Cellulose Supported Propylamine/Molybdate Complex: A Novel and Recyclable Nanocatalyst for the Synthesis of Pyranopyrimidine Derivatives

Page: [318 - 336] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Background: Carbon-based materials, due to their unique properties such as lightweight, different forms, doping capability with hetero atoms, low cost, and ease of processability, are suitable support, for heterogeneous catalysts. Among them, cellulose, as one of the most abundant and renewable organic polymers, preserves a key position in many organic raw materials. Pyranopyrimidine derivatives, due to their high biological activity are of interest to both medicinal chemists and biochemists. Moreover, they play the most fundamental structural role in many natural compounds and are medicinally useful molecules. Owing to the great variety of biologically active pyridines, it is not surprising that the pyridine ring system has become a vital basic component in many pharmaceutical agents.

Methods: In this study, cellulose as a heterogeneous support was used to prepare an efficient solid catalyst. Cellulose, as the most abundant organic polymer, is a suitable material for this purpose. Then, by immobilizing polyoxomolybdate by a linker on the surface of this carbon-based material, we succeeded in producing Cell@(CH2)3N=Mo[Mo5O18] nanocatalyst. The structure and properties of this catalyst were confirmed by various analyses including FT-IR, XRD, EDS-map, FESEM, and TGA, and its efficacy was evaluated by its use in the preparation of Pyrano[2,3- d]pyrimidine derivatives through a multicomponent reaction between aryl aldehydes, malononitrile, and barbituric acid.

Results: The results of this study showed that this new and non-toxic organo-inorganic hybrid nanocatalyst provides the desired products in a short time and with appropriate efficiency.

Conclusion: The key features of the present protocol include reusability of the catalyst, ease of recovery, ambient reaction conditions, and simple work-up procedure that make it economic and sustainable.

Keywords: Polyoxomolybdate, Cellulose, Pyrano[2, 3-d]pyrimidine, Nanocatalyst, Aryl aldehyde, Malononitrile

Graphical Abstract

[1]
El‐Bayouki, K.A.; Basyouni, W.M.; Khatab, T.K.; El‐Basyoni, F.A.; Hamed, A.R.; Mostafa, E.A. Efficient and expeditious synthesis of pyrano-pyrimidines, multi-substituted γ-pyrans, and their antioxidant activity. J. Heterocycl. Chem., 2013, 51, 106-115.
[http://dx.doi.org/10.1002/jhet.2019]
[2]
Mohammadikish, M.; Yarahmadi, S. New self-supporting heterogeneous catalyst based on infinite coordination polymer nanoparticles. J. Phys. Chem. Solids, 2020, 141, 109434-109440.
[http://dx.doi.org/10.1016/j.jpcs.2020.109434]
[3]
Wang, H.; Xia, B.; Yan, Y.; Li, N.; Wang, J.Y.; Wang, X. Water-soluble polymer exfoliated graphene: As catalyst support and sensor. J. Phys. Chem. B, 2013, 117(18), 5606-5613.
[http://dx.doi.org/10.1021/jp401418z] [PMID: 23574310]
[4]
Gong, Y.; Li, M.; Li, H.; Wang, Y. Graphitic carbon nitride polymers: Promising catalysts or catalyst supports for heterogeneous oxidation and hydrogenation. Green Chem., 2015, 17, 715-736.
[http://dx.doi.org/10.1039/C4GC01847H]
[5]
Lwin, S.; Wachs, I.E. Reaction mechanism and kinetics of olefin metathesis by supported ReOx/Al2O3 catalysts. ACS Catal., 2016, 6, 272-278.
[http://dx.doi.org/10.1021/acscatal.5b02233]
[6]
Zhao, Y.; Yang, K.R.; Wang, Z.; Yan, X.; Cao, S.; Ye, Y.; Dong, Q.; Zhang, X.; Thorne, J.E.; Jin, L.; Materna, K.L.; Trimpalis, A.; Bai, H.; Fakra, S.C.; Zhong, X.; Wang, P.; Pan, X.; Guo, J.; Flytzani-Stephanopoulos, M.; Brudvig, G.W.; Batista, V.S.; Wang, D. Stable iridium di-nuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation. Proc. Natl. Acad. Sci. USA, 2018, 115(12), 2902-2907.
[http://dx.doi.org/10.1073/pnas.1722137115] [PMID: 29507243]
[7]
Bezemer, G.L.; Radstake, P.B.; Koot, V.; Van Dillen, A.J.; Geus, J.W.; De Jong, K.P. Preparation of fischer–tropsch cobalt catalysts sup-ported on carbon nanofibers and silica using homogeneous deposition-precipitation. J. Catal., 2006, 237, 291-302.
[http://dx.doi.org/10.1016/j.jcat.2005.11.015]
[8]
Konwar, L.J.; Boro, J.; Deka, D. Review on latest developments in biodiesel production using carbon-based catalysts. Renew. Sustain. Energy Rev., 2014, 29, 546-564.
[http://dx.doi.org/10.1016/j.rser.2013.09.003]
[9]
Takahashi, T.; Watahiki, T.; Kitazume, S.; Yasuda, H.; Sakakura, T. Synergistic hybrid catalyst for cyclic carbonate synthesis: Remarkable acceleration caused by immobilization of homogeneous catalyst on silica. Chem. Commun. (Camb.), 2006, 15(15), 1664-1666.
[http://dx.doi.org/10.1039/b517140g] [PMID: 16583013]
[10]
Khalafi-Nezhad, A.; Shahidzadeh, E.S.; Sarikhani, S.; Panahi, F. A new silica-supported organocatalyst based on L-proline: An efficient heterogeneous catalyst for one-pot synthesis of spiroindolones in water. J. Mol. Catal. A, 2013, 379, 1-8.
