Ruscogenin Alleviates Deep Venous Thrombosis and Pulmonary Embolism Induced by Inferior Vena Cava Stenosis Inhibiting MEK/ERK/Egr-1/TF Signaling Pathway in Mice

Page: [2001 - 2009] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Ruscogenin (RUS) has anti-inflammatory and antithrombotic effects, while its potential effects on deep venous thrombosis (DVT) and pulmonary embolism (PE) remain unclear.

Objective: We aimed to elucidate the effects of RUS on DVT and PE induced by the inferior vena cava stenosis (IVCS) model and investigate the underlying mechanism.

Methods: Male C57/BL6 mice were used to explore whether IVCS model could be complicated with deep venous thrombosis and pulmonary embolism. Then, effects of RUS on DVT and PE related inflammatory factors and coagulation were examined using H&E staining, ELISA, and real-time PCR. Western blot analysis was used to examine the effects of RUS on MEK/ERK/Egr-1/TF signaling pathway in PE.

Results: IVCS model induced DVT and complied with PE 48 h after surgery. Administration of RUS (0.01, 0.1, 1 mg/kg) inhibited DVT, decreased biomarker D-Dimer, cardiac troponin I, N-Terminal probrain natriuretic peptide in plasma to ameliorate PE induced by IVCS model. Meanwhile, RUS reduced tissue factor and fibrinogen content of lung tissue, inhibited P-selectin and C-reactive protein activity in plasma, and suppressed the expressions of interleukin-6 and interleukin-1β in mice. Furthermore, RUS suppressed the phosphorylation of ERK1/2 and MEK1/2, decreasing the expressions of Egr-1 and TF in the lung.

Conclusion: IVCS model contributed to the development of DVT and PE in mice and was associated with increased inflammation. RUS showed therapeutic effects by inhibiting inflammation as well as suppressing the activation of MEK/ERK/Egr-1/TF signaling pathway.

Keywords: Inferior vena cava stenosis, deep venous thrombosis, pulmonary embolism, ruscogenin, MEK/ERK/Egr-1/TF, anticoagulant.

