Nicotinamide Adenine Dinucleotide (NAD+) and Enkephalinase Inhibition (IV1114589NAD) Infusions Significantly Attenuate Psychiatric Burden Sequalae in Substance Use Disorder (SUD) in Fifty Cases

Page: [125 - 143] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Background: There is a shortage of clinical studies examining the efficacy of Nicotinamide Adenine Dinucleotide and Enkephalinase infusions (IV1114589NAD) in treating Substance Use Disorder (SUD).

Objective: This study aims to provide evidence that IV1114589NAD infusions significantly attenuate substance craving behavior.

Methods: The study cohort consisted of addicted poly-drug, mixed gender, multi-ethnic individuals resistant to standard treatment. The investigation utilized Likert-Scales to assess behavioral outcomes.

Results: Using Wilcoxon signed-rank tests and sign tests, our team detected significant results by comparing baseline to post outcome scores after IV1114589NAD injections: craving scores (P=1.063E-9); anxiety (P=5.487E-7); and depression (P=1.763E-4). A significant reduction in cravings, anxiety, and depression followed a dose-dependent linear trend. Linear trend analyses showed a significant relationship between NAD infusions and decreasing scores for cravings (P=0.015), anxiety (P=0.003), and depression (P=8.74E- 5). A urine analysis was conducted on a subset of 40 patients midway through the study to assess relapse; 100% of the urine samples analyzed failed to detect illicit substance use.

Discussion: The opioid crisis in America has claimed close to 800,000 lives since 2004; daily deaths are estimated to stand at 127, and in 2021, over 107,000 deaths were due to overdose. There is an urgency to find safe, side-effect-free solutions. Current interventions, such as Naltrexone implants, are invasive and may interfere with dopamine homeostasis leading to an anti-reward phenomenon. Larger randomized double-blinded placebo-controlled studies are needed to elucidate further the significance of the results presented in this study. The current pilot study provides useful preliminary data regarding the effectiveness of IV1114589NAD infusions in SUD treatment.

Conclusion: This pilot study provides significant evidence that NAD infusions are beneficial in the treatment of SUD. This investigation serves as a rationale to extend these findings onto future research investigating the use of NAD/NADH as a stand-alone treatment, especially in patients showing high genetic risk as measured in the Genetic Addiction Risk Severity (GARS) test. Utilizing GARS will help provide a real personalized therapeutic approach to treat Reward Deficiency Syndrome (RDS).

Keywords: Nicotinamide adenine dinucleotide (ND+) infusions, cravings, anxiety depression, dopamine homeostasis, reward deficiency syndrome (RDS), Medication Assistant Treatment (MAT).

Graphical Abstract

[1]
Oates JA, Gillespie L, Udenfriend S, Sjoerdsma A. Decarboxylase inhibition and blood pressure reduction by alpha-methyl-3,4-dihydroxy-DL-phenylalanine. Science 1960; 131(3417): 1890-1.
[http://dx.doi.org/10.1126/science.131.3417.1890] [PMID: 14428139]
[2]
Febo M, Blum K, Badgaiyan RD, et al. Dopamine homeostasis: Brain functional connectivity in reward deficiency syndrome. Front Biosci 2017; 22(4): 669-91.
[http://dx.doi.org/10.2741/4509] [PMID: 27814639]
[3]
Blum K, Febo M, Badgaiyan RD, et al. Neuronutrient amino-acid therapy protects against reward deficiency syndrome: Dopaminergic key to homeostasis and neuroplasticity. Curr Pharm Des 2016; 22(38): 5837-54.
[http://dx.doi.org/10.2174/1381612822666160719111346] [PMID: 27510492]
[4]
Blum K, Gold MS, Jacobs W, et al. Neurogenetics of acute and chronic opiate/opioid abstinence: treating symptoms and the cause. Front Biosci 2017; 22(8): 1247-88.
[http://dx.doi.org/10.2741/4544] [PMID: 28199203]
[5]
Blum K, Febo M, Fried L, et al. Hypothesizing that neuropharmacological and neuroimaging studies of glutaminergic-dopaminergic optimization complex (KB220Z) are associated with “dopamine homeostasis” in reward deficiency syn-drome (RDS). Subst Use Misuse 2017; 52(4): 535-47.