[http://dx.doi.org/10.1016/j.molcata.2013.07.009]
[11]
Veerakumar, P.; Velayudham, M.; Lu, K.L.; Rajagopal, S. Highly dispersed silica-supported nanocopper as an efficient heterogeneous catalyst: Application in the synthesis of 1,2,3-triazoles and thioethers. Catal. Sci. Technol., 2011, 1, 1512-1525.
[http://dx.doi.org/10.1039/c1cy00300c]
[12]
Kusuma, R.I.; Hadinoto, J.P.; Ayucitra, A.; Soetaredjo, F.E.; Ismadji, S. Natural zeolite from pacitan indonesia, as catalyst support for transesterification of palm oil. Appl. Clay Sci., 2013, 74, 121-126.
[http://dx.doi.org/10.1016/j.clay.2012.04.021]
[13]
Bagotia, N.; Choudhary, V.; Sharma, D.K. A review on the mechanical, electrical and EMI shielding properties of carbon nanotubes and graphene reinforced polycarbonate nanocomposites. Polym. Adv. Technol., 2018, 29, 1547-1567.
[http://dx.doi.org/10.1002/pat.4277]
[14]
Bagotia, N.; Mohite, H.; Tanaliya, N.; Sharma, D.K. A comparative study of electrical, EMI shielding and thermal properties of graphene and multiwalled carbon nanotube filled polystyrene nanocomposites. Polym. Compos., 2018, 39, E1041-E1051.
[http://dx.doi.org/10.1002/pc.24465]
[15]
Dosodia, A.; Lal, C.; Singh, B.P.; Mathur, R.B.; Sharma, D.K. Development of catalyst free carbon nanotubes from coal and waste plastics. Fuller. Nanotub. Carbon Nanostruct., 2009, 17, 567-582.
[http://dx.doi.org/10.1080/15363830903133238]
[16]
Bharimalla, A.K.; Deshmukh, S.P.; Vigneshwaran, N.; Patil, P.G.; Prasad, V. Nanocellulose-polymer composites for applications in food packaging: Current status, future prospects and challenges. Polym. Plast. Technol. Eng., 2017, 56, 805-823.
[http://dx.doi.org/10.1080/03602559.2016.1233281]
[17]
Harris, D.; Bulone, V.; Ding, S.Y.; DeBolt, S. Tools for cellulose analysis in plant cell walls. Plant Physiol., 2010, 153(2), 420-426.
[http://dx.doi.org/10.1104/pp.110.154203] [PMID: 20304970]
[18]
Eyley, S.; Thielemans, W. Surface modification of cellulose nanocrystals. Nanoscale, 2014, 6(14), 7764-7779.
[http://dx.doi.org/10.1039/C4NR01756K] [PMID: 24937092]
[19]
Marchessault, R.H.; Sundararajan, P.R. Cellulose. The polysaccharides 1983, 2, 11-95.
[20]
Moran-Mirabal, J.M.; Cranston, E.D. Cellulose nanotechnology on the rise. Ind. Biotechnol. (New Rochelle N.Y.), 2015, 11, 14-15.
[http://dx.doi.org/10.1089/ind.2015.1501]
[21]
Wang, B.; Ran, M.; Fang, G.; Wu, T.; Tian, Q.; Zheng, L.; Romero-Zerón, L.; Ni, Y. Palladium nano-catalyst supported on cationic nano-cellulose–alginate hydrogel for effective catalytic reactions. Cellulose, 2020, 27, 6995-7008.
[http://dx.doi.org/10.1007/s10570-020-03127-4]
[22]
Koga, H.; Kitaoka, T.; Isogai, A. Chemically-modified cellulose paper as a microstructured catalytic reactor. Molecules, 2015, 20(1), 1495-1508.
[http://dx.doi.org/10.3390/molecules20011495] [PMID: 25599152]
[23]
Jebali, Z.; Granados, A.; Nabili, A.; Boufi, S.; do Rego, A.M.B.; Majdoub, H.; Vallribera, A. Cationic cellulose nanofibrils as a green sup-port of palladium nanoparticles: Catalyst evaluation in Suzuki reactions. Cellulose, 2018, 25, 6963-6975.
[http://dx.doi.org/10.1007/s10570-018-2085-8]
[24]
Baran, T.; Sargin, I.; Kaya, M.; Menteş, A. Green heterogeneous Pd(II) catalyst produced from chitosan-cellulose micro beads for green synthesis of biaryls. Carbohydr. Polym., 2016, 152, 181-188.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.103] [PMID: 27516263]
[25]
Hindi, S.S.Z. Microcrystalline cellulose: The inexhaustible treasure for pharmaceutical industry. J. Nanosci. Nanotechnol., 2017, 4, 17-24.
[26]
George, J.; Sabapathi, S.N. Cellulose nanocrystals: Synthesis, functional properties, and applications. Nanotechnol. Sci. Appl., 2015, 8, 45-54.
[http://dx.doi.org/10.2147/NSA.S64386] [PMID: 26604715]
[27]
Li, R.; Du, J.; Zheng, Y.; Wen, Y.; Zhang, X.; Yang, W.; Lue, A.; Zhang, L. Ultra-lightweight cellulose foam material: Preparation and properties. Cellulose, 2017, 24, 1417-1426.
[http://dx.doi.org/10.1007/s10570-017-1196-y]
[28]
Jung, Y.H.; Chang, T.H.; Zhang, H.; Yao, C.; Zheng, Q.; Yang, V.W.; Mi, H.; Kim, M.; Cho, S.J.; Park, D.W.; Jiang, H.; Lee, J.; Qiu, Y.; Zhou, W.; Cai, Z.; Gong, S.; Ma, Z. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun., 2015, 6, 7170.