[1]
Huisman MV, Barco S, Cannegieter SC, et al. Pulmonary embolism. Nat Rev Dis Primers 2018; 4(1): 18028.
[http://dx.doi.org/10.1038/nrdp.2018.28] [PMID: 29770793]
[2]
Wolberg AS, Rosendaal FR, Weitz JI, et al. Venous thrombosis. Nat Rev Dis Primers 2015; 1(1): 15006.
[http://dx.doi.org/10.1038/nrdp.2015.6] [PMID: 27189130]
[3]
Zhang Z, Lei J, Shao X, et al. Trends in hospitalization and in-hospital mortality from vte, 2007 to 2016, in China. Chest 2019; 155(2): 342-53.
[http://dx.doi.org/10.1016/j.chest.2018.10.040] [PMID: 30419233]
[4]
Riva N, Donadini MP, Ageno W. Epidemiology and pathophysiology of venous thromboembolism: Similarities with atherothrombosis and the role of inflammation. Thromb Haemost 2015; 113(6): 1176-83.
[http://dx.doi.org/10.1160/TH14-06-0563] [PMID: 25472800]
[5]
Naess IA, Christiansen SC, Romundstad P, Cannegieter SC, Rosendaal FR, Hammerstrøm J. Incidence and mortality of venous thrombosis: A population-based study. J Thromb Haemost 2007; 5(4): 692-9.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02450.x] [PMID: 17367492]
[6]
Albadawi H, Witting AA, Pershad Y, et al. Animal models of venous thrombosis. Cardiovasc Diagn Ther 2017; 7(S3)(Suppl. 3): S197-206.
[http://dx.doi.org/10.21037/cdt.2017.08.10] [PMID: 29399523]
[7]
Reitsma PH, Versteeg HH, Middeldorp S. Mechanistic view of risk factors for venous thromboembolism. Arterioscler Thromb Vasc Biol 2012; 32(3): 563-8.
[http://dx.doi.org/10.1161/ATVBAHA.111.242818] [PMID: 22345594]
[8]
von Brühl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209(4): 819-35.
[http://dx.doi.org/10.1084/jem.20112322] [PMID: 22451716]
[9]
Wakefield TW, Myers DD, Henke PK. Mechanisms of venous thrombosis and resolution. Arterioscler Thromb Vasc Biol 2008; 28(3): 387-91.
[http://dx.doi.org/10.1161/ATVBAHA.108.162289] [PMID: 18296594]
[10]
Hathcock J. Vascular biology-the role of tissue factor. Semin Hematol 2004; 41(1)(Suppl. 1): 30-4.
[http://dx.doi.org/10.1053/j.seminhematol.2003.11.007] [PMID: 14872418]
[11]
Silverman ES, Collins T. Pathways of Egr-1-mediated gene transcription in vascular biology. Am J Pathol 1999; 154(3): 665-70.
[http://dx.doi.org/10.1016/S0002-9440(10)65312-6] [PMID: 10079243]
[12]
Yi L, Huang X, Guo F, Zhou Z, Dou Y, Huan J. Yes-associated protein (YAP) signaling regulates lipopolysaccharide-induced tissue factor expression in human endothelial cells. Surgery 2016; 159(5): 1436-48.
[http://dx.doi.org/10.1016/j.surg.2015.12.008] [PMID: 26791271]
[13]
Wu YH, Chuang LP, Yu CL, Wang SW, Chen HY, Chang YL. Anticoagulant effect of wogonin against tissue factor expression. Eur J Pharmacol 2019; 859172517
[http://dx.doi.org/10.1016/j.ejphar.2019.172517] [PMID: 31265843]
[14]
Kou J, Sun Y, Lin Y, et al. Anti-inflammatory activities of aqueous extract from Radix Ophiopogon japonicus and its two constituents. Biol Pharm Bull 2005; 28(7): 1234-8.
[http://dx.doi.org/10.1248/bpb.28.1234] [PMID: 15997105]
[15]
Lin YN, Jia R, Liu YH, et al. Ruscogenin suppresses mouse neutrophil activation: Involvement of protein kinase A pathway. J Steroid Biochem Mol Biol 2015; 154: 85-93.
[http://dx.doi.org/10.1016/j.jsbmb.2015.06.003] [PMID: 26134424]
[16]
Sun Q, Chen L, Gao M, et al. Ruscogenin inhibits lipopolysaccharide-induced acute lung injury in mice: Involvement of tissue factor, inducible NO synthase and nuclear factor (NF)-κB. Int Immunopharmacol 2012; 12(1): 88-93.
[http://dx.doi.org/10.1016/j.intimp.2011.10.018] [PMID: 22079591]
[17]
Bi LQ, Zhu R, Kong H, et al. Ruscogenin attenuates monocrotaline-induced pulmonary hypertension in rats. Int Immunopharmacol 2013; 16(1): 7-16.
[http://dx.doi.org/10.1016/j.intimp.2013.03.010] [PMID: 23538027]
[18]
Kou J, Tian Y, Tang Y, Yan J, Yu B. Antithrombotic activities of aqueous extract from Radix Ophiopogon japonicus and its two constituents. Biol Pharm Bull 2006; 29(6): 1267-70.
[http://dx.doi.org/10.1248/bpb.29.1267] [PMID: 16755031]
[19]
Payne H, Ponomaryov T, Watson SP, Brill A. Mice with a deficiency in CLEC-2 are protected against deep vein thrombosis. Blood 2017; 129(14): 2013-20.
[http://dx.doi.org/10.1182/blood-2016-09-742999] [PMID: 28104688]
[20]
Diaz JA, Saha P, Cooley B, et al. Choosing a mouse model of venous thrombosis. Arterioscler Thromb Vasc Biol 2019; 39(3): 311-8.
[http://dx.doi.org/10.1161/ATVBAHA.118.311818] [PMID: 30786739]
[21]
Thomas GM, Brill A, Mezouar S, et al. Tissue factor expressed by circulating cancer cell-derived microparticles drastically increases the incidence of deep vein thrombosis in mice. J Thromb Haemost 2015; 13(7): 1310-9.
[http://dx.doi.org/10.1111/jth.13002] [PMID: 25955268]
[22]
Brill A, Fuchs TA, Chauhan AK, et al. von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood 2011; 117(4): 1400-7.
[http://dx.doi.org/10.1182/blood-2010-05-287623] [PMID: 20959603]
[23]
Weitz JI, Fredenburgh JC, Eikelboom JW. A test in context: D-dimer. J Am Coll Cardiol 2017; 70(19): 2411-20.
[http://dx.doi.org/10.1016/j.jacc.2017.09.024] [PMID: 29096812]
[24]
