Dual Drug Loaded Potassium-contained Graphene Oxide as a Nanocarrier in Cocktailed Drug Delivery for the Treatment of Human Breast Cancer

Page: [943 - 950] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: The combinatorial use of anticancer drugs, dual or multiple, with a specific nanocarrier is one of the most promising attempts in drug delivery. The current work reports potassium contained graphene oxide (K-GO) as a nanocarrier in the drug delivery system of two anticancer drugs, gefitinib (GEF) and camptothecin (CPT), simultaneously.

Methods: To characterize K-GO, K-GO-related single and combined drug systems, different techniques have been performed and studied using the following spectroscopic tools, such as Thermo Gravimetric Analysis (TGA 4000), UV–visible spectroscopy, Raman spectroscopy, and Transmission electron microscopy (TEM). The in vitro cytotoxicity tests of K-GO, single drug system, and the combined drug system were also performed in the human breast cancer MDA-MB-231 cells.

Results: The release profile of the dual drug conjugates grafted onto the surface of K-GO was found to be up to 38% in PBS solution over 72 hours. The percentage of MDA-MB-231 cell viability was about 18% when treated with K-GO-GEF-CPT combined system; for K-GO, K-GO-GEF, and K-GO-CPT, the cell viability was 79%, 31%, and 32%, respectively.

Conclusion: We studied the loading, release, and delivery of two anticancer drugs onto the fluorescent nanocarrier. Features, such as superb aqueous solubility, excellent biocompatibility, richness in potassium, and fluorescent nature, which can monitor the delivery of drugs, make them a promising nanocarrier for single or multiple drug delivery. Furthermore, our novel findings revealed that the loading capacity and cytotoxicity of the combined drug-loaded system are superior to the capacity of the individual drug system for human breast cancer cells.

Keywords: Anticancer, combined system, drug delivery, graphene oxide, human breast cancer, nanocarrier.