[http://dx.doi.org/10.1038/ncomms8170] [PMID: 26006731]
[29]
Li, D.D.; Zhang, J.W.; Cai, C. Pd nanoparticles supported on cellulose as a catalyst for vanillin conversion in aqueous media. J. Org. Chem., 2018, 83(14), 7534-7538.
[http://dx.doi.org/10.1021/acs.joc.8b00246] [PMID: 29771511]
[30]
Zhang, H.; Liu, T.; Zhu, Y.; Hong, L.; Li, T.; Wang, X.; Fu, Y. Lipases immobilized on the modified polyporous magnetic cellulose sup-port as an efficient and recyclable catalyst for biodiesel production from Yellow horn seed oil. Renew. Energy, 2020, 145, 1246-1254.
[http://dx.doi.org/10.1016/j.renene.2019.06.031]
[31]
Kurane, R.; Khanapure, S.; Kale, D.; Salunkhe, R.; Rashinkar, G. An expedient synthesis of oxazolones using a cellulose supported ionic liquid phase catalyst. RSC Advances, 2016, 6, 44135-44144.
[http://dx.doi.org/10.1039/C6RA03873E]
[32]
Khanapure, S.; Megha, J.; Kale, D.; Gajare, S.; Rashinkar, G. Cellulose- supported ionic liquid phase catalyst-mediated mannich reaction. Aust. J. Chem., 2019, 72, 513-523.
[http://dx.doi.org/10.1071/CH18576]
[33]
Betiha, M.A.; Mohamed, G.G.; Negm, N.A.; Hussein, M.F.; Ahmed, H.E. Fabrication of ionic liquid-cellulose-silica hydrogels with appro-priate thermal stability and good salt tolerance as potential drilling fluid. Arab. J. Chem., 2020, 13, 6201-6220.
[http://dx.doi.org/10.1016/j.arabjc.2020.05.027]
[34]
Sabaqian, S.; Nemati, F.; Nahzomi, H.T.; Heravi, M.M. Silver(I) dithiocarbamate on modified magnetic cellulose: Synthesis, density func-tional theory study and application. Carbohydr. Polym., 2018, 184, 221-230.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.045] [PMID: 29352915]
[35]
Solé-Daura, A.; Poblet, J.M.; Carbó, J.J. Structure-activity relationships for the affinity of chaotropic polyoxometalate anions towards proteins. Chemistry, 2020, 26(26), 5799-5809.
[http://dx.doi.org/10.1002/chem.201905533] [PMID: 32104951]
[36]
Naskar, B.; Diat, O.; Nardello-Rataj, V.; Bauduin, P. Nanometer-size polyoxometalate anions adsorb strongly on neutral soft surfaces. J. Phys. Chem. C, 2015, 119, 20985-20992.
[http://dx.doi.org/10.1021/acs.jpcc.5b06273]
[37]
Kwon, T.; Tsigdinos, G.A.; Pinnavaia, T.J. Pillaring of layered double hydroxides (LDH’s) by polyoxometalate anions. J. Am. Chem. Soc., 1988, 110, 3653-3654.
[http://dx.doi.org/10.1021/ja00219a048]
[38]
Coronado, E.; Giménez-Saiz, C.; Gómez-García, C.J. Recent advances in polyoxometalate-containing molecular conductors. Coord. Chem. Rev., 2005, 249, 1776-1796.
[http://dx.doi.org/10.1016/j.ccr.2005.02.017]
[39]
Liu, S.; Kurth, D.G.; Bredenkötter, B.; Volkmer, D. The structure of self-assembled multilayers with polyoxometalate nanoclusters. J. Am. Chem. Soc., 2002, 124(41), 12279-12287.
[http://dx.doi.org/10.1021/ja026946l] [PMID: 12371871]
[40]
Granadeiro, C.M.; Ferreira, P.; Julião, D.; Ribeiro, L.A.; Valença, R.; Ribeiro, J.C.; Gonçalves, I.S.; De Castro, B.; Pillinger, M.; Cunha-Silva, L.; Balula, S.S. Efficient oxidative desulfurization processes using polyoxomolybdate based catalysts. Energies, 2018, 11, 1696.
[http://dx.doi.org/10.3390/en11071696]
[41]
An, H.Y.; Wang, E.B.; Xiao, D.R.; Li, Y.G.; Su, Z.M.; Xu, L. Chiral 3D architectures with helical channels constructed from polyoxomet-alate clusters and copper-amino acid complexes. Angew. Chem. Int. Ed., 2006, 45(6), 904-908.
[http://dx.doi.org/10.1002/anie.200503657] [PMID: 16385595]
[42]
Yvon, C.; Surman, A.J.; Hutin, M.; Alex, J.; Smith, B.O.; Long, D.L.; Cronin, L. Polyoxometalate clusters integrated into peptide chains and as inorganic amino acids: Solution- and solid-phase approaches. Angew. Chem. Int. Ed. Engl., 2014, 53(13), 3336-3341.
[http://dx.doi.org/10.1002/anie.201311135] [PMID: 24623565]
[43]
Liu, S.; Tian, J.; Wang, L.; Zhang, Y.; Luo, Y.; Li, H.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Fast and sensitive colorimetric detection of H2O2 and glucose: A strategy based on polyoxometalate clusters. ChemPlusChem, 2012, 77, 541-544.
[http://dx.doi.org/10.1002/cplu.201200051]
[44]
Zhang, C.; Song, Y.; Kühn, F.E.; Xu, Y.; Xin, X.; Fun, H.; Herrmann, W.A. The first assembly of a nest‐shaped heterothiometallic cluster and a polyoxometalate anion−synthesis, characterization, and strong third‐order nonlinear optical response. Eur. J. Inorg. Chem., 2002, 2002, 55-64.
