Nanoscience & Nanotechnology-Asia

Author(s): Vidya Sabale and Manasi Jiwankar*

DOI: 10.2174/2210681212666220523123316

Nanostructured Lipid Carriers: New Insight for Cancer Therapy

Article ID: e230522205118 Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Cancer is a life-threatening disease that is associated with persistent tissue injury and uncontrolled cell growth. The treatments available to treat cancer include chemotherapy, surgery, and radiation therapy. These treatments are utilized in combination, while the most preferred treatment is chemotherapy. Because of the non-specificity of anticancer drugs, they kill healthy cells along with cancer cells, which lead to severe side effects. To minimize such limitations associated with conventional chemotherapy, nanostructured lipids carriers (NLCs) can be developed. These nanocarriers consist of a mixture of solid and liquid lipids and surfactants. Lipids utilized in the formulation of NLCs are biocompatible and biodegradable. NLCs ensure high drug payload, less drug expulsion, and more stability on storage. NLCs enhance the aqueous solubility of lipophilic anticancer drugs. Their surface modification can help to overcome drug resistance in cancer therapy. Controlled