[http://dx.doi.org/10.1080/10826084.2016.1244551] [PMID: 28033474]
[6]
Miller DK, Bowirrat A, Manka M, et al. Acute intravenous synaptamine complex variant KB220™ “normalizes” neuro-logical dysregulation in patients during protracted abstinence from alcohol and opiates as observed using quantitative electroencephalographic and genetic analysis for reward polymorphisms: Part 1, Pilot Study With 2 Case Reports. Postgrad Med 2010; 122(6): 188-213.
[http://dx.doi.org/10.3810/pgm.2010.11.2236] [PMID: 21084795]
[7]
Blum K, Chen TJH, Downs BW, et al. Synaptamine (SG8839) An amino-acid enkephalinase inhibition nutraceutical improves recovery of alcoholics, a subtype of reward deficiency syndrome (RDS). Trends Appl Sci Res 2007; 2(2): 132-8.
[http://dx.doi.org/10.3923/tasr.2007.132.138]
[8]
Miller M, Chen AL, Stokes SD, et al. Early intervention of intravenous KB220IV--neuroadaptagen amino-acid therapy (NAAT) improves behavioral outcomes in a residential addiction treatment program: a pilot study. J Psychoactive Drugs 2012; 44(5): 398-409.
[http://dx.doi.org/10.1080/02791072.2012.737727] [PMID: 23457891]
[9]
Blum K, Modestino EJ, Gondre-Lewis MC, et al. Pro-dopamine regulator (KB220) a fifty year sojourn to combat reward deficiency syndrome (RDS): evidence based bibliography (Annotated). CPQ Neurol Psychol 2018; 1(2) https://www.cientperiodique.com/journal/fulltext/CPQNP/1/2/13
[PMID: 30957097]
[10]
Febo M, Blum K, Badgaiyan RD, et al. Enhanced functional connectivity and volume between cognitive and reward centers of naïve rodent brain produced by pro-dopaminergic agent KB220Z. PLoS One 2017; 12(4): e0174774.
[http://dx.doi.org/10.1371/journal.pone.0174774] [PMID: 28445527]
[11]
Blum K, Liu Y, Wang W, et al. rsfMRI effects of KB220Z™ on neural pathways in reward circuitry of abstinent geno-typed heroin addicts. Postgrad Med 2015; 127(2): 232-41.
[http://dx.doi.org/10.1080/00325481.2015.994879] [PMID: 25526228]
[12]
Blum K, Chen TJ, Morse S, et al. Overcoming qEEG abnormalities and reward gene deficits during protracted absti-nence in male psychostimulant and polydrug abusers utilizing putative dopamine D2 agonist therapy: part 2. Postgrad Med 2010; 122(6): 214-26.
[http://dx.doi.org/10.3810/pgm.2010.11.2237] [PMID: 21084796]
[13]
Willuhn I, Burgeno LM, Groblewski PA, Phillips PE. Excessive cocaine use results from decreased phasic dopamine sig-naling in the striatum. Nat Neurosci 2014; 17(5): 704-9.
[http://dx.doi.org/10.1038/nn.3694] [PMID: 24705184]
[14]
Park K, Volkow ND, Pan Y, Du C. Chronic cocaine dampens dopamine signaling during cocaine intoxication and un-balances D1 over D2 receptor signaling. J Neurosci 2013; 33(40): 15827-36.
[http://dx.doi.org/10.1523/JNEUROSCI.1935-13.2013] [PMID: 24089490]
[15]
Thanawala V, Kadam VJ, Ghosh R. Enkephalinase inhibitors: potential agents for the management of pain. Curr Drug Targets 2008; 9(10): 887-94.
[http://dx.doi.org/10.2174/138945008785909356] [PMID: 18855623]
[16]
Ramírez-Sánchez M, Prieto I, Segarra AB, Martínez-Cañamero M, Banegas I, de Gasparo M. Enkephalinase regula-tion. Vitam Horm 2019; 111: 105-29.
[http://dx.doi.org/10.1016/bs.vh.2019.05.007] [PMID: 31421697]
[17]
Ehrenpreis S. Analgesic properties of enkephalinase inhibitors: animal and human studies. Prog Clin Biol Res 1985; 192: 363-70.
[PMID: 2934746]
[18]
Ehrenpreis S. Pharmacology of enkephalinase inhibitors: animal and human studies. Acupunct Electrother Res 1985; 10(3): 203-8.
[http://dx.doi.org/10.3727/036012985816714478] [PMID: 2866674]
[19]
Pomeranz B. Do endorphins mediate acupuncture analgesia? Adv Biochem Psychopharmacol 1978; 18: 351-9.