[http://dx.doi.org/10.1002/1099-0682(20021)2002:1<55:AID-EJIC55>3.0.CO;2-U]
[45]
Coronado, E.; Gómez-García, C.J. Polyoxometalate-based molecular materials. Chem. Rev., 1998, 98(1), 273-296.
[http://dx.doi.org/10.1021/cr970471c] [PMID: 11851506]
[46]
Alhanash, A.; Kozhevnikova, E.F.; Kozhevnikov, I.V. Hydrogenolysis of glycerol to propanediol over Ru: Polyoxometalate bifunctional catalyst. Catal. Lett., 2008, 120, 307-311.
[http://dx.doi.org/10.1007/s10562-007-9286-3]
[47]
Neumann, R.; Gara, M. Highly active manganese-containing polyoxometalate as catalyst for epoxidation of alkenes with hydrogen perox-ide. J. Am. Chem. Soc., 1994, 116, 5509-5510.
[http://dx.doi.org/10.1021/ja00091a081]
[48]
Branytska, O.V.; Neumann, R. An efficient, catalytic, aerobic, oxidative iodination of arenes using the H5PV2Mo10O40 polyoxometalate as catalyst. J. Org. Chem., 2003, 68(24), 9510-9512.
[http://dx.doi.org/10.1021/jo035271h] [PMID: 14629184]
[49]
Hill, C.L. Progress and challenges in polyoxometalate-based catalysis and catalytic materials chemistry. J. Mol. Catal. Chem., 2007, 262, 2-6.
[http://dx.doi.org/10.1016/j.molcata.2006.08.042]
[50]
Giannakoudakis, D.A.; Colón-Ortiz, J.; Landers, J.; Murali, S.; Florent, M.; Neimark, A.V.; Bandosz, T.J. Polyoxometalate hybrid catalyst for detection and photodecomposition of mustard gas surrogate vapors. Appl. Surf. Sci., 2019, 467, 428-438.
[http://dx.doi.org/10.1016/j.apsusc.2018.10.167]
[51]
Gobbo, P.; Tian, L.; Pavan Kumar, B.V.V.S.; Turvey, S.; Cattelan, M.; Patil, A.J.; Carraro, M.; Bonchio, M.; Mann, S. Catalytic processing in ruthenium-based polyoxometalate coacervate protocells. Nat. Commun., 2020, 11(1), 41.
[http://dx.doi.org/10.1038/s41467-019-13759-1] [PMID: 31900396]
[52]
Yang, C.; Jin, Q.; Zhang, H.; Liao, J.; Zhu, J.; Yu, B.; Deng, J. Tetra-(tetraalkylammonium) octamolybdate catalysts for selective oxidation of sulfides to sulfoxides with hydrogen peroxide. Green Chem., 2009, 11, 1401-1405.
[http://dx.doi.org/10.1039/b912521n]
[53]
An, H.; Hou, Y.; Chang, S.; Zhang, J.; Zhu, Q. Highly efficient oxidation of various thioethers catalyzed by organic ligand-modified poly-oxomolybdates. Inorg. Chem. Front., 2020, 7, 169-176.
[http://dx.doi.org/10.1039/C9QI01098J]
[54]
Xu, M.; Wang, T.; Li, F.; Xu, W.; Zheng, Y.; Xu, L. Water-soluble titanium-polyoxomolybdate with external μ3 bridging oxygen coordina-tion on a lacunary Keggin structure. Chem. Commun. (Camb.), 2020, 56(7), 1097-1100.
[http://dx.doi.org/10.1039/C9CC07767G] [PMID: 31894765]
[55]
Xu, Q.; Liang, X.; Xu, B.; Wang, J.; He, P.; Ma, P.; Feng, J.; Wang, J.; Niu, J. 36‐Nuclearity organophosphonate‐functionalized polyox-omolybdates: Synthesis, characterization and selective catalytic oxidation of sulfides. Chemistry, 2020, 26(65), 14896-14902.
[http://dx.doi.org/10.1002/chem.202001468] [PMID: 32543759]
[56]
Sayed Thabet, M. Preparation, characterization and catalytic activity study of anderson-type heteropolymolybdates supported on different zeolite structures. Am. J. Mater. Sci., 2018, 5, 34-41.
[57]
Bagherzadeh, M.; Hosseini, H. Nanocluster polyoxomolybdate supported on natural zeolite: A green and recyclable catalyst for epoxida-tion of alkenes. J. Coord. Chem., 2017, 70, 2212-2223.
[http://dx.doi.org/10.1080/00958972.2017.1353686]
[58]
Liu, T.; Wan, Q.; Xie, Y.; Burger, C.; Liu, L.Z.; Chu, B. Polymer-assisted formation of giant polyoxomolybdate structures. J. Am. Chem. Soc., 2001, 123(44), 10966-10972.
[http://dx.doi.org/10.1021/ja010366r] [PMID: 11686700]
[59]
Zhang, Z.; Sadakane, M.; Murayama, T.; Sakaguchi, N.; Ueda, W. Preparation, structural characterization, and ion-exchange properties of two new zeolite-like 3D frameworks constructed by ε-Keggin-type polyoxometalates with binding metal ions, H11.4[ZnMo12O40Zn2]1.5- and H7.5[Mn0.2Mo12O40Mn2]2.1-. Inorg. Chem., 2014, 53(14), 7309-7318.