Graphical Abstract

[1]
Cronin, K.A.; Lake, A.J.; Scott, S.; Sherman, R.L.; Noone, A.M.; Howlader, N.; Henley, S.J.; Anderson, R.N.; Firth, A.U.; Ma, J.; Kohler, B.A.; Jemal, A. Annual Report to the Nation on the Status of Cancer, part I: National cancer statistics. Cancer, 2018, 124(13), 2785-2800.
[http://dx.doi.org/10.1002/cncr.31551] [PMID: 29786848]
[2]
Wong, H.L.; Bendayan, R.; Rauth, A.M.; Li, Y.; Wu, X.Y. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv. Drug Deliv. Rev., 2007, 59(6), 491-504.
[http://dx.doi.org/10.1016/j.addr.2007.04.008] [PMID: 17532091]
[3]
Guo, S.; Huang, L. Nanoparticles containing insoluble drug for cancer therapy. Biotechnol. Adv., 2014, 32(4), 778-788.
[http://dx.doi.org/10.1016/j.biotechadv.2013.10.002] [PMID: 24113214]
[4]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[5]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[6]
Torchilin, V.P. Multifunctional nanocarriers. Adv. Drug Deliv. Rev., 2006, 58(14), 1532-1555.
[http://dx.doi.org/10.1016/j.addr.2006.09.009] [PMID: 17092599]
[7]
Li, Z.; Ye, E. David; Lakshminarayanan, R.; Loh, X.J. Recent advances of using hybrid nanocarriers in remotely controlled therapeutic delivery. Small, 2016, 12(35), 4782-4806.
[http://dx.doi.org/10.1002/smll.201601129] [PMID: 27482950]
[8]
Gulfam, M.; Chung, B.G. Development of pH-responsive chitosan-coated mesoporous silica nanoparticles. Macromol. Res., 2014, 22(4), 412-417.
[http://dx.doi.org/10.1007/s13233-014-2063-4]
[9]
Gulfam, M.; Kim, J.E.; Lee, J.M.; Ku, B.; Chung, B.H.; Chung, B.G. Anticancer drug-loaded gliadin nanoparticles induce apoptosis in breast cancer cells. Langmuir, 2012, 28(21), 8216-8223.
[http://dx.doi.org/10.1021/la300691n] [PMID: 22568862]
[10]
Mohapatra, S.; Rout, S.R.; Narayan, R.; Maiti, T.K. Multifunctional mesoporous hollow silica nanocapsules for targeted co-delivery of cisplatin-pemetrexed and MR imaging. Dalton Trans., 2014, 43(42), 15841-15850.
[http://dx.doi.org/10.1039/C4DT02144D] [PMID: 25224136]
[11]
Du, P.; Liu, P. Novel smart yolk/shell polymer microspheres as a multiply responsive cargo delivery system. Langmuir, 2014, 30(11), 3060-3068.
[http://dx.doi.org/10.1021/la500731v] [PMID: 24571375]
[12]
Karki, N.; Tiwari, H.; Tewari, C.; Rana, A.; Pandey, N.; Basak, S.; Sahoo, N.G. Functionalized graphene oxide as a vehicle for targeted drug delivery and bioimaging applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(36), 8116-8148.
[http://dx.doi.org/10.1039/D0TB01149E] [PMID: 32966535]
[13]
Hervault, A.; Dunn, A.E.; Lim, M.; Boyer, C.; Mott, D.; Maenosono, S.; Thanh, N.T. Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. Nanoscale, 2016, 8(24), 12152-12161.
[http://dx.doi.org/10.1039/C5NR07773G] [PMID: 26892588]
[14]
Cui, W.; Li, J.; Decher, G. Self-assembled smart nanocarriers for targeted drug delivery. Adv. Mater., 2016, 28(6), 1302-1311.
[http://dx.doi.org/10.1002/adma.201502479] [PMID: 26436442]
[15]
Kesharwani, P.; Jain, K.; Jain, N.K. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci., 2014, 39(2), 268-307.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005]
[16]
Yang, K.; Feng, L.; Liu, Z. Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy Adv. Drug Deliv. Rev., 2016, 105(Pt B), 228-241.
[http://dx.doi.org/10.1016/j.addr.2016.05.015] [PMID: 27233212]
[17]
Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 2010, 6(4), 537-544.
[http://dx.doi.org/10.1002/smll.200901680] [PMID: 20033930]
[18]
Liu, J.; Cui, L.; Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater., 2013, 9(12), 9243-9257.
[http://dx.doi.org/10.1016/j.actbio.2013.08.016] [PMID: 23958782]
[19]
Zhang, B.; Wang, Y.; Zhai, G. Biomedical applications of the graphene-based materials. Mater. Sci. Eng. C, 2016, 61, 953-964.
