; Bisbee, A.; Farrell, J.; Farrer, L.; Steinberg, M.H. Association of klotho, bone morphogenic protein 6, and annexin A2 polymorphisms with sickle cell osteonecrosis. Blood, 2005, 106(1), 372-375.
[http://dx.doi.org/10.1182/blood-2005-02-0548] [PMID: 15784727]
[10]
Sampath, K.T. The systems biology of bone morphogenetic proteins. In: Bone morphogenetic proteins: Systems biology regulators; Springer, 2017; pp. 15-38.
[http://dx.doi.org/10.1007/978-3-319-47507-3_2]
[11]
(a)Wang, Y.; Chen, S.; Deng, C.; Li, F.; Wang, Y.; Hu, X.; Shi, F.; Dong, N. MicroRNA-204 targets runx2 to attenuate BMP-2-induced osteoblast differentiation of human aortic valve interstitial cells. J. Cardiovasc. Pharmacol., 2015, 66(1), 63-71.
[http://dx.doi.org/10.1097/FJC.0000000000000244] [PMID: 25806689]
(b)Mundy, C.; Gannon, M.; Popoff, S.N. Connective tissue growth factor (CTGF/CCN2) negatively regulates BMP-2 induced osteoblast differentiation and signaling. J. Cell. Physiol., 2014, 229(5), 672-681.
[http://dx.doi.org/10.1002/jcp.24491] [PMID: 24127409]
[12]
(a)Dohin, B.; Dahan-Oliel, N.; Fassier, F.; Hamdy, R. Enhancement of difficult nonunion in children with osteogenic protein-1 (OP-1): early experience. Clin. Orthop. Relat. Res., 2009, 467(12), 3230-3238.
[http://dx.doi.org/10.1007/s11999-009-0967-7] [PMID: 19588211]
(b)Takahashi, T.; Hatakeyama, S.; Machida, T. Ductal adenocarcinoma of the pancreas with psammomatous calcification: report of a case with immunohistochemical study for bone morphogenetic protein. Pathol. Int., 2011, 61(10), 603-607.
[http://dx.doi.org/10.1111/j.1440-1827.2011.02705.x] [PMID: 21951671]
(c)Rahman, M.S.; Akhtar, N.; Jamil, H.M.; Banik, R.S.; Asaduzzaman, S.M. TGF-β/BMP signaling and other molecular events: Regulation of osteoblastogenesis and bone formation. Bone Res., 2015, 3(1), 15005.
[http://dx.doi.org/10.1038/boneres.2015.5] [PMID: 26273537]
[13]
Mizrahi, O.; Sheyn, D.; Tawackoli, W.; Kallai, I.; Oh, A.; Su, S.; Da, X.; Zarrini, P.; Cook-Wiens, G.; Gazit, D.; Gazit, Z. BMP-6 is more efficient in bone formation than BMP-2 when overexpressed in mesenchymal stem cells. Gene Ther., 2013, 20(4), 370-377.
[http://dx.doi.org/10.1038/gt.2012.45] [PMID: 22717741]
[14]
Abhishek, K.; Kumar, R.; Arif, E.; Patra, P.K.; Choudhary, S.B.; Sohail, M. Induced expression of bone morphogenetic protein-6 and Smads signaling in human monocytes derived dendritic cells during sickle-cell pathology with orthopedic complications. Biochem. Biophys. Res. Commun., 2010, 396(4), 950-955.
[http://dx.doi.org/10.1016/j.bbrc.2010.05.029] [PMID: 20460105]
[15]
Grgurevic, L.; Oppermann, H.; Pecin, M.; Erjavec, I.; Capak, H.; Pauk, M.; Karlovic, S.; Kufner, V.; Lipar, M.; Bubic Spoljar, J.; Bordukalo-Niksic, T.; Maticic, D.; Peric, M.; Windhager, R.; Sampath, T.K.; Vukicevic, S. Recombinant human bone morphogenetic protein 6 delivered within autologous blood coagulum restores critical size segmental defects of ulna in rabbits. JBMR Plus, 2018, 3(5), e10085.