[http://dx.doi.org/10.1021/ic500630h] [PMID: 25005055]
[60]
Kera, Y.; Oonaka, T.; Yamanaka, K.; Hirayama, S.; Kominami, H. Highly dispersed transition-metal-containing polyoxomolybdates [XMo6O24n−; X= Fe, Co, and Ni] on alumina modified with a silane agent and their catalytic features for partial-methanol-oxidation. Appl. Catal. A Gen., 2004, 276, 187-195.
[http://dx.doi.org/10.1016/j.apcata.2004.08.005]
[61]
Akimov, A.S.; Sviridenko, N.N.; Morozov, M.A.; Petrenko, T.V.; Zhuravkov, S.P.; Kazantsev, S.O.; Panin, S.V. Processing of heavy re-sidual feedstock on Mo/Al2O3-catalytic systems obtained using polyoxomolybdate compounds. Conference Series: Mater. Sci. Eng., 2019, 1, 012015-012019.
[http://dx.doi.org/10.1088/1757-899X/597/1/012015]
[62]
Edwards, J.C.; Adams, R.D.; Ellis, P.D.A. 95Mo solid-state NMR study of hydrodesulfurization catalysts. adsorption of polyoxomolyb-dates onto-alumina. J. Am. Chem. Soc., 1990, 112, 8349-8364.
[http://dx.doi.org/10.1021/ja00179a020]
[63]
Luo, J.; Xiao, C.; Xiao, Y.; Lin, X.; Chen, Y.; Gao, B.; Lin, B. Polyoxomolybdate-derived MoS2/nitrogen-doped reduced graphene oxide hybrids for efficient hydrogen evolution. Int. J. Hydrogen Energy, 2020, 45, 12318-12330.
[http://dx.doi.org/10.1016/j.ijhydene.2020.02.179]
[64]
Boujday, S.; Blanchard, J.; Villanneau, R.; Krafft, J.M.; Geantet, C.; Louis, C.; Breysse, M.; Proust, A. Polyoxomolybdate-stabilized Ru(0) nanoparticles deposited on mesoporous silica as catalysts for aromatic hydrogenation. ChemPhysChem, 2007, 8(18), 2636-2642.
[http://dx.doi.org/10.1002/cphc.200700533] [PMID: 18058778]
[65]
Rocchiccioli-Deltcheff, C.; Amirouche, M.; Hervé, G.; Fournier, M.; Che, M.; Tatibouët, J.M. Structure and catalytic properties of silica-supported polyoxomolybdates: II. thermal behavior of unsupported and silica-supported 12-molybdosilicic acid catalysts from IR and catalytic reactivity studies. J. Catal., 1990, 126, 591-599.
[http://dx.doi.org/10.1016/0021-9517(90)90022-C]
[66]
Rocchiccioli-Deltcheff, C.; Amirouche, M.; Fournier, M. Structure and catalytic properties of silica-supported polyoxomolybdates III. 12-molybdosilicic acid catalysts: Vibrational study of the dispersion effect and nature of the Mo species in interaction with the silica support. J. Catal., 1992, 138, 445-456.
[http://dx.doi.org/10.1016/0021-9517(92)90296-T]
[67]
Rocchiccioli-Deltcheff, C.; Amirouche, M.; Che, M.; Tatibouët, J.M.; Fournier, M. Structure and catalytic properties of silica-supported polyoxomolybdates I. MO/SiO2 catalysts prepared from hexamolybdate. J. Catal., 1990, 125, 292-310.
[http://dx.doi.org/10.1016/0021-9517(90)90305-4]
[68]
Kargar, S.; Elhamifar, D.; Zarnegaryan, A. Core–shell structured Fe3O4@SiO2-supported IL/[Mo6O19]: A novel and magnetically recov-erable nanocatalyst for the preparation of biologically active dihydropyrimidinones. J. Phys. Chem. Solids, 2020, 146, 109601-109634.
[http://dx.doi.org/10.1016/j.jpcs.2020.109601]
[69]
Neysi, M.; Zarnegaryan, A.; Elhamifar, D. Core–shell structured magnetic silica supported propylamine/molybdate complexes: An effi-cient and magnetically recoverable nanocatalyst. New J. Chem., 2019, 43, 12283-12291.
[http://dx.doi.org/10.1039/C9NJ01160A]
[70]
Bhat, A.R.; Shalla, A.H.; Dongre, R.S. Microwave assisted one-pot catalyst free green synthesis of new methyl-7-amino-4-oxo-5-phenyl-2-thioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carboxylates as potent in vitro antibacterial and antifungal activity. J. Adv. Res., 2015, 6(6), 941-948.
[http://dx.doi.org/10.1016/j.jare.2014.10.007] [PMID: 26644932]
[71]
Maleki, A.; Niksefat, M.; Rahimi, J.; Taheri-Ledari, R. Multicomponent synthesis of pyrano [2,3-d] pyrimidine derivatives via a direct one-pot strategy executed by novel designed copperated Fe3O4@polyvinyl alcohol magnetic nanoparticles. Mater. Today Chem., 2019, 13, 110-120.
[http://dx.doi.org/10.1016/j.mtchem.2019.05.001]
[72]
Bedair, A.H.; El-Hady, N.A.; Abd El-Latif, M.S.; Fakery, A.H.; El-Agrody, A.M. 4-Hydroxycoumarin in heterocyclic synthesis: Part III. synthesis of some new pyrano[2,3-d]pyrimidine, 2-substituted [1,2,4]triazolo[1,5-c]pyrimidine and pyrimido[1,6-b][1,2,4] triazine de-rivatives. Farmaco, 2000, 55, 708-714.