[http://dx.doi.org/10.1016/j.msec.2015.12.073] [PMID: 26838925]
[20]
Liu, Z.; Robinson, J.T.; Sun, X.; Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc., 2008, 130(33), 10876-10877.
[http://dx.doi.org/10.1021/ja803688x] [PMID: 18661992]
[21]
Tiwari, H.; Karki, N.; Pal, M.; Basak, S.; Verma, R.K.; Bal, R.; Kandpal, N.D.; Bisht, G.; Sahoo, N.G. Functionalized graphene oxide as a nanocarrier for dual drug delivery applications: The synergistic effect of quercetin and gefitinib against ovarian cancer cells. Colloids Surf. B Biointerfaces, 2019, 178, 452-459.
[http://dx.doi.org/10.1016/j.colsurfb.2019.03.037] [PMID: 30921680]
[22]
Tewari, C.; Tatrari, G.; Karakoti, M.; Pandey, S.; Pal, M.; Rana, S. SanthiBhushan, B.; Melkani, A.B.; Srivastava, A.; Sahoo, N.G. A simple, eco-friendly and green approach to synthesis of blue photoluminescent potassium-doped graphene oxide from agriculture waste for bio-imaging applications. Mater. Sci. Eng. C, 2019, 104109970
[http://dx.doi.org/10.1016/j.msec.2019.109970] [PMID: 31500004]
[23]
Yang, S.; Lohe, M.R.; Müllen, K.; Feng, X. New-generation graphene from electrochemical approaches: Production and applications. Adv. Mater., 2016, 28(29), 6213-6221.
[http://dx.doi.org/10.1002/adma.201505326] [PMID: 26836313]
[24]
Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc., 1958, 80, 1339-1339.
[http://dx.doi.org/10.1021/ja01539a017]
[25]
Lee, R.S.; Kim, H.J.; Fischer, J.E.; Thess, A.; Smalley, R.E. Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature, 1997, 388(6639), 255-257.
[http://dx.doi.org/10.1038/40822]
[26]
Mordkovich, V.Z.; Ohki, Y.; Yoshimura, S.; Hino, S.; Yamashita, T.; Enoki, T. Potassium-oxygen graphite intercalation compounds. Synth. Met., 1994, 68(1), 79-83.
[http://dx.doi.org/10.1016/0379-6779(94)90150-3]
[27]
Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science, 2006, 313(5789), 951-954.
[http://dx.doi.org/10.1126/science.1130681] [PMID: 16917057]
[28]
Valle’s C.; Drummond, C.; Saadaoui, H.; Furtado, C.A.; He, M.; Roubeau, O.; Ortolani, L.; Monthioux, M.; Pe nicaud, A. Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc., 2018, 130, 15802-15804.
[29]
Hassani, F.; Tavakol, H.A. DFT, AIM and NBO study of adsorption and chemical sensing of iodine by S-doped fullerenes. Sens. Actuators B Chem., 2014, 196, 624-630.
[http://dx.doi.org/10.1016/j.snb.2014.02.051]
[30]
Hazrati, M.K.; Hadipour, N.L. Adsorption behavior of 5- fuorouracil on pristine, B-, Si-, and Al-doped C60 fullerenes: A first principles study. Phys. Lett. A, 2016, 380(7-8), 937-941.
[http://dx.doi.org/10.1016/j.physleta.2016.01.020]
[31]
Alipour, E.; Alimohammady, F.; Yumashev, A.; Maseleno, A. Fullerene C60 containing porphyrin-like metal center as drug delivery system for ibuprofen drug. J. Mol. Model., 2019, 26(1), 7.
[http://dx.doi.org/10.1007/s00894-019-4267-1] [PMID: 31834504]
[32]
Omidvar, A. Electronic structure tuning and band gap opening of nitrogen and boron doped holey graphene flake: The role of single/dual doping. Mater. Chem. Phys., 2017, 202, 258-265.
[http://dx.doi.org/10.1016/j.matchemphys.2017.09.025]
[33]
Karki, N.; Tiwari, H.; Pal, M.; Chaurasia, A.; Bal, R.; Joshi, P.; Sahoo, N.G.; Sahoo, N.G. Functionalized graphene oxides for drug loading, release and delivery of poorly water soluble anticancer drug: A comparative study. Colloids Surf. B Biointerfaces, 2018, 169, 265-272.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.022] [PMID: 29783152]
[34]
Lehár, J.; Krueger, A.S.; Avery, W.; Heilbut, A.M.; Johansen, L.M.; Price, E.R.; Rickles, R.J.; Short, G.F., III; Staunton, J.E.; Jin, X.; Lee, M.S.; Zimmermann, G.R.; Borisy, A.A. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol., 2009, 27(7), 659-666.
[http://dx.doi.org/10.1038/nbt.1549] [PMID: 19581876]
