Coir Pith Lignin as a Reliable Bio-Source for Carbonaceous Nano- Structures: Extraction and Characterization

Page: [95 - 107] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: This paper signifies using coir pith lignin as a cheap and reliable carbon source for preparing bio-based carbonaceous material.

Objective: The coir pith is selected as it is abundantly available and has a very high lignin content of 38-59.5%. The soda extraction process does the extraction of lignin from coir pith with a yield of 45%.

Methods: This extracted lignin is then subjected to a different procedure to transform it into carbon nanofibers with an ID/IG ratio of 0.35 and carbon fillers with a high surface area of 1089.1 m2/g without the presence of an activating agent.

Results: Thus prepared carbonaceous fillers are potential reinforcements for polymer matrices as these fillers may provide sufficient mechanical and thermal stability to the composites.

Conclusion: Furthermore, due to their excellent electrical conductivity, 0.221 S/cm, the carbonaceous nanomaterials are suitable for multifunctional composite applications. This is the first work based on coir pith lignin as a carbon precursor to the best of our knowledge.

Keywords: coir pith lignin, electrospun carbon fiber, high surface area carbon filler, electrical conductivity, flexible electrode, Biomaterials

Graphical Abstract

[1]
Frank E, Steudle LM, Ingildeev D, Spörl JM, Buchmeiser MR. Carbon fibers: Precursor systems, processing, structure, and properties. Angew Chem Int Ed Engl 2014; 53(21): 5262-98.
[http://dx.doi.org/10.1002/anie.201306129] [PMID: 24668878]
[2]
Kalyani P, Anitha A. Biomass carbon & its prospects in electrochemical energy systems. Int J Hydrogen Energy 2013; 38(10): 4034-45.
[http://dx.doi.org/10.1016/j.ijhydene.2013.01.048]
[3]
Curtin J, McInerney C, Gallachóir BÓ, Hickey C, Deane P, Deeney P. Quantifying stranding risk for fossil fuel assets and implications for renewable energy investment: A review of the literature. Renew Sustain Energy Rev 2019; 116: 109402.
[http://dx.doi.org/10.1016/j.rser.2019.109402]
[4]
Chatterjee S, Jones EB, Clingenpeel AC, et al. Conversion of lignin precursors to carbon fibers with nanoscale graphitic domains. ACS Sustain Chem& Eng 2014; 2(8): 2002-10.
[http://dx.doi.org/10.1021/sc500189p]
[5]
Dallmeyer I, Lin LT, Li Y, Ko F, Kadla JF. Preparation and characterization of interconnected, kraft lignin based carbon fibrous materials by electrospinning. Macromol Mater Eng 2014; 299(5): 540-51.
[http://dx.doi.org/10.1002/mame.201300148]
[6]
Ma X, Kolla P, Zhao Y, Smirnova AL, Fong H. Electrospun lignin-derived carbon nanofiber mats surface-decorated with MnO2 nanowhiskers as binder-free supercapacitor electrodes with high performance. J Power Sources 2016; 325: 541-8.
[http://dx.doi.org/10.1016/j.jpowsour.2016.06.073]
[7]
Lai C, Zhou Z, Zhang L, et al. Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors. J Power Sources 2014; 247: 134-41.
[http://dx.doi.org/10.1016/j.jpowsour.2013.08.082]
[8]
Youe W-J, Kim SJ, Lee S-M, Chun S-J, Kang J, Kim YS. MnO2-deposited lignin-based carbon nanofiber mats for application as electrodes in symmetric pseudocapacitors. Int J Biol Macromol 2018; 112: 943-50.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.048] [PMID: 29438754]
[9]
García-Mateos FJ, Cordero-Lanzac T, Berenguer R, et al. Lignin-derived Pt supported carbon (submicron) fiber electrocatalysts for alcohol electro-oxidation. Appl Catal B 2017; 211: 18-30.
[http://dx.doi.org/10.1016/j.apcatb.2017.04.008]
[10]
Cao Q, Zhang Y, Chen J, et al. Electrospun biomass based carbon nanofibers as high-performance supercapacitors. Ind Crops Prod 2020; 148: 112181.
[http://dx.doi.org/10.1016/j.indcrop.2020.112181]
[11]
Cho M, Ji L, Liu L-Y. High performance electrospun carbon nanofiber mats derived from flax lignin. Ind Crops Prod 2020; 155: 112833.