[http://dx.doi.org/10.1016/S0014-827X(00)00097-5] [PMID: 11204946]
[73]
Bedair, A.H.; Emam, H.A.; El-Hady, N.A.; Ahmed, K.A.; El-Agrody, A.M. Synthesis and antimicrobial activities of novel naphtho[2,1-b]pyran, pyrano[2,3-d]pyrimidine and pyrano[3,2-e][1,2,4]triazolo[2,3-c]-pyrimidine derivatives. Farmaco, 2001, 56(12), 965-973.
[http://dx.doi.org/10.1016/S0014-827X(01)01168-5] [PMID: 11829118]
[74]
Eid, F.A.; Abd El-Wahab, A.H.; Ali, G.A.; Khafagy, M.M. Synthesis and antimicrobial evaluation of naphtho[2,1-b]pyrano[2,3-d]pyrimidine and pyrano[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives. Acta Pharm., 2004, 54(1), 13-26.
[PMID: 15050041]
[75]
Kamdar, N.R.; Haveliwala, D.D.; Mistry, P.T.; Patel, S.K. Design, synthesis and in vitro evaluation of antitubercular and antimicrobial activity of some novel pyranopyrimidines. Eur. J. Med. Chem., 2010, 45(11), 5056-5063.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.014] [PMID: 20805011]
[76]
Yu, J.; Wang, H. Green synthesis of pyrano[2,3‐d]pyrimidine derivatives in ionic liquids. Synth. Commun., 2005, 35, 3133-3140.
[http://dx.doi.org/10.1080/00397910500282661]
[77]
Mohamadpour, F. Catalyst-free synthesis of pyrano[2,3-d]pyrimidine scaffolds via knoevenagel-michael cyclocondensation using PEG-400 as a green promoting medium. Org. Prep. Proced. Int., 2020, 52, 503-509.
[http://dx.doi.org/10.1080/00304948.2020.1796158]
[78]
Sheikhan-Shamsabadi, N.; Ghashang, M. Nano-basic silica as an efficient catalyst for the multi-component preparation of pyrano[2,3-d]pyrimidine derivatives. Main Group Met. Chem., 2017, 40, 19-25.
[http://dx.doi.org/10.1515/mgmc-2016-0034]
[79]
Bakherad, M.; Bagherian, G.; Rezaeifard, A.; Mosayebi, F.; Shokoohi, B.; Keivanloo, A. Synthesis of pyrano[2,3‐d]pyrimidines and pyrido[2,3‐d]pyrimidines in the magnetized deionized water based on UV–visible study. J. Iran. Chem. Soc., 2021, 18, 839-852.
[http://dx.doi.org/10.1007/s13738-020-02073-z]
[80]
Gao, Y.; Tu, S.; Li, T.; Zhang, X.; Zhu, S.; Fang, F.; Shi, D. Effective synthesis of 7‐amino‐6‐cyano‐5‐aryl‐5 H‐pyrano [2,3‐d] pyrimidine‐2,4(1H,3H)‐diones under microwave irradiation. Synth. Commun., 2004, 34, 1295-1299.
[http://dx.doi.org/10.1081/SCC-120030318]
[81]
Jin, T.S.; Liu, L.B.; Zhao, Y.; Li, T.S. A clean one-pot synthesis of 7-amino-5-aryl-6-cyano-1, 5-dihydro-2H-pyrano[2,3-d]pyrimidine-2,4(3H)-diones in aqueous media under ultrasonic irradiation. J. Chem. Res., 2005, 2005, 162-163.
[http://dx.doi.org/10.3184/0308234054213672]
[82]
Abd El-Sattar, N.E.A.; El-Adl, K.; El-Hashash, M.A.; Salama, S.A.; Elhady, M.M. Design, synthesis, molecular docking and in silico AD-MET profile of pyrano[2,3-d]pyrimidine derivatives as antimicrobial and anticancer agents. Bioorg. Chem., 2021, 115, 105186-105203.
[http://dx.doi.org/10.1016/j.bioorg.2021.105186] [PMID: 34314914]
[83]
Poola, S.; Shaik, M.S.; Sudileti, M.; Yakkate, S.; Nalluri, V.; Chippada, A.; Cirandur, S.R. Nano CuO–Ag‐catalyzed synthesis of some novel pyrano[2,3‐d]pyrimidine derivatives and evaluation of their bioactivity. J. Chin. Chem. Soc. (Taipei), 2020, 67, 805-820.
[http://dx.doi.org/10.1002/jccs.201900256]
[84]
Mashkouri, S.; Naimi-Jamal, M.R. Mechanochemical solvent-free and catalyst-free one-pot synthesis of pyrano[2,3-d]pyrimidine-2,4(1H,3H)-diones with quantitative yields. Molecules, 2009, 14(1), 474-479.
[http://dx.doi.org/10.3390/molecules14010474] [PMID: 19158656]
[85]
Marson, C.M. Multicomponent and sequential organocatalytic reactions: Diversity with atom-economy and enantiocontrol. Chem. Soc. Rev., 2012, 41(23), 7712-7722.
[http://dx.doi.org/10.1039/c2cs35183h] [PMID: 22918262]
[86]
Garbarino, S.; Protti, S.; Basso, A. Toward a green atom economy: Development of a sustainable multicomponent reaction. Synthesis, 2015, 47, 2385-2390.
[http://dx.doi.org/10.1055/s-0034-1380719]
[87]
Ruijter, E.; Orru, R.V. Multicomponent reactions - opportunities for the pharmaceutical industry. Drug Discov. Today. Technol., 2013, 10(1), e15-e20.
[http://dx.doi.org/10.1016/j.ddtec.2012.10.012] [PMID: 24050225]
[88]
Wu, J.; Kozak, J.A.; Simeon, F.; Hatton, T.A.; Jamison, T.F. Mechanism-guided design of flow systems for multicomponent reactions: Conversion of CO2 and olefins to cyclic carbonates. Chem. Sci. (Camb.), 2014, 5, 1227-1231.