[35]
Calabrò, F.; Lorusso, V.; Rosati, G.; Manzione, L.; Frassineti, L.; Sava, T.; Di Paula, E.D.; Alonso, S.; Sternberg, C.N. Gemcitabine and paclitaxel every 2 weeks in patients with previously untreated urothelial carcinoma. Cancer, 2009, 115(12), 2652-2659.
[http://dx.doi.org/10.1002/cncr.24313] [PMID: 19396817]
[36]
McDaid, H.M.; Johnston, P.G. Synergistic interaction between paclitaxel and 8-chloro-adenosine 3′,5′-monophosphate in human ovarian carcinoma cell lines. Clin. Cancer Res., 1999, 5(1), 215-220.
[PMID: 9918222]
[37]
Pourjavadi, A.; Asgari, S.; Hosseini, S.H.; Akhlaghi, M. Co-delivery of hydrophobic and hydrophilic drugs by graphene decorated magnetic dendrimer. Langmuir, 2018, 34(50), 15304-15318.
[http://dx.doi.org/10.1021/acs.langmuir.8b02710] [PMID: 30424605]
[38]
Zhou, L.; Zhou, L.; Wei, S.; Ge, X.; Zhou, J.; Jiang, H.; Li, F.; Shen, J. Combination of chemotherapy and photodynamic therapy using graphene oxide as drug delivery system. J. Photochem. Photobiol. B, 2014, 135, 7-16.
[http://dx.doi.org/10.1016/j.jphotobiol.2014.04.010] [PMID: 24792568]
[39]
Lynch, T.J.; Adjei, A.A.; Bunn, P.A., Jr; Eisen, T.G.; Engelman, J.; Goss, G.D.; Haber, D.A.; Heymach, J.V.; Jänne, P.A.; Johnson, B.E.; Johnson, D.H.; Lilenbaum, R.C.; Meyerson, M.; Sandler, A.B.; Sequist, L.V.; Settleman, J.; Wong, K.K.; Hart, C.S. Summary statement: Novel agents in the treatment of lung cancer: Advances in epidermal growth factor receptor-targeted agents. Clin. Cancer Res., 2006, 12(14 Pt 2), 4365s-4371s.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1005] [PMID: 16857812]
[40]
Gupta, M.; Goswami, K.; Marwaha, R.K.; Dureja, H. Safety and antitumor activity of gefitinib: An overview. Int. J. Pharm. Sci. Res., 2014, 5, 4129-4140.
[41]
Basak, S.; Mondal, S.; Dey, S.; Bhattacharya, P.; Saha, A.; Deep Punetha, V.; Abbas, A.; Gopal Sahoo, N. Fabrication of β-cyclodextrin-mediated single bimolecular inclusion complex: Characterization, molecular docking, in vitro release and bioavailability studies for gefitinib and simvastatin conjugate. J. Pharm. Pharmacol., 2017, 69(10), 1304-1317.
[http://dx.doi.org/10.1111/jphp.12769] [PMID: 28631808]
[42]
Sahoo, N.G.; Bao, H.; Pan, Y.; Pal, M.; Kakran, M.; Cheng, H.K.; Li, L.; Tan, L.P.; Tan, L.P. Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: A comparative study. Chem. Commun. (Camb.), 2011, 47(18), 5235-5237.
[http://dx.doi.org/10.1039/c1cc00075f] [PMID: 21451845]
[43]
Saikia, I.; Hazarika, M.; Yunus, S.; Pal, M.; Das, M.R.; Borah, J.C.; Tamuly, C. Green synthesis of Au-Ag-In-rGO nanocomposites and its α-glucosidase inhibition and cytotoxicity effects. Mater. Lett., 2018, 211, 48-50.
[http://dx.doi.org/10.1016/j.matlet.2017.09.084]
[44]
Saikia, I.; Sonowal, S.; Pal, M.; Baruah, P.K.; Das, M.R.; Tamuly, C. Biosynthesis of gold decorated reduced graphene oxide and its biological activities. Mater. Lett., 2016, 178, 239-242.
[http://dx.doi.org/10.1016/j.matlet.2016.05.011]
[45]
Allou, N.B.; Yadav, A.; Pal, M.; Goswamee, R.L. Biocompatible nanocomposite of carboxymethyl cellulose and functionalized carbon-norfloxacin intercalated layered double hydroxides. Carbohydr. Polym., 2018, 186, 282-289.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.066] [PMID: 29455989]
[46]
Bao, H.; Pan, Y.; Ping, Y.; Sahoo, N.G.; Wu, T.; Li, L.; Li, J.; Gan, L.H. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small, 2011, 7(11), 1569-1578.
[http://dx.doi.org/10.1002/smll.201100191] [PMID: 21538871]
[47]
Peleg, R.; Bobilev, D.; Priel, E. Topoisomerase I as a target of erlotinib and gefitinib: Efficacy of combined treatments with camptothecin. Int. J. Oncol., 2014, 44(3), 934-942.
[http://dx.doi.org/10.3892/ijo.2014.2244] [PMID: 24399039]