[PMID: 645463]
[20]
Cheng RS, Pomeranz B. Electroacupuncture analgesia could be mediated by at least two pain-relieving mechanisms; endorphin and non-endorphin systems. Life Sci 1979; 25(23): 1957-62.
[http://dx.doi.org/10.1016/0024-3205(79)90598-8] [PMID: 160969]
[21]
Kitade T, Odahara Y, Shinohara S, et al. Studies on the enhanced effect of acupuncture analgesia and acupuncture anesthesia by D-phenylalanine (2nd report)--schedule of administration and clinical effects in low back pain and tooth extraction. Acupunct Electrother Res 1990; 15(2): 121-35.
[http://dx.doi.org/10.3727/036012990816358252] [PMID: 1978503]
[22]
Cheng RSS, Pomeranz B. A combined treatment with D-amino acids and electroacupuncture produces a greater anal-gesia than either treatment alone; naloxone reverses these effects. Pain 1980; 8(2): 231-6.
[http://dx.doi.org/10.1016/0304-3959(88)90010-3] [PMID: 7402686]
[23]
Blum K, Topel H. Opioid peptides and alcoholism: genetic deficiency and chemical management. Funct Neurol 1986; 1(1): 71-83.
[PMID: 2956168]
[24]
Blum K, Baron D, McLaughlin T, Gold MS. Molecular neurological correlates of endorphinergic/dopaminergic mecha-nisms in reward circuitry linked to endorphinergic deficiency syndrome (EDS). J Neurol Sci 2020; 411: 116733.
[http://dx.doi.org/10.1016/j.jns.2020.116733] [PMID: 32088516]
[25]
Blum K, Modestino EJ, Gondré-Lewis M, et al. Dopamine homeostasis” requires balanced polypharmacy: Issue with destructive, powerful dopamine agents to combat America’s drug epidemic. J Syst Integr Neurosci 2017; 3(6)
[http://dx.doi.org/10.15761/JSIN.1000183] [PMID: 30197787]
[26]
Blum K, Chen ALC, Thanos PK, et al. Genetic addiction risk score (GARS) ™, a predictor of vulnerability to opioid de-pendence. Front Biosci (Elite Ed) 2018; 10(1): 175-96.
[http://dx.doi.org/10.2741/e816] [PMID: 28930612]
[27]
Trachtenberg MC, Blum K. Alcohol and opioid peptides: neuropharmacological rationale for physical craving of alco-hol. Am J Drug Alcohol Abuse 1987; 13(3): 365-72.
[http://dx.doi.org/10.3109/00952998709001520] [PMID: 2825513]
[28]
Blum K, Briggs AH, Elston SF, DeLallo L, Sheridan PJ, Sar M. Reduced leucine-enkephalin--like immunoreactive sub-stance in hamster basal ganglia after long-term ethanol exposure. Science 1982; 216(4553): 1425-7.
[http://dx.doi.org/10.1126/science.7089531] [PMID: 7089531]
[29]
Blum K, Elston SF, DeLallo L, Briggs AH, Wallace JE. Ethanol acceptance as a function of genotype amounts of brain [Met]enkephalin. Proc Natl Acad Sci USA 1983; 80(21): 6510-2.
[http://dx.doi.org/10.1073/pnas.80.21.6510] [PMID: 6579537]
[30]
Blum K, Briggs AH, Trachtenberg MC, Delallo L, Wallace JE. Enkephalinase inhibition: regulation of ethanol intake in genetically predisposed mice. Alcohol 1987; 4(6): 449-56.
[http://dx.doi.org/10.1016/0741-8329(87)90084-X] [PMID: 2829941]
[31]
O’Hollaren P. Diphosphopyridine nucleotide in the prevention, diagnosis and treatment of drug addiction. A preliminary report. West J Surg, Obstet Gynecol 1961; 69: 213-5.
[32]
Singh S, William M, Chu XP. Nicotinamide phosphoribosyltransferase contributes to cocaine addiction through sirtuin 1. Int J Physiol Pathophysiol Pharmacol 2019; 11(6): 318-20.
[PMID: 31993108]
[33]
Witt EA, Reissner KJ. The effects of nicotinamide on reinstatement to cocaine seeking in male and female Sprague Dawley rats. Psychopharmacology (Berl) 2020; 237(3): 669-80.