[http://dx.doi.org/10.1039/c3sc53422g]
[89]
Zhu, S.L.; Ji, S.J.; Zhao, K.; Liu, Y. Multicomponent reactions for the synthesis of new 3′-indolyl substituted heterocycles under micro-wave irradiation. Tetrahedron Lett., 2008, 49, 2578-2582.
[http://dx.doi.org/10.1016/j.tetlet.2008.02.101]
[90]
Zhang, Z.; You, Y.; Hong, C. Multicomponent reactions and multicomponent cascade reactions for the synthesis of sequence‐controlled polymers. Macromol. Rapid Commun., 2018, 39(23), e1800362.
[http://dx.doi.org/10.1002/marc.201800362] [PMID: 30066410]
[91]
Zarganes-Tzitzikas, T.; Chandgude, A.L.; Dömling, A. Multicomponent reactions, union of MCRs and beyond. Chem. Rec., 2015, 15(5), 981-996.
[http://dx.doi.org/10.1002/tcr.201500201] [PMID: 26455350]
[92]
Ugi, I. Recent progress in the chemistry of multicomponent reactions. Pure Appl. Chem., 2001, 73, 187-191.
[http://dx.doi.org/10.1351/pac200173010187]
[93]
Cioc, R.C.; Ruijter, E.; Orru, R.V. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem., 2014, 16, 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[94]
Zhi, S.; Ma, X.; Zhang, W. Consecutive multicomponent reactions for the synthesis of complex molecules. Org. Biomol. Chem., 2019, 17(33), 7632-7650.
[http://dx.doi.org/10.1039/C9OB00772E] [PMID: 31339143]
[95]
Sunderhaus, J.D.; Martin, S.F. Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds. Chemistry, 2009, 15(6), 1300-1308.
[http://dx.doi.org/10.1002/chem.200802140] [PMID: 19132705]
[96]
Jiang, B.; Rajale, T.; Wever, W.; Tu, S.J.; Li, G. Multicomponent reactions for the synthesis of heterocycles. Chem. Asian J., 2010, 5(11), 2318-2335.
[http://dx.doi.org/10.1002/asia.201000310] [PMID: 20922748]
[97]
Haji, M. Multicomponent reactions: A simple and efficient route to heterocyclic phosphonates. Beilstein J. Org. Chem., 2016, 12, 1269-1301.
[http://dx.doi.org/10.3762/bjoc.12.121] [PMID: 27559377]
[98]
Farahi, M.; Karami, B.; Alipour, S.; Moghadam, L.T. Silica tungstic acid as an efficient and reusable catalyst for the one-pot synthesis of 2-amino-4H-chromene derivatives. Acta Chim. Slov., 2014, 61(1), 94-99.
[PMID: 24664332]
[99]
Farahi, M.; Karami, B.; Keshavarz, R.; Khosravian, F. Nano-Fe3O4@SiO2-supported boron sulfonic acid as a novel magnetically hetero-geneous catalyst for the synthesis of pyrano coumarins. RSC Advances, 2017, 7, 46644-46650.
[http://dx.doi.org/10.1039/C7RA08253C]
[100]
Nia, F.M.; Farahi, M.; Karami, B.; Keshavarz, R. Synthesis of chalcone derivatives by phthalhydrazide-functionalized TiO2-coated nano-Fe3O4 as a new heterogeneous catalyst. Lett. Org. Chem., 2021, 18, 407-414.
[http://dx.doi.org/10.2174/1570178617999200807214103]
[101]
Fattahi, K.; Farahi, M.; Karami, B.; Keshavarz, R. Design of sodium carbonate functionalized TiO2-coated Fe3O4 nanoparticles as a new heterogeneous catalyst for pyrrole synthesis. Izv. Him., 2021, 174-179.
[102]
Tanuraghaj, H.M.; Farahi, M. Molybdic acid immobilized on mesoporous MCM-41 coated on nano-Fe3O4: Preparation, characterization, and its application for the synthesis of polysubstituted coumarins. Monatsh. Chem., 2019, 150, 1841-1847.
[http://dx.doi.org/10.1007/s00706-019-02471-x]
[103]
Tanuraghaj, H.M.; Farahi, M. Preparation, characterization and catalytic application of nano-Fe3O4@SiO2@(CH2)3OCO2Na as a novel basic magnetic nanocatalyst for the synthesis of new pyranocoumarin derivatives. RSC Advances, 2018, 8, 27818-27824.
[http://dx.doi.org/10.1039/C8RA05501G]
[104]
Tanuraghaj, H.M.; Farahi, M. A novel protocol for the synthesis of pyrano[2,3-h]coumarins in the presence of Fe3O4@SiO2@(CH2)3OCO2Na as a magnetically heterogeneous catalyst. New J. Chem., 2019, 43, 4823-4829.
[http://dx.doi.org/10.1039/C8NJ06415F]
[105]
Gholtash, J.E.; Farahi, M. Tungstic acid-functionalized Fe3O4@TiO2: Preparation, characterization and its application for the synthesis of pyrano[2,3-c]pyrazole derivatives as a reusable magnetic nanocatalyst. RSC Advances, 2018, 8, 40962-40967.
[http://dx.doi.org/10.1039/C8RA06886K]
[106]
Gholtash, J.E.; Farahi, M.; Karami, B.; Abdollahi, M. Molybdic acid-functionalized nano-Fe3O4@TiO2 as a novel and magnetically sepa-rable catalyst for the synthesis of coumarin-containing sulfonamide derivatives. Acta Chim. Slov., 2020, 67(3), 866-875.