[http://dx.doi.org/10.1002/jbm4.10085] [PMID: 31131338]
[16]
Vukicevic, S.; Grgurevic, L.; Erjavec, I.; Pecin, M.; Bordukalo-Niksic, T.; Stokovic, N.; Lipar, M.; Capak, H.; Maticic, D.; Windhager, R.; Sampath, T.K.; Gupta, M. Autologous blood coagulum is a physiological carrier for BMP6 to induce new bone formation and promote posterolateral lumbar spine fusion in rabbits. J. Tissue Eng. Regen. Med., 2020, 14(1), 147-159.
[http://dx.doi.org/10.1002/term.2981] [PMID: 31671243]
[17]
Grgurevic, L.; Erjavec, I.; Gupta, M.; Pecin, M.; Bordukalo-Niksic, T.; Stokovic, N.; Vnuk, D.; Farkas, V.; Capak, H.; Milosevic, M.; Bubic Spoljar, J.; Peric, M.; Vuckovic, M.; Maticic, D.; Windhager, R.; Oppermann, H.; Sampath, T.K.; Vukicevic, S. Autologous blood coagulum containing rhBMP6 induces new bone formation to promote anterior lumbar interbody fusion (ALIF) and posterolateral lumbar fusion (PLF) of spine in sheep. Bone, 2020, 138, 115448.
[http://dx.doi.org/10.1016/j.bone.2020.115448] [PMID: 32450340]
[18]
Sammons, J.; Ahmed, N.; El-Sheemy, M.; Hassan, H.T. The role of BMP-6, IL-6, and BMP-4 in mesenchymal stem cell-dependent bone development: Effects on osteoblastic differentiation induced by parathyroid hormone and vitamin D(3). Stem Cells Dev., 2004, 13(3), 273-280.
[http://dx.doi.org/10.1089/154732804323099208] [PMID: 15186723]
[19]
Ripamonti, U.; Renton, L. Bone morphogenetic proteins and the induction of periodontal tissue regeneration. Periodontol. 2000, 2006, 41(1), 73-87.
[http://dx.doi.org/10.1111/j.1600-0757.2006.00155.x] [PMID: 16686927]
[20]
Saito, A.; Saito, E.; Handa, R.; Honma, Y.; Kawanami, M. Influence of residual bone on recombinant human bone morphogenetic protein-2-induced periodontal regeneration in experimental periodontitis in dogs. J. Periodontol., 2009, 80(6), 961-968.
[http://dx.doi.org/10.1902/jop.2009.080568] [PMID: 19485827]
[21]
Rotenberg, S.A.; Tatakis, D.N. Recombinant human bone morphogenetic protein-2 for peri-implant bone regeneration: A case report. J. Periodontol., 2011, 82(8), 1212-1218.
[http://dx.doi.org/10.1902/jop.2011.100626] [PMID: 21235332]
[22]
Keceli, H.G.; Bayram, C.; Celik, E.; Ercan, N.; Demirbilek, M.; Nohutcu, R.M. Dual delivery of platelet-derived growth factor and bone morphogenetic factor-6 on titanium surface to enhance the early period of implant osseointegration. J. Periodontal Res., 2020, 55(5), 694-704.
[http://dx.doi.org/10.1111/jre.12756] [PMID: 32776328]
[23]
Salazar, V.S.; Gamer, L.W.; Rosen, V. BMP signalling in skeletal development, disease and repair. Nat. Rev. Endocrinol., 2016, 12(4), 203-221.
[http://dx.doi.org/10.1038/nrendo.2016.12] [PMID: 26893264]
[24]
Lowery, J.W.; Brookshire, B.; Rosen, V. A survey of strategies to modulate the bone morphogenetic protein signaling pathway: Current and future perspectives. Stem Cells Int., 2016, 2016, 7290686.