Ohigashi H, Haraguchi G, Yoshikawa S, et al. Comparison of biomarkers for predicting disease severity and long-term respiratory prognosis in patients with acute pulmonary embolism. Int Heart J 2010; 51(6): 416-20.
[http://dx.doi.org/10.1536/ihj.51.416] [PMID: 21173518]
[25]
Vuilleumier N, Le Gal G, Verschuren F, et al. Cardiac biomarkers for risk stratification in non-massive pulmonary embolism: A multicenter prospective study. J Thromb Haemost 2009; 7(3): 391-8.
[http://dx.doi.org/10.1111/j.1538-7836.2008.03260.x] [PMID: 19087222]
[26]
Lankeit M, Jiménez D, Kostrubiec M, et al. Validation of N-terminal pro-brain natriuretic peptide cut-off values for risk stratification of pulmonary embolism. Eur Respir J 2014; 43(6): 1669-77.
[http://dx.doi.org/10.1183/09031936.00211613] [PMID: 24627529]
[27]
Sedaghat-Hamedani F, Kayvanpour E, Frankenstein L, et al. Biomarker changes after strenuous exercise can mimic pulmonary embolism and cardiac injury--a metaanalysis of 45 studies. Clin Chem 2015; 61(10): 1246-55.
[http://dx.doi.org/10.1373/clinchem.2015.240796] [PMID: 26240298]
[28]
Panicker SR, Mehta-D’souza P, Zhang N, Klopocki AG, Shao B, McEver RP. Circulating soluble P-selectin must dimerize to promote inflammation and coagulation in mice. Blood 2017; 130(2): 181-91.
[http://dx.doi.org/10.1182/blood-2017-02-770479] [PMID: 28515093]
[29]
Théorêt JF, Yacoub D, Hachem A, Gillis MA, Merhi Y. P-selectin ligation induces platelet activation and enhances microaggregate and thrombus formation. Thromb Res 2011; 128(3): 243-50.
[http://dx.doi.org/10.1016/j.thromres.2011.04.018] [PMID: 21600632]
[30]
Antonopoulos CN, Sfyroeras GS, Kakisis JD, Moulakakis KG, Liapis CD. The role of soluble P selectin in the diagnosis of venous thromboembolism. Thromb Res 2014; 133(1): 17-24.
[http://dx.doi.org/10.1016/j.thromres.2013.08.014] [PMID: 24012101]
[31]
Pabinger I, Ay C. Biomarkers and venous thromboembolism. Arterioscler Thromb Vasc Biol 2009; 29(3): 332-6.
[http://dx.doi.org/10.1161/ATVBAHA.108.182188] [PMID: 19228607]
[32]
Gholami K, Talasaz AH, Entezari-Maleki T, et al. The effect of high-dose vitamin D3 on soluble p-selectin and HS-CRP level in patients with venous thromboembolism: A randomized clinical trial. Clin Appl Thromb Hemost 2016; 22(5): 483-9.
[http://dx.doi.org/10.1177/1076029614568715] [PMID: 25601896]
[33]
Grover SP, Mackman N. Tissue factor: An essential mediator of hemostasis and trigger of thrombosis. Arterioscler Thromb Vasc Biol 2018; 38(4): 709-25.
[http://dx.doi.org/10.1161/ATVBAHA.117.309846] [PMID: 29437578]
[34]
Zhang JX, Chen YL, Zhou YL, Guo QY, Wang XP. Expression of tissue factor in rabbit pulmonary artery in an acute pulmonary embolism model. World J Emerg Med 2014; 5(2): 144-7.
[http://dx.doi.org/10.5847/wjem.j.issn.1920-8642.2014.02.012] [PMID: 25215165]
[35]
Tremoli E. Tissue factor in arterial and venous thrombosis: From pathophysiology to clinical implications. Semin Thromb Hemost 2015; 41(7): 680-1.
[http://dx.doi.org/10.1055/s-0035-1564702] [PMID: 26444527]
[36]
Kim J, Min JK, Park JA, et al. Receptor activator of nuclear factor kappaB ligand is a novel inducer of tissue factor in macrophages. Circ Res 2010; 107(7): 871-6.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.221168] [PMID: 20671239]
[37]
Mackman N. Regulation of the tissue factor gene. FASEB J 1995; 9(10): 883-9.
[http://dx.doi.org/10.1096/fasebj.9.10.7615158] [PMID: 7615158]
[38]
Wang A, Zhang H, Liang Z, et al. U0126 attenuates ischemia/reperfusion-induced apoptosis and autophagy in myocardium through MEK/ERK/EGR-1 pathway. Eur J Pharmacol 2016; 788: 280-5.
[http://dx.doi.org/10.1016/j.ejphar.2016.06.038] [PMID: 27343376]
[39]
Lin K, Fang S, Cai B, et al. ERK/Egr-1 signaling pathway is involved in CysLT2 receptor-mediated IL-8 production in HEK293 cells. Eur J Cell Biol 2014; 93(7): 278-88.
[http://dx.doi.org/10.1016/j.ejcb.2014.05.001] [PMID: 24925646]
[40]
Ha YM, Park EJ, Kang YJ, Park SW, Kim HJ, Chang KC. Valsartan independent of AT1 receptor inhibits tissue factor, TLR-2 and -4 expression by regulation of Egr-1 through activation of AMPK in diabetic conditions. J Cell Mol Med 2014; 18(10): 2031-43.
[http://dx.doi.org/10.1111/jcmm.12354] [PMID: 25109475]
[41]
Stubbs MJ, Mouyis M, Thomas M. Deep vein thrombosis. BMJ 2018; 3601.
[http://dx.doi.org/10.1136/bmj.k351] [PMID: 29472180]
[42]
Treceño-Lobato C, Jiménez-Serranía MI, Martínez-García R, Corzo-Delibes F, Martín Arias LH. New anticoagulant agents: Incidence of adverse drug reactions and new signals thereof. Semin Thromb Hemost 2019; 45(2): 196-204.
[http://dx.doi.org/10.1055/s-0038-1657783] [PMID: 29864777]
[43]
Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med 2011; 365(10): 883-91.
[http://dx.doi.org/10.1056/NEJMoa1009638] [PMID: 21830957]
[44]
Mega JL, Simon T. Pharmacology of antithrombotic drugs: An assessment of oral antiplatelet and anticoagulant treatments. Lancet 2015; 386(9990): 281-91.
[http://dx.doi.org/10.1016/S0140-6736(15)60243-4] [PMID: 25777662]