[http://dx.doi.org/10.17344/acsi.2020.5825] [PMID: 33533418]
[107]
Akrami, S.; Farahi, M. Phthalhydrazide immobilized on MCM‐41 as a potent and recoverable catalyst for the synthesis of pyrrolo[2,1‐a]isoquinolines. J. Chin. Chem. Soc. (Taipei), 2019, 66, 769-774.
[http://dx.doi.org/10.1002/jccs.201800349]
[108]
Nasseri, M.A.; Zakerinasab, B.; Allahresani, A. Diethylenetriamine supported on cellulose as a biodegradable and recyclable basic hetero-geneous catalyst for the synthesis of spirooxindole derivatives. Iran. J. Catal., 2015, 5, 161-167.
[109]
Fatoni, A.; Koesnarpadi, S.; Hidayati, N. Synthesis, characterization of cellulose modified with 2-mercaptobenzothiazole and its adsorp-tion to Cu(II) ion in aqueous solution. Indones. J. Chem., 2015, 15, 194-200.
[http://dx.doi.org/10.22146/ijc.21214]
[110]
Bai, H.; Wang, X.; Zhou, Y.; Zhang, L. Preparation and characterization of poly(vinylidene fluoride) composite membranes blended with nano-crystalline cellulose. Prog. Nat. Sci., 2012, 22, 250-257.
[http://dx.doi.org/10.1016/j.pnsc.2012.04.011]
[111]
Kandathil, V.; Kempasiddaiah, M. B S, S.; Patil, S.A. From agriculture residue to catalyst support; A green and sustainable cellulose-based dip catalyst for CC coupling and direct arylation. Carbohydr. Polym., 2019, 223, 115060-115070.
[http://dx.doi.org/10.1016/j.carbpol.2019.115060] [PMID: 31427023]
[112]
Baruah, D.; Das, R.N.; Hazarika, S.; Konwar, D. Biogenic synthesis of cellulose supported Pd(0) nanoparticles using hearth wood extract of Artocarpus lakoocha Roxb—A green, efficient and versatile catalyst for Suzuki and Heck coupling in water under microwave heating. Catal. Commun., 2015, 72, 73-80.
[http://dx.doi.org/10.1016/j.catcom.2015.09.011]
[113]
Veisi, H.; Ozturk, T.; Karmakar, B.; Tamoradi, T.; Hemmati, S. In situ decorated Pd NPs on chitosan-encapsulated Fe3O4/SiO2-NH2 as magnetic catalyst in Suzuki-Miyaura coupling and 4-nitrophenol reduction. Carbohydr. Polym., 2020, 235, 115966-115974.
[http://dx.doi.org/10.1016/j.carbpol.2020.115966] [PMID: 32122500]
[114]
Zarnegaryan, A.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Mohammadpoor-Baltork, I. Synthesis and characterization of a novel polyoxometalate–Cu(II) hybrid catalyst for efficient synthesis of triazols. Polyhedron, 2016, 115, 61-66.
[http://dx.doi.org/10.1016/j.poly.2016.02.003]
[115]
Maghsoodlou, M.T.; Safarzaei, M.; Mousavi, M.R.; Hazeri, N.; Aboonajmi, J.; Shirzaei, M. A green and novel three-component one-pot synthesis of tetrahydrobenzopyran, pyrano[2,3-d] pyrimidine, and 3,4-dihydropyrano[c]chromene derivatives using sodium acetate. Iran. J. Org. Chem., 2014, 6, 1197-1202.
[116]
Yadav, D.K.; Quraishi, M.A. Choline chloride. ZnCl2: Green, effective and reusable ionic liquid for synthesis of 7-amino-2,4-dioxo-5-phenyl-2,3,4,5-tetrahydro-1H-pyrano[2,3-d] pyrimidine-6-carbonitrile derivative. J. Mater. Environ. Sci., 2014, 5, 1075-1078.
[117]
Yelwande, A.A.; Lande, M.K. An efficient one-pot three-component synthesis of 7-amino-2, 4-dioxo-5-aryl-1,3,4,5-tetrahydro-2H-pyrano[2,3-d]pyrimidine-6-carbonitriles catalyzed by SnO2/SiO2 nanocomposite. Res. Chem. Intermed., 2020, 46, 5479-5498.
[http://dx.doi.org/10.1007/s11164-020-04273-x]
[118]
Kefayati, H.; Valizadeh, M.; Islamnezhad, A. Green electrosynthesis of pyrano[2,3-d]pyrimidinones at room temperature. Anal. Bioanal. Electrochem., 2014, 6, 80-90.
[119]
Heravi, M.M.; Ghods, A.; Bakhtiari, K.; Derikvand, F. Zn [(L) proline]2: An efficient catalyst for the synthesis of biologically active pyra-no[2,3-d]pyrimidine derivatives. Synth. Commun., 2010, 40, 1927-1931.
[http://dx.doi.org/10.1080/00397910903174390]
[120]
Khazaei, A.; Nik, H.A.A.; Moosavi‐Zare, A.R. Water mediated domino knoevenagel‐michael‐cyclocondensation reaction of malono-nitrile, various aldehydes and barbituric acid derivatives using boric acid aqueous solution system sompared with nano‐titania sulfuric acid. J. Chin. Chem. Soc. (Taipei), 2015, 62, 675-679.
[http://dx.doi.org/10.1002/jccs.201500115]
[121]
Mohamadpour, F. Visible light irradiation promoted catalyst-free and solvent-free synthesis of pyrano[2,3-d]pyrimidine scaffolds at room temperature. J. Saudi Chem. Soc., 2020, 24, 636-641.
[http://dx.doi.org/10.1016/j.jscs.2020.06.006]