Pickering Emulsions: A Potential Strategy to Limiting Cancer Development

Page: [93 - 107] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Pickering Emulsion therapy is a novel approach to treating various human diseases, including cancer. Traditional cancer treatment modalities, such as surgery, radiation, radiotherapy, and immunotherapy, have only achieved minimal success. Pickering emulsion in cancer therapeutics has given cancer patients a new hope. Pickering Emulsions have grown in popularity over the last 15 years, owing to their highly desirable properties, similar to those of ordinary emulsions, namely their excellent stability. This review focused on the benefits, drawbacks, characterization parameters (droplet size and strength, for example), opportunities, and different development procedures of Pickering Emulsion for cancer diseases. This review also addressed recent developments in Pickering Emulsions' technological issues. It examined the advantages and disadvantages of using such formulations for topical pharmaceutical and cosmetic applications instead of traditional surfactant-based methods. Pickering Emulsion's evolution as a multifunctional dosage form carrier reflects renewed optimism in the pharmaceutical and cosmetic industries.

Keywords: Pickering emulsion, stability condition, nano or micro formulation, skin cancer, cancer targeting, confocal laser scanning microscopy (CLSM).

Graphical Abstract

[1]
Chen, L.; Ao, F.; Ge, X.; Shen, W. Food-grade pickering emulsions: Preparation, stabilization and applications. Molecules, 2020, 25(14), 3202.
[http://dx.doi.org/10.3390/molecules25143202]
[2]
Linke, C.; Drusch, S. Pickering emulsions in foods - opportunities and limitations. Crit. Rev. Food Sci. Nutr., 2018, 58(12), 1971-1985.
[http://dx.doi.org/10.1080/10408398.2017.1290578] [PMID: 28414514]
[3]
Albert, C.; Beladjine, M.; Tsapis, N.; Fattal, E.; Agnely, F.; Huang, N. Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications. J. Control. Release, 2019, 309, 302-332.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.003] [PMID: 31295541]
[4]
Marto, J.; Ascenso, A.; Simoes, S.; Almeida, A.J.; Ribeiro, H.M. Pickering emulsions: challenges and opportunities in topical delivery. Expert Opin. Drug Deliv., 2016, 13(8), 1093-1107.
[http://dx.doi.org/10.1080/17425247.2016.1182489] [PMID: 27108850]
[5]
Wu, J.; Ma, G.H. Recent studies of pickering emulsions: Particles make the difference. Small, 2016, 12(34), 4633-4648.
[http://dx.doi.org/10.1002/smll.201600877] [PMID: 27337222]
[6]
Marefati, A.; Rayner, M. Starch granule stabilized Pickering emulsions: An 8-year stability study. J. Sci. Food Agric., 2020, 100(6), 2807-2811.
[http://dx.doi.org/10.1002/jsfa.10289] [PMID: 31975414]
[7]
Niro, C.M.; Medeiros, J.A.; Freitas, J.A.; Azeredo, H.M. Advantages and challenges of Pickering emulsions applied to bio-based films: A mini-review. J. Sci. Food Agric., 2021, 101(9), 3535-3540.
[http://dx.doi.org/10.1002/jsfa.11029] [PMID: 33345306]
[8]
Dieng, S.M.; Omran, Z.; Anton, N. Pickering nano-emulsions stabilized by Eudragit RL100 nanoparticles as oral drug delivery system for poorly soluble drugs. Colloids Surf. B Biointerfaces, 2020, 191, 111010.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111010] [PMID: 32315927]
[9]
Wang, K.; Hong, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C. Stabilization of Pickering emulsions using starch nanocrystals treated with alkaline solution. Int. J. Biol. Macromol., 2020, 155, 273-285.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.219] [PMID: 32234443]
[10]
Tselikas, L.; de Baere, T.; Isoardo, T. Pickering emulsions with ethiodized oil and nanoparticles for slow release of intratumoral anti-CTLA4 immune checkpoint antibodies. J. Immunother. Cancer, 2020, 8(1), e000579.