[http://dx.doi.org/10.1007/s00213-019-05404-y] [PMID: 31811351]
[34]
Houtkooper RH, Cantó C, Wanders RJ, Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 2010; 31(2): 194-223.
[http://dx.doi.org/10.1210/er.2009-0026] [PMID: 20007326]
[35]
Hirrlinger J, Dringen R. The cytosolic redox state of astrocytes: Maintenance, regulation and functional implications for metabolite trafficking. Brain Res Brain Res Rev 2010; 63(1-2): 177-88.
[http://dx.doi.org/10.1016/j.brainresrev.2009.10.003] [PMID: 19883686]
[36]
Braidy N, Villalva MD, van Eeden S. Sobriety and satiety: Is NAD+ the answer? Antioxidants (Basel) 2020; 9(5): 425.
[http://dx.doi.org/10.3390/antiox9050425]
[37]
Blum K, Wallace JE, Geller I. Synergy of ethanol and putative neurotransmitters: glycine and serine. Science 1972; 176(4032): 292-4.
[http://dx.doi.org/10.1126/science.176.4032.292] [PMID: 5019782]
[38]
Blum K, Wallace JE, Friedman RN. Reduction of acute alcoholic intoxication by alpha amino acids: glycine and serine. Life Sci 1974; 14(3): 557-65.
[http://dx.doi.org/10.1016/0024-3205(74)90370-1] [PMID: 4856787]
[39]
Williams KL, Ferko AP, Barbieri EJ, DiGregorio GJ. Glycine enhances the central depressant properties of ethanol in mice. Pharmacol Biochem Behav 1995; 50(2): 199-205.
[http://dx.doi.org/10.1016/0091-3057(94)00288-T] [PMID: 7740058]
[40]
Serrita J, Ralevski E, Yoon G, Petrakis I. A pilot randomized, placebo-controlled trial of glycine for treatment of schizo-phrenia and alcohol dependence. J Dual Diagn 2019; 15(1): 46-55.
[http://dx.doi.org/10.1080/15504263.2018.1549764] [PMID: 30633660]
[41]
Adermark L, Clarke RB, Olsson T, Hansson E, Söderpalm B, Ericson M. Implications for glycine receptors and astro-cytes in ethanol-induced elevation of dopamine levels in the nucleus accumbens. Addict Biol 2011; 16(1): 43-54.
[http://dx.doi.org/10.1111/j.1369-1600.2010.00206.x] [PMID: 20331561]
[42]
Hejazi N, Zhou C, Oz M, Sun H, Ye JH, Zhang L. Delta9-tetrahydrocannabinol and endogenous cannabinoid anan-damide directly potentiate the function of glycine receptors. Mol Pharmacol 2006; 69(3): 991-7.
[http://dx.doi.org/10.1124/mol.105.019174] [PMID: 16332990]
[43]
de Bejczy A, Nations KR, Szegedi A, Schoemaker J, Ruwe F, Söderpalm B. Efficacy and safety of the glycine trans-porter-1 inhibitor org 25935 for the prevention of relapse in alcohol-dependent patients: a randomized, double-blind, placebo-controlled trial. Alcohol Clin Exp Res 2014; 38(9): 2427-35.
[http://dx.doi.org/10.1111/acer.12501] [PMID: 25257291]
[44]
Molander A, Lidö HH, Löf E, Ericson M, Söderpalm B. The glycine reuptake inhibitor Org 25935 decreases ethanol intake and preference in male wistar rats. Alcohol Alcohol 2007; 42(1): 11-8.
[http://dx.doi.org/10.1093/alcalc/agl085] [PMID: 17098748]
[45]
Kotlińska J. Attenuation of morphine dependence and withdrawal by glycine B site antagonists in rats. Pharmacol Biochem Behav 2001; 68(1): 157-61.
[http://dx.doi.org/10.1016/S0091-3057(00)00443-3] [PMID: 11274720]
[46]
Burgos CF, Muñoz B, Guzman L, Aguayo LG. Ethanol effects on glycinergic transmission: From molecular pharmacol-ogy to behavior responses. Pharmacol Res 2015; 101: 18-29.
[http://dx.doi.org/10.1016/j.phrs.2015.07.002] [PMID: 26158502]
[47]
Michino M, Donthamsetti P, Beuming T, et al. A single glycine in extracellular loop 1 is the critical determinant for pharmacological specificity of dopamine D2 and D3 receptors. Mol Pharmacol 2013; 84(6): 854-64.