[http://dx.doi.org/10.1016/j.indcrop.2020.112833]
[12]
Wang X, Xu Q, Cheng J, et al. Bio-refining corn stover into microbial lipid and advanced energy material using ionic liquid-based organic electrolyte. Ind Crops Prod 2020; 145: 112137.
[http://dx.doi.org/10.1016/j.indcrop.2020.112137]
[13]
Khezami L, Chetouani A, Taouk B, Capart R. Production and characterisation of activated carbon from wood components in powder: Cellulose, lignin, xylan. Powder Technol 2005; 157(1-3): 48-56.
[http://dx.doi.org/10.1016/j.powtec.2005.05.009]
[14]
Fierro V, Torné-Fernández V, Montané D, Celzard A. Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous Mesoporous Mater 2008; 111(1-3): 276-84.
[http://dx.doi.org/10.1016/j.micromeso.2007.08.002]
[15]
Fierro V, Torné-Fernández V, Celzard A. Methodical study of the chemical activation of Kraft lignin with KOH and NaOH. Microporous Mesoporous Mater 2007; 101(3): 419-31.
[http://dx.doi.org/10.1016/j.micromeso.2006.12.004]
[16]
Montané D, Torné-Fernández V, Fierro V. Activated carbons from lignin: Kinetic modeling of the pyrolysis of Kraft lignin activated with phosphoric acid. Chem Eng J 2005; 106(1): 1-12.
[http://dx.doi.org/10.1016/j.cej.2004.11.001]
[17]
Maldhure AV, Ekhe J. Preparation and characterizations of microwave assisted activated carbons from industrial waste lignin for Cu (II) sorption. Chem Eng J 2011; 168(3): 1103-11.
[http://dx.doi.org/10.1016/j.cej.2011.01.091]
[18]
Arulandoo X, Sritharan K, Subramaniam M. The Coconut Palm. 2017.
[http://dx.doi.org/10.1016/B978-0-12-394807-6.00237-9]
[19]
Rencoret J, Ralph J, Marques G, Gutiérrez A, Martínez Á, del Río JC. Structural characterization of lignin isolated from coconut (Cocos nucifera) coir fibers. J Agric Food Chem 2013; 61(10): 2434-45.
[http://dx.doi.org/10.1021/jf304686x] [PMID: 23398235]
[20]
Ago M, Jakes JE, Rojas OJ. Thermomechanical properties of lignin-based electrospun nanofibers and films reinforced with cellulose nanocrystals: a dynamic mechanical and nanoindentation study. ACS Appl Mater Interfaces 2013; 5(22): 11768-76.
[http://dx.doi.org/10.1021/am403451w] [PMID: 24168403]
[21]
Dalton N, Lynch RP, Collins MN, Culebras M. Thermoelectric properties of electrospun carbon nanofibres derived from lignin. Int J Biol Macromol 2019; 121: 472-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.051] [PMID: 30321639]
[22]
Dong X, Lu C, Zhou P, Zhang S, Wang L, Li D. Polyacrylonitrile/lignin sulfonate blend fiber for low-cost carbon fiber. RSC Advances 2015; 5(53): 42259-65.
[http://dx.doi.org/10.1039/C5RA01241D]
[23]
Jin J, Yu B, Shi Z, Wang C-Y, Chong C. Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries. J Power Sources 2014; 272: 800-7.
[http://dx.doi.org/10.1016/j.jpowsour.2014.08.119]
[24]
García-Mateos FJ, Ruiz-Rosas R, Rosas JM, et al. Activation of electrospun lignin-based carbon fibers and their performance as self-standing supercapacitor electrodes. Separ Purif Tech 2020; 241: 116724.
[http://dx.doi.org/10.1016/j.seppur.2020.116724]
[25]
Zhang R, Du Q, Wang L, et al. Unlocking the response of lignin structure for improved carbon fiber production and mechanical strength. Green Chem 2019; 21(18): 4981-7.
[http://dx.doi.org/10.1039/C9GC01632E]
[26]
Ruiz-Rosas R, Bedia J, Lallave M, et al. The production of submicron diameter carbon fibers by the electrospinning of lignin. Carbon 2010; 48(3): 696-705.
[http://dx.doi.org/10.1016/j.carbon.2009.10.014]
[27]
Schlee P, Hosseinaei O, Baker D, et al. From waste to wealth: From Kraft lignin to free-standing supercapacitors. Carbon 2019; 145: 470-80.
[http://dx.doi.org/10.1016/j.carbon.2019.01.035]
[28]
Zhao M, Wang J, Chong C, Yu X, Wang L, Shi Z. An electrospun lignin/polyacrylonitrile nonwoven composite separator with high porosity and thermal stability for lithium-ion batteries. RSC Adv 2015; 5(122): 101: 115-.
[http://dx.doi.org/10.1039/C5RA19371K]
[29]