[http://dx.doi.org/10.1155/2016/7290686] [PMID: 27433166]
[25]
(a)Kodach, L.L.; Bleuming, S.A.; Peppelenbosch, M.P.; Hommes, D.W.; van den Brink, G.R.; Hardwick, J.C. The effect of statins in colorectal cancer is mediated through the bone morphogenetic protein pathway. Gastroenterology, 2007, 133(4), 1272-1281.
[http://dx.doi.org/10.1053/j.gastro.2007.08.021] [PMID: 17919499]
(b)Zhang, H.; Lin, C.Y. Simvastatin stimulates chondrogenic phenotype of intervertebral disc cells partially through BMP-2 pathway. Spine, 2008, 33(16), E525-E531.
[http://dx.doi.org/10.1097/BRS.0b013e31817c561b] [PMID: 18628692]
[26]
(a)Kanazawa, I.; Yamaguchi, T.; Yano, S.; Yamauchi, M.; Sugimoto, T. Activation of AMP kinase and inhibition of Rho kinase induce the mineralization of osteoblastic MC3T3-E1 cells through endothelial NOS and BMP-2 expression. Am. J. Physiol. Endocrinol. Metab., 2009, 296(1), E139-E146.
[http://dx.doi.org/10.1152/ajpendo.90677.2008] [PMID: 19001547]
(b)Kanazawa, S.; Fujiwara, T.; Matsuzaki, S.; Shingaki, K.; Taniguchi, M.; Miyata, S.; Tohyama, M.; Sakai, Y.; Yano, K.; Hosokawa, K.; Kubo, T. bFGF regulates PI3-kinase-Rac1-JNK pathway and promotes fibroblast migration in wound healing. PLoS One, 2010, 5(8), e12228.
[http://dx.doi.org/10.1371/journal.pone.0012228] [PMID: 20808927]
[27]
(a)Munisso, M.C.; Kang, J.H.; Tsurufuji, M.; Yamaoka, T. Cilomilast enhances osteoblast differentiation of mesenchymal stem cells and bone formation induced by bone morphogenetic protein 2. Biochimie, 2012, 94(11), 2360-2365.
[http://dx.doi.org/10.1016/j.biochi.2012.05.031] [PMID: 22706281]
(b)Yang, J.; Li, X.; Al-Lamki, R.S.; Wu, C.; Weiss, A.; Berk, J.; Schermuly, R.T.; Morrell, N.W. Sildenafil potentiates bone morphogenetic protein signaling in pulmonary arterial smooth muscle cells and in experimental pulmonary hypertension. Arterioscler. Thromb. Vasc. Biol., 2013, 33(1), 34-42.
[http://dx.doi.org/10.1161/ATVBAHA.112.300121] [PMID: 23139294]
[28]
(a)Bendell, J.C.; Hong, D.S.; Burris, H.A., III; Naing, A.; Jones, S.F.; Falchook, G.; Bricmont, P.; Elekes, A.; Rock, E.P.; Kurzrock, R. Phase 1, open-label, dose-escalation, and pharmacokinetic study of STAT3 inhibitor OPB-31121 in subjects with advanced solid tumors. Cancer Chemother. Pharmacol., 2014, 74(1), 125-130.
[http://dx.doi.org/10.1007/s00280-014-2480-2] [PMID: 24819685]
(b)Hawinkels, L.J.; de Vinuesa, A.G.; Paauwe, M.; Kruithof-de Julio, M.; Wiercinska, E.; Pardali, E.; Mezzanotte, L.; Keereweer, S.; Braumuller, T.M.; Heijkants, R.C.; Jonkers, J.; Löwik, C.W.; Goumans, M.J.; ten Hagen, T.L.; ten Dijke, P. Activin receptor-like kinase 1 ligand trap reduces microvascular density and improves chemotherapy efficiency to various solid tumors. Clin. Cancer Res., 2016, 22(1), 96-106.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0743] [PMID: 26373572]
[29]
(a)Prall, W.C.; Haasters, F.; Heggebö, J.; Polzer, H.; Schwarz, C.; Gassner, C.; Grote, S.; Anz, D.; Jäger, M.; Mutschler, W.; Schieker, M. Mesenchymal stem cells from osteoporotic patients feature impaired signal transduction but sustained osteoinduction in response to BMP-2 stimulation. Biochem. Biophys. Res. Commun., 2013, 440(4), 617-622.