[http://dx.doi.org/10.1124/mol.113.087833] [PMID: 24061855]
[48]
Zhou H, Rentsch CT, Cheng Z, et al. Association of OPRM1 functional coding variant with opioid use disorder: A genome-wide association study. JAMA Psychiatry 2020; 77(10): 1072-80.
[http://dx.doi.org/10.1001/jamapsychiatry.2020.1206] [PMID: 32492095]
[49]
Guan YZ, Ye JH. Ethanol blocks long-term potentiation of GABAergic synapses in the ventral tegmental area involving mu-opioid receptors. Neuropsychopharmacology 2010; 35(9): 1841-9.
[http://dx.doi.org/10.1038/npp.2010.51] [PMID: 20393452]
[50]
Minami H, Morse EL, Adibi SA. Characteristics and mechanism of glutamine-dipeptide absorption in human intestine. Gastroenterol 1992; 103(1): 3-11.
[http://dx.doi.org/10.1016/0016-5085(92)91088-L] [PMID: 1319370]
[51]
Blum K, Badgaiyan RD, Braverman ER, et al. Hypothesizing that, a pro-dopamine regulator (KB220Z) should opti-mize, but not hyper-activate the activity of trace amine-associated receptor 1 (TAAR-1) and induce anti-craving of psychostimulants in the long-term. J Reward Defic Syndr Addict Sci 2016; 2(1): 14-21.
[http://dx.doi.org/10.17756/jrdsas.2016-023] [PMID: 28317038]
[52]
Becker-Krail DD, Parekh PK, Ketchesin KD, et al. Circadian transcription factor NPAS2 and the NAD+ -dependent deacetylase SIRT1 interact in the mouse nucleus accumbens and regulate reward. Eur J Neurosci 2022; 55(3): 675-93.
[http://dx.doi.org/10.1111/ejn.15596] [PMID: 35001440]
[53]
French SW. Chronic alcohol binging injures the liver and other organs by reducing NAD+ levels required for sirtuin’s deacetylase activity. Exp Mol Pathol 2016; 100(2): 303-6.
[http://dx.doi.org/10.1016/j.yexmp.2016.02.004] [PMID: 26896648]
[54]
Simplicio JA, do Vale GT, Gonzaga NA, et al. Reactive oxygen species derived from NAD(P)H oxidase play a role on ethanol-induced hypertension and endothelial dysfunction in rat resistance arteries. J Physiol Biochem 2017; 73(1): 5-16.
[http://dx.doi.org/10.1007/s13105-016-0519-z] [PMID: 27722988]
[55]
Huang S, Zhang B, Chen Y, et al. Poly(ADP-Ribose) polymerase inhibitor PJ34 attenuated hepatic triglyceride accumu-lation in alcoholic fatty liver disease in mice. J Pharmacol Exp Ther 2018; 364(3): 452-61.
[http://dx.doi.org/10.1124/jpet.117.243105] [PMID: 29317476]
[56]
Xiong X, Yu J, Fan R, et al. NAMPT overexpression alleviates alcohol-induced hepatic steatosis in mice. PLoS One 2019; 14(2): e0212523.
[http://dx.doi.org/10.1371/journal.pone.0212523] [PMID: 30794635]
[57]
Lieber CS. Role of oxidative stress and antioxidant therapy in alcoholic and nonalcoholic liver diseases. Adv Pharmacol 1997; 38: 601-28.
[http://dx.doi.org/10.1016/S1054-3589(08)61001-7] [PMID: 8895826]
[58]
Li Q, Xie G, Zhang W, et al. Dietary nicotinic acid supplementation ameliorates chronic alcohol-induced fatty liver in rats. Alcohol Clin Exp Res 2014; 38(7): 1982-92.
[http://dx.doi.org/10.1111/acer.12396] [PMID: 24848081]
[59]
Luo G, Huang B, Qiu X, et al. Resveratrol attenuates excessive ethanol exposure induced insulin resistance in rats via improving NAD+/NADH ratio. Mol Nutr Food Res 2017; 61(11): 1700087.
[http://dx.doi.org/10.1002/mnfr.201700087] [PMID: 28688179]
[60]
Cederbaum AI. Microsomal generation of reactive oxygen species and their possible role in alcohol hepatotoxicity. Alcohol Alcohol Suppl 1991; 1: 291-6.