Salleh Z, Yusop MY, Rosdi MS. Mechanical properties of activated carbon (AC) coir fibers reinforced with epoxy resin. J Mech Eng Sci 2013; 5: 631-8.
[30]
Mullaivananathan V, Packiyalakshmi P, Kalaiselvi N. Multifunctional bio carbon: A coir pith waste derived electrode for extensive energy storage device applications. RSC Advances 2017; 7(38): 23663-70.
[http://dx.doi.org/10.1039/C7RA03078A]
[31]
Mullaivananathan V, Sathish R, Kalaiselvi N. Coir pith derived bio-carbon: Demonstration of potential anode behavior in lithium-ion batteries. Electrochim Acta 2017; 225: 143-50.
[http://dx.doi.org/10.1016/j.electacta.2016.12.086]
[32]
Sesuk T, Tammawat P, Jivaganont P, Somton K, Limthongkul P, Kobsiriphat W. Activated carbon derived from coconut coir pith as high performance supercapacitor electrode material. J Energy Storage 2019; 251: 00910.
[http://dx.doi.org/10.1016/j.est.2019.100910]
[33]
AlNouss A, Parthasarathy P, Shahbaz M, Al-Ansari T, Mackey H, McKay G. Techno-economic and sensitivity analysis of coconut coir pith-biomass gasification using ASPEN PLUS. Appl Energy 2020; 261: 114350.
[http://dx.doi.org/10.1016/j.apenergy.2019.114350]
[34]
Macedo JS, Otubo L, Ferreira OP, de Fátima Gimenez I, Mazali IO, Barreto LS. Biomorphic activated porous carbons with complex microstructures from lignocellulosic residues. Microporous Mesoporous Mater 2008; 107(3): 276-85.
[http://dx.doi.org/10.1016/j.micromeso.2007.03.020]
[35]
Derkacheva O, Sukhov D, Eds. Investigation of lignins by FTIR spectroscopy Macromolecular symposia. Wiley Online Library 2008.
[36]
Mathew T, Sree RA, Aishwarya S, et al. Graphene-based functional nanomaterials for biomedical and bioanalysis applications. FlatChem 2020; 23: 100184.
[http://dx.doi.org/10.1016/j.flatc.2020.100184]
[37]
Suhas DP, Aminabhavi TM, Jeong HM, Raghu AV. Hydrogen peroxide treated graphene as an effective nanosheet filler for separation application. RSC Advances 2015; 5(122): 100984-95.
[http://dx.doi.org/10.1039/C5RA19918B]
[38]
Kim KT, Dao TD, Jeong HM, Anjanapura RV, Aminabhavi TM. Graphene coated with alumina and its utilization as a thermal conductivity enhancer for alumina sphere/thermoplastic polyurethane composite. Mater Chem Phys 2015; 153: 291-300.
[http://dx.doi.org/10.1016/j.matchemphys.2015.01.016]
[39]
Nguyen DA, Raghu AV, Choi JT, Jeong HM. Properties of thermoplastic polyurethane/functionalised graphene sheet nanocomposites prepared by the in situ polymerisation method. Polym Polymer Compos 2010; 18(7): 351-8.
[http://dx.doi.org/10.1177/096739111001800701]
[40]
Baker DA, Rials TG. Recent advances in low cost carbon fiber manufacture from lignin. J Appl Polym Sci 2013; 130(2): 713-28.
[http://dx.doi.org/10.1002/app.39273]
[41]
Nada A-AM, El-Sakhawy M, Kamel SM. Infra-red spectroscopic study of lignins. Polym Degrad Stabil 1998; 60(2-3): 247-51.
[http://dx.doi.org/10.1016/S0141-3910(97)00072-4]
[42]
Ghaffar SH, Fan M. Structural analysis for lignin characteristics in biomass straw. Biomass Bioenergy 2013; 57: 264-79.
[http://dx.doi.org/10.1016/j.biombioe.2013.07.015]
[43]
Stark NM, Yelle DJ, Agarwal UP. Techniques for characterizing lignin. Lignin Polym Compos 2016; 49-66.
[http://dx.doi.org/10.1016/B978-0-323-35565-0.00004-7]
[44]
Huang J, Fu S, Gan L. Structure and characteristics of lignin. Lignin Chemistry and Applications 2019; 25-50.
[45]
Jablonský M, Kočiš J, Ház A, Šima J. Characterization and comparison by UV spectroscopy of precipitated lignins and commercial lignosulfonates. Cellul Chem Technol 2015; 49(3-4): 267-74.
[46]
Milotskyi R, Szabó L, Takahashi K, Bliard C. Chemical modification of plasticized lignins using reactive extrusion. Front Chem 2019; 7: 633.
[http://dx.doi.org/10.3389/fchem.2019.00633] [PMID: 31620426]
[47]
Albinsson B, Li S, Lundquist K, Stomberg R. The origin of lignin fluorescence. J Mol Struct 1999; 508(1-3): 19-27.
[http://dx.doi.org/10.1016/S0022-2860(98)00913-2]
[48]
Donaldson L, Williams N. Imaging and spectroscopy of natural fluorophores in pine needles. Plants 2018; 7(1): 10.
[http://dx.doi.org/10.3390/plants7010010] [PMID: 29393922]
[49]
Dence C. Methods in Lignin Chemistry. Berlin, Heidelberg: Springer Verlag 1992; pp. 33-61.
[http://dx.doi.org/10.1007/978-3-642-74065-7_3]
[50]
Lu C-J, Benner R, Fichot CG, Fukuda H, Yamashita Y, Ogawa H. Sources and transformations of dissolved lignin phenols and chromophoric dissolved organic matter in Otsuchi Bay, Japan. Front Mar Sci 2016; 3: 85.
[http://dx.doi.org/10.3389/fmars.2016.00085]
[51]
Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol 2003; 54(1): 519-46.
[http://dx.doi.org/10.1146/annurev.arplant.54.031902.134938] [PMID: 14503002]
[52]
Maceda A, Terrazas T. Fluorescence microscopy methods for the analysis and characterization of lignin. Polymers (Basel) 2022; 14(5): 961.
[http://dx.doi.org/10.3390/polym14050961] [PMID: 35267784]
[53]
Radotić K, Kalauzi A, Djikanović D, Jeremić M, Leblanc RM, Cerović ZG. Component analysis of the fluorescence spectra of a lignin model compound. J Photochem Photobiol B 2006; 83(1): 1-10.
[http://dx.doi.org/10.1016/j.jphotobiol.2005.12.001] [PMID: 16406801]
[54]
Donaldson LA, Radotic K. Fluorescence lifetime imaging of lignin autofluorescence in normal and compression wood. J Microsc 2013; 251(2): 178-87.
[http://dx.doi.org/10.1111/jmi.12059] [PMID: 23763341]
[55]
Salanti A, Orlandi M, Zoia L. Fluorescence labeling of technical lignin for the study of phenolic group distribution as a function of the molecular weight. ACS Sustain Chem& Eng 2020; 8(22): 8279-87.
[http://dx.doi.org/10.1021/acssuschemeng.0c01571]
[56]
Saisu M, Sato T, Watanabe M, Adschiri T, Arai K. Conversion of lignin with supercritical water-phenol mixtures. Energy Fuels 2003; 17(4): 922-8.
[http://dx.doi.org/10.1021/ef0202844]
[57]
Dastpak A, Lourenҫon TV, Balakshin M, Hashmi SF, Lundström M, Wilson BP. Solubility study of lignin in industrial organic solvents and investigation of electrochemical properties of spray-coated solutions. Ind Crops Prod 2020; 148: 112310.
[http://dx.doi.org/10.1016/j.indcrop.2020.112310]
[58]
Kadla J, Kubo S, Venditti R, Gilbert R, Compere A, Griffith W. Lignin-based carbon fibers for composite fiber applications. Carbon 2002; 40(15): 2913-20.
[http://dx.doi.org/10.1016/S0008-6223(02)00248-8]
[59]
Wikberg H, Ohra-Aho T, Pileidis F, Titirici M-M. Structural and morphological changes in kraft lignin during hydrothermal carbonization. ACS Sustain Chem& Eng 2015; 3(11): 2737-45.
[http://dx.doi.org/10.1021/acssuschemeng.5b00925]
[60]
Kanetake T, Sasaki M, Goto M. Decomposition of a lignin model compound under hydrothermal conditions. chemical engineering & technology. Indus Chem Plant Equip Proc Eng Biotechnol 2007; 30(8): 1113-22.
[61]
Okuda K, Ohara S, Umetsu M, Takami S, Adschiri T. Disassembly of lignin and chemical recovery in supercritical water and p-cresol mixture. Studies on lignin model compounds. Bioresour Technol 2008; 99(6): 1846-52.
[http://dx.doi.org/10.1016/j.biortech.2007.03.062] [PMID: 17540557]
[62]
Kundie F, Azhari CH, Muchtar A, Ahmad ZA. Effects of filler size on the mechanical properties of polymer-filled dental composites: A review of recent developments. J Physiol Sci 2018; 29(1): 141-65.
[http://dx.doi.org/10.21315/jps2018.29.1.10]
[63]
Samal S. Effect of shape and size of filler particle on the aggregation and sedimentation behavior of the polymer composite. Powder Technol 2020; 366: 43-51.
[http://dx.doi.org/10.1016/j.powtec.2020.02.054]
[64]
Lee S, Kontopoulou M, Park C. Effect of nanosilica on the co-continuous morphology of polypropylene/polyolefin elastomer blends. Polymer (Guildf) 2010; 51(5): 1147-55.
[http://dx.doi.org/10.1016/j.polymer.2010.01.018]
[65]
Li W, Yang K, Peng J, Zhang L, Guo S, Xia H. Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Ind Crops Prod 2008; 28(2): 190-8.
[http://dx.doi.org/10.1016/j.indcrop.2008.02.012]