[http://dx.doi.org/10.1016/j.bbrc.2013.09.114] [PMID: 24099772]
(b)Haasters, F.; Docheva, D.; Gassner, C.; Popov, C.; Böcker, W.; Mutschler, W.; Schieker, M.; Prall, W.C. Mesenchymal stem cells from osteoporotic patients reveal reduced migration and invasion upon stimulation with BMP-2 or BMP-7. Biochem. Biophys. Res. Commun., 2014, 452(1), 118-123.
[http://dx.doi.org/10.1016/j.bbrc.2014.08.055] [PMID: 25152406]
[30]
Ramesh Babu, L.; Wilson, S.G.; Dick, I.M.; Islam, F.M.; Devine, A.; Prince, R.L. Bone mass effects of a BMP4 gene polymorphism in postmenopausal women. Bone, 2005, 36(3), 555-561.
[http://dx.doi.org/10.1016/j.bone.2004.12.005] [PMID: 15777683]
[31]
Lin, G.T.; Tseng, H.F.; Chang, C.K.; Chuang, L.Y.; Liu, C.S.; Yang, C.H.; Tu, C.J.; Wang, E.C.; Tan, H.F.; Chang, C.C.; Wen, C.H.; Chen, H.C.; Chang, H.W. SNP combinations in chromosome-wide genes are associated with bone mineral density in Taiwanese women. Chin. J. Physiol., 2008, 51(1), 32-41.
[PMID: 18551993]
[32]
(a)Dumic-Cule, I.; Brkljacic, J.; Rogic, D.; Bordukalo Niksic, T.; Tikvica Luetic, A.; Draca, N.; Kufner, V.; Trkulja, V.; Grgurevic, L.; Vukicevic, S. Systemically available bone morphogenetic protein two and seven affect bone metabolism. Int. Orthop., 2014, 38(9), 1979-1985.
[http://dx.doi.org/10.1007/s00264-014-2425-8] [PMID: 25030962]
(b)Akkiraju, H.; Bonor, J.; Olli, K.; Bowen, C.; Bragdon, B.; Coombs, H.; Donahue, L.R.; Duncan, R.; Nohe, A. Systemic injection of ck2.3, a novel peptide acting downstream of bone morphogenetic protein receptor bmpria, leads to increased trabecular bone mass. J. Orthop. Res., 2015, 33(2), 208-215.
[http://dx.doi.org/10.1002/jor.22752] [PMID: 25331517]
[33]
Ali, I.H.; Brazil, D.P. Bone morphogenetic proteins and their antagonists: Current and emerging clinical uses. Br. J. Pharmacol., 2014, 171(15), 3620-3632.
[http://dx.doi.org/10.1111/bph.12724] [PMID: 24758361]
[34]
Cahill, K.S.; McCormick, P.C.; Levi, A.D. A comprehensive assessment of the risk of bone morphogenetic protein use in spinal fusion surgery and postoperative cancer diagnosis. J. Neurosurg. Spine, 2015, 23(1), 86-93.
[http://dx.doi.org/10.3171/2014.10.SPINE14338] [PMID: 25860517]
[35]
Hüning, I.; Gillessen-Kaesbach, G. Fibrodysplasia ossificans progressiva: Clinical course, genetic mutations and genotype-phenotype correlation. Mol. Syndromol., 2014, 5(5), 201-211.
[http://dx.doi.org/10.1159/000365770] [PMID: 25337067]