[http://dx.doi.org/10.1136/jitc-2020-000579] [PMID: 32571995]
[11]
Chang, S.; Chen, X.; Liu, S.; Wang, C. Novel gel-like Pickering emulsions stabilized solely by hydrophobic starch nanocrystals. Int. J. Biol. Macromol., 2020, 152, 703-708.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.175] [PMID: 32087225]
[12]
Zhao, Q.; Zaaboul, F.; Liu, Y.; Li, J. Recent advances on protein-based Pickering high internal phase emulsions (Pickering HIPEs): Fabrication, characterization, and applications. Compr. Rev. Food Sci. Food Saf., 2020, 19(4), 1934-1968.
[http://dx.doi.org/10.1111/1541-4337.12570] [PMID: 33337073]
[13]
Wang, Z.; Zhang, N.; Chen, C.; He, R.; Ju, X. Rapeseed protein nanogels as novel pickering stabilizers for oil-in-water emulsions. J. Agric. Food Chem., 2020, 68(11), 3607-3614.
[http://dx.doi.org/10.1021/acs.jafc.0c00128] [PMID: 32091894]
[14]
Xu, B.; Liu, C.; Sun, H.; Wang, X.; Huang, F. Oil-in-water Pickering emulsions using a protein nano-ring as high-grade emulsifiers. Colloids Surf. B Biointerfaces, 2020, 187, 110646.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110646] [PMID: 31785851]
[15]
Zhao, Z.; Lu, M.; Mao, Z. Modulation of interfacial phenolic antioxidant distribution in Pickering emulsions via interactions between zein nanoparticles and gallic acid. Int. J. Biol. Macromol., 2020, 152, 223-233.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.136] [PMID: 32068060]
[16]
Chuang, C.C.; Ye, A.; Anema, S.G.; Loveday, S.M. Concentrated pickering emulsions stabilised by hemp globulin-caseinate nanoparticles: tuning the rheological properties by adjusting the hemp globulin  Caseinate ratio. Food Funct., 2020, 11(11), 10193-10204.
[http://dx.doi.org/10.1039/D0FO01745K] [PMID: 33165488]
[17]
Hu, Y.; Qiu, C.; Jin, Z. Pickering emulsions with enhanced storage stabilities by using hybrid β-cyclodextrin/short linear glucan nanoparticles as stabilizers. Carbohydr. Polym., 2020, 229, 115418.
[http://dx.doi.org/10.1016/j.carbpol.2019.115418] [PMID: 31826463]
[18]
Le, H.D.; Loveday, S.M.; Singh, H.; Sarkar, A. Gastrointestinal digestion of Pickering emulsions stabilised by hydrophobically modified cellulose nanocrystals: Release of short-chain fatty acids. Food Chem., 2020, 320, 126650.
[http://dx.doi.org/10.1016/j.foodchem.2020.126650] [PMID: 32224422]
[19]
Wei, Z.; Zhu, J.; Cheng, Y.; Huang, Q. Ovotransferrin fibril-stabilized Pickering emulsions improve protection and bioaccessibility of curcumin. Food Res. Int., 2019, 125, 108602.
[http://dx.doi.org/10.1016/j.foodres.2019.108602] [PMID: 31554072]
[20]
Schröder, A.; Sprakel, J.; Boerkamp, W.; Schroën, K.; Berton-Carabin, C.C. Can we prevent lipid oxidation in emulsions by using fat-based Pickering particles? Food Res. Int., 2019, 120, 352-363.
[http://dx.doi.org/10.1016/j.foodres.2019.03.004] [PMID: 31000249]
[21]
Terescenco, D.; Hucher, N.; Picard, C.; Savary, G. Sensory perception of textural properties of cosmetic Pickering emulsions. Int. J. Cosmet. Sci., 2020, 42(2), 198-207.
[http://dx.doi.org/10.1111/ics.12604] [PMID: 31997376]
[22]
Costa, A.L.R.; Gomes, A.; Furtado, G.F.; Tibolla, H.; Menegalli, F.C.; Cunha, R.L. Modulating in vitro digestibility of Pickering emulsions stabilized by food-grade polysaccharides particles. Carbohydr. Polym., 2020, 227, 115344.