[PMID: 1669007]
[61]
Smith JW, Johnson LC, Burdick JA. Sleep, psychological and clinical changes during alcohol withdrawal in NAD-treated alcoholics. Q J Stud Alcohol 1971; 32(4): 982-94.
[http://dx.doi.org/10.15288/qjsa.1971.32.982] [PMID: 4332864]
[62]
Dou X, Shen C, Wang Z, Li S, Zhang X, Song Z. Protection of nicotinic acid against oxidative stress-induced cell death in hepatocytes contributes to its beneficial effect on alcohol-induced liver injury in mice. J Nutr Biochem 2013; 24(8): 1520-8.
[http://dx.doi.org/10.1016/j.jnutbio.2012.12.012] [PMID: 23465591]
[63]
Dicker E, Cederbaum AI. Increased NADH-dependent production of reactive oxygen intermediates by microsomes after chronic ethanol consumption: comparisons with NADPH. Arch Biochem Biophys 1992; 293(2): 274-80.
[http://dx.doi.org/10.1016/0003-9861(92)90395-D] [PMID: 1311163]
[64]
Rappaport M. NAD effects on the biochemistry and psychological performance of alcoholics under ethanol stress. Q J Stud Alcohol 1969; 30(3): 570-84.
[http://dx.doi.org/10.15288/qjsa.1969.30.570] [PMID: 4309298]
[65]
Rashba-Step J, Turro NJ, Cederbaum AI. Increased NADPH- and NADH-dependent production of superoxide and hy-droxyl radical by microsomes after chronic ethanol treatment. Arch Biochem Biophys 1993; 300(1): 401-8.
[http://dx.doi.org/10.1006/abbi.1993.1054] [PMID: 8380969]
[66]
You M, Liang X, Ajmo JM, Ness GC. Involvement of mammalian sirtuin 1 in the action of ethanol in the liver. Am J Physiol Gastrointest Liver Physiol 2008; 294(4): G892-8.
[http://dx.doi.org/10.1152/ajpgi.00575.2007] [PMID: 18239056]
[67]
Badawy AA, Evans M. The mechanism of the antagonism by naloxone of acute alcohol intoxication. Br J Pharmacol 1981; 74(3): 514-6.
[http://dx.doi.org/10.1111/j.1476-5381.1981.tb10458.x] [PMID: 7197567]
[68]
Kosenko EA, Kaminsky YG. A comparison between effects of chronic ethanol consumption, ethanol withdrawal and fasting in ethanol-fed rats on the free cytosolic NADP+/NADPH ratio and NADPH-regenerating enzyme activities in the liver. Int J Biochem 1985; 17(8): 895-902.
[http://dx.doi.org/10.1016/0020-711X(85)90173-9] [PMID: 4043509]
[69]
Kukiełka E, Cederbaum AI. The effect of chronic ethanol consumption on NADH- and NADPH-dependent generation of reactive oxygen intermediates by isolated rat liver nuclei. Alcohol Alcohol 1992; 27(3): 233-9.
[PMID: 1449558]
[70]
Rodrigo R, Egaña E. Alcohol:NAD oxidoreductase in brain of rats from a colony fed dilute ethanol for many generations. J Neurochem 1975; 25(5): 645-7.
[http://dx.doi.org/10.1111/j.1471-4159.1975.tb04382.x] [PMID: 172605]
[71]
Xiao Y, Phelp P, Wang Q, et al. Cardioprotecive properties of known agents in rat ischemia-reperfusion model under clinically relevant conditions: Only the NAD precursor nicotinamide riboside reduces infarct size in presence of fentanyl, midazolam and cangrelor, but not propofol. Front Cardiovasc Med 2021; 8: 712478.
[http://dx.doi.org/10.3389/fcvm.2021.712478] [PMID: 34527711]
[72]
Howlett AC, Qualy JM, Khachatrian LL. Involvement of Gi in the inhibition of adenylate cyclase by cannabimimetic drugs. Mol Pharmacol 1986; 29(3): 307-13.
[PMID: 2869405]
[73]
Requardt RP, Wilhelm F, Rillich J, Winkler U, Hirrlinger J. The biphasic NAD(P)H fluorescence response of astrocytes to dopamine reflects the metabolic actions of oxidative phosphorylation and glycolysis. J Neurochem 2010; 115(2): 483-92.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06940.x] [PMID: 20698931]
[74]
Arunachalam G, Yao H, Sundar IK, Caito S, Rahman I. SIRT1 regulates oxidant- and cigarette smoke-induced eNOS acetylation in endothelial cells: Role of resveratrol. Biochem Biophys Res Commun 2010; 393(1): 66-72.
[http://dx.doi.org/10.1016/j.bbrc.2010.01.080] [PMID: 20102704]
[75]
Hageman GJ, Stierum RH, van Herwijnen MH, van der Veer MS, Kleinjans JC. Nicotinic acid supplementation: effects on niacin status, cytogenetic damage, and poly(ADP-ribosylation) in lymphocytes of smokers. Nutr Cancer 1998; 32(2): 113-20.
[http://dx.doi.org/10.1080/01635589809514728] [PMID: 9919621]
[76]
Brodie MJ, Czapinski P, Pazdera L, et al. A phase 2 randomized controlled trial of the efficacy and safety of canna-bidivarin as add-on therapy in participants with inadequately controlled focal seizures. Cannabis Cannabinoid Res 2021; 6(6): 528-36.
[http://dx.doi.org/10.1089/can.2020.0075] [PMID: 33998885]
[77]
Russell AL, McCarty MF. DL-phenylalanine markedly potentiates opiate analgesia - an example of nutri-ent/pharmaceutical up-regulation of the endogenous analgesia system. Med Hypotheses 2000; 55(4): 283-8.
[http://dx.doi.org/10.1054/mehy.1999.1031] [PMID: 10998643]
[78]
Blum K, Han D, Modestino EJ, et al. A systematic, intensive statistical investigation of data from the Comprehensive Analysis of Reported Drugs (CARD) for compliance and illicit opioid abstinence in substance addiction treatment with buprenorphine/naloxone. Subst Use Misuse 2018; 53(2): 220-9.
[http://dx.doi.org/10.1080/10826084.2017.1400064] [PMID: 29257919]
[79]
Blum K, Han D, Femino J, et al. Systematic evaluation of “compliance” to prescribed treatment medications and “ab-stinence” from psychoactive drug abuse in chemical dependence programs: data from the comprehensive analysis of reported drugs. PLoS One 2014; 9(9): e104275.
[http://dx.doi.org/10.1371/journal.pone.0104275] [PMID: 25247439]
[80]
Blum K, Oscar-Berman M, Badgaiyan RD, Khurshid KA, Gold MS. Dopaminergic neurogenetics of sleep disorders in Reward Deficiency Syndrome (RDS). J Sleep Disord Ther 2014; 3(2): 126.
[http://dx.doi.org/10.4172/2167-0277.1000e126] [PMID: 25657892]
[81]
Doctor JN, Sullivan MD. Knowledge translation and the opioid crisis. Am J Public Health 2022; 112(S1): S15-7.
[http://dx.doi.org/10.2105/AJPH.2021.306670] [PMID: 35143265]
[82]
Blum K, Chen TJ, Bailey J, et al. Can the chronic administration of the combination of buprenorphine and naloxone block dopaminergic activity causing anti-reward and relapse potential? Mol Neurobiol 2011; 44(3): 250-68.
[http://dx.doi.org/10.1007/s12035-011-8206-0] [PMID: 21948099]
[83]
Saleh EM, Hamdy GM, Hassan RE. Neuroprotective effect of sodium alginate against chromium-induced brain damage in rats. PLoS One 2022; 17(4): e0266898.
[http://dx.doi.org/10.1371/journal.pone.0266898] [PMID: 35421180]
[84]
Requardt RP, Hirrlinger PG, Wilhelm F, Winkler U, Besser S, Hirrlinger J. Ca2+ signals of astrocytes are modulated by the NAD+/NADH redox state. J Neurochem 2012; 120(6): 1014-25.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07645.x] [PMID: 22299833]
[85]
Wallius E, Tohka J, Hirvonen J, Hietala J, Ruotsalainen U. Evaluation of the automatic three-dimensional delineation of caudate and putamen for PET receptor occupancy studies. Nucl Med Commun 2008; 29(1): 53-65.
[http://dx.doi.org/10.1097/MNM.0b013e3282f1bba0] [PMID: 18049098]
[86]
Zhu XH, Lee BY, Tuite P, et al. Quantitative assessment of occipital metabolic and energetic changes in Parkinson’s patients, using in vivo31P MRS-based metabolic imaging at 7T. Metabolites 2021; 11(3): 145.
[http://dx.doi.org/10.3390/metabo11030145] [PMID: 33804401]