[http://dx.doi.org/10.1016/j.carbpol.2019.115344] [PMID: 31590871]
[23]
Ding, M.; Zhang, T.; Zhang, H.; Tao, N.; Wang, X.; Zhong, J. Gelatin molecular structures affect behaviors of fish oil-loaded traditional and pickering emulsions. Food Chem., 2020, 309, 125642.
[http://dx.doi.org/10.1016/j.foodchem.2019.125642] [PMID: 31685367]
[24]
Ferreira, M.R.A.; Daniels, R.; Soares, L.A.L. Development and evaluation of classical and pickering emulsions containing crude or fractionated extracts of Libidibia ferrea pods. Drug Dev. Ind. Pharm., 2020, 46(7), 1185-1198.
[http://dx.doi.org/10.1080/03639045.2020.1782422] [PMID: 32536225]
[25]
Zhou, H.; Lv, S.; Liu, J. Modulation of physicochemical characteristics of pickering emulsions: Utilization of nanocellulose- and nanochitin-coated lipid droplet blends. J. Agric. Food Chem., 2020, 68(2), 603-611.
[http://dx.doi.org/10.1021/acs.jafc.9b06846] [PMID: 31860287]
[26]
Sharkawy, A.; Casimiro, F.M.; Barreiro, M.F.; Rodrigues, A.E. Enhancing trans-resveratrol topical delivery and photostability through entrapment in chitosan/gum Arabic Pickering emulsions. Int. J. Biol. Macromol., 2020, 147, 150-159.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.057] [PMID: 31923496]
[27]
Santos, J.; Alcaide-González, M.A.; Trujillo-Cayado, L.A.; Carrillo, F.; Alfaro-Rodríguez, M.C. Development of food-grade pickering emulsions stabilized by a biological macromolecule (xanthan gum) and zein. Int. J. Biol. Macromol., 2020, 153, 747-754.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.078] [PMID: 32171827]
[28]
Leclercq, L.; Tessier, J.; Douyère, G.; Nardello-Rataj, V.; Schmitzer, A.R. Phytochemical- and cyclodextrin-based pickering emulsions: Natural potentiators of antibacterial, antifungal, and antibiofilm activity. Langmuir, 2020, 36(16), 4317-4323.
[http://dx.doi.org/10.1021/acs.langmuir.0c00314] [PMID: 32271592]
[29]
Peng, L.P.; Tang, C.H. Outstanding antioxidant pickering high internal phase emulsions by co-assembled polyphenol-soy β-conglycinin nanoparticles. Food Res. Int., 2020, 136, 109509.
[http://dx.doi.org/10.1016/j.foodres.2020.109509] [PMID: 32846587]
[30]
Huc-Mathis, D; Almeida, G; Michon, C Pickering emulsions based on food byproducts: A comprehensive study of soluble and insoluble contents. J Colloid Interface Sci, 2021, 581(Pt A), 226-37.
[http://dx.doi.org/10.1016/j.jcis.2020.07.078]
[31]
Lu, X.; Huang, Q. Stability and in vitro digestion study of curcumin-encapsulated in different milled cellulose particle stabilized Pickering emulsions. Food Funct., 2020, 11(1), 606-616.
[http://dx.doi.org/10.1039/C9FO02029B] [PMID: 31859303]
[32]
Li, X.M.; Li, X.; Wu, Z. Chitosan hydrochloride/carboxymethyl starch complex nanogels stabilized Pickering emulsions for oral delivery of β-carotene: Protection effect and in vitro digestion study. Food Chem., 2020, 315, 126288.
[http://dx.doi.org/10.1016/j.foodchem.2020.126288] [PMID: 32032833]
[33]
Wahlgren, M.; Engblom, J.; Sjöö, M.; Rayner, M. The use of micro- and nanoparticles in the stabilisation of pickering-type emulsions for topical delivery. Curr. Pharm. Biotechnol., 2013, 14(15), 1222-1234.
[http://dx.doi.org/10.2174/1389201015666140317122135] [PMID: 25106649]
[34]
Abdul Hadi, N.; Marefati, A.; Matos, M.; Wiege, B.; Rayner, M. Characterization and stability of short-chain fatty acids modified starch Pickering emulsions. Carbohydr. Polym., 2020, 240, 116264.
[http://dx.doi.org/10.1016/j.carbpol.2020.116264] [PMID: 32475554]
[35]
Tian, H.; Lu, Z.; Yu, H.; Chen, C.; Hu, J. Fabrication and characterization of citral-loaded oil-in-water Pickering emulsions stabilized by chitosan-tripolyphosphate particles. Food Funct., 2019, 10(5), 2595-2604.
[http://dx.doi.org/10.1039/C8FO02002G] [PMID: 31016296]
[36]
Lu, X.; Huang, Q. Nano/submicrometer milled red rice particles-stabilized pickering emulsions and their antioxidative properties. J. Agric. Food Chem., 2020, 68(1), 292-300.
[http://dx.doi.org/10.1021/acs.jafc.9b04827] [PMID: 31809573]
[37]
Araiza-Calahorra, A.; Sarkar, A. Designing biopolymer-coated pickering emulsions to modulate in vitro gastric digestion: A static model study. Food Funct., 2019, 10(9), 5498-5509.
[http://dx.doi.org/10.1039/C9FO01080G] [PMID: 31414100]
[38]
Yuan, D.B.; Hu, Y.Q.; Zeng, T.; Yin, S.W.; Tang, C.H.; Yang, X.Q. Development of stable Pickering emulsions/oil powders and Pickering HIPEs stabilized by gliadin/chitosan complex particles. Food Funct., 2017, 8(6), 2220-2230.
[http://dx.doi.org/10.1039/C7FO00418D] [PMID: 28513748]
[39]
Ren, Z.; Chen, Z.; Zhang, Y.; Lin, X.; Li, B. Characteristics and rheological behavior of Pickering emulsions stabilized by tea water-insoluble protein nanoparticles via high-pressure homogenization. Int. J. Biol. Macromol., 2020, 151, 247-256.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.090] [PMID: 32057881]
[40]
Heyse, A.; Kraume, M.; Drews, A. The impact of lipases on the rheological behavior of colloidal silica nanoparticle stabilized Pickering emulsions for biocatalytical applications. Colloids Surf. B Biointerfaces, 2020, 185, 110580.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110580] [PMID: 31732392]
[41]
Angkuratipakorn, T.; Chung, C.; Koo, C.K.W. Development of food-grade pickering oil-in-water emulsions: Tailoring functionality using mixtures of cellulose nanocrystals and lauric arginate. Food Chem., 2020, 327, 127039.
[http://dx.doi.org/10.1016/j.foodchem.2020.127039] [PMID: 32454273]
[42]
Wu, J.; Zhu, W.; Shi, X. Acid-free preparation and characterization of kelp (Laminaria japonica) nanocelluloses and their application in Pickering emulsions. Carbohydr. Polym., 2020, 236, 115999.
[http://dx.doi.org/10.1016/j.carbpol.2020.115999] [PMID: 32172833]
[43]
Joseph, C.; Savoire, R.; Harscoat-Schiavo, C. O/W Pickering emulsions stabilized by cocoa powder: Role of the emulsification process and of composition parameters. Food Res. Int., 2019, 116, 755-766.
[http://dx.doi.org/10.1016/j.foodres.2018.09.009] [PMID: 30717005]
[44]
Zhou, F.Z.; Yan, L.; Yin, S.W.; Tang, C.H.; Yang, X.Q. development of pickering emulsions stabilized by Gliadin/Proanthocyanidins Hybrid Particles (GPHPs) and the fate of lipid oxidation and digestion. J. Agric. Food Chem., 2018, 66(6), 1461-1471.
[http://dx.doi.org/10.1021/acs.jafc.7b05261] [PMID: 29350533]
[45]
Yang, Y.; Wang, W.; Wu, Z.; Wang, X.; Zhang, K.; Li, Y. O/W Pickering emulsions stabilized by Flammulina velutipes polysaccharide nanoparticles as a fat substitute: the effects of phase separation on emulsified sausage’s techno-functional and sensory quality. J. Sci. Food Agric., 2020, 100(1), 268-276.
[http://dx.doi.org/10.1002/jsfa.10034] [PMID: 31512249]
[46]
Nikbakht Nasrabadi, M.; Sedaghat Doost, A.; Goli, S.A.H.; Van der Meeren, P. Effect of thymol and pickering stabilization on in-vitro digestion fate and oxidation stability of plant-derived flaxseed oil emulsions. Food Chem., 2020, 311, 125872.
[http://dx.doi.org/10.1016/j.foodchem.2019.125872] [PMID: 31767488]
[47]
Maingret, V.; Courrégelongue, C.; Schmitt, V.; Héroguez, V. Dextran-based nanoparticles to formulate ph-responsive pickering emulsions: A fully degradable vector at a day scale. Biomacromolecules, 2020, 21(12), 5358-5368.
[http://dx.doi.org/10.1021/acs.biomac.0c01489] [PMID: 33269594]
[48]
Wang, J.; Deng, H.; Sun, Y.; Yang, C. Montmorillonite and alginate co-stabilized biocompatible pickering emulsions with multiple-stimulus tunable rheology. J. Colloid Interface Sci., 2020, 562, 529-539.
[http://dx.doi.org/10.1016/j.jcis.2019.11.081] [PMID: 31785937]
[49]
Wei, Y.; Yu, Z.; Lin, K. Fabrication, physicochemical stability, and microstructure of coenzyme Q10 pickering emulsions stabilized by resveratrol-loaded composite nanoparticles. J. Agric. Food Chem., 2020, 68(5), 1405-1418.
[http://dx.doi.org/10.1021/acs.jafc.9b06678] [PMID: 31940190]
[50]
Lu, H.; Tian, Y. Nanostarch: Preparation, modification, and application in pickering emulsions. J. Agric. Food Chem., 2021, 69(25), 6929-6942.
[http://dx.doi.org/10.1021/acs.jafc.1c01244] [PMID: 34142546]
[51]
Huang, X.N.; Zhu, J.J.; Xi, Y.K.; Yin, S.W.; Ngai, T.; Yang, X.Q. Protein-based pickering high internal phase emulsions as nutraceutical vehicles of and the template for advanced materials: A perspective paper. J. Agric. Food Chem., 2019, 67(35), 9719-9726.
[http://dx.doi.org/10.1021/acs.jafc.9b03356] [PMID: 31398015]
[52]
Jiao, B.; Shi, A.; Wang, Q.; Binks, B.P. High-internal-phase pickering emulsions stabilized solely by peanut-protein-isolate microgel particles with multiple potential applications. Angew. Chem. Int. Ed. Engl., 2018, 57(30), 9274-9278.
[http://dx.doi.org/10.1002/anie.201801350] [PMID: 29845713]
[53]
Yu, Z.Y.; Jiang, S.W.; Zheng, Z. Preparation and properties of OSA-modified taro starches and their application for stabilizing Pickering emulsions. Int. J. Biol. Macromol., 2019, 137, 277-285.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.230] [PMID: 31260771]
[54]
Hu, Z.; Ballinger, S.; Pelton, R.; Cranston, E.D. Surfactant-enhanced cellulose nanocrystal Pickering emulsions. J. Colloid Interface Sci., 2015, 439, 139-148.
[http://dx.doi.org/10.1016/j.jcis.2014.10.034] [PMID: 25463186]
[55]
Rodríguez, K.; Villalta, M.; Marín, E.; Briceño, M.; León, G.; Montero, M.L. Physical characteristics of nano-hydroxyapatite pickering-emulsions and their adjuvant activity on the antibody response towards the bothros asper snake venom. Mater. Sci. Eng. C, 2019, 100, 23-29.
[http://dx.doi.org/10.1016/j.msec.2019.02.088] [PMID: 30948057]
[56]
Fytianos, G.; Rahdar, A.; Kyzas, G.Z. Nanomaterials in cosmetics: Recent updates. Nanomaterials, 2020, 10(5), 979.
[http://dx.doi.org/10.3390/nano10050979] [PMID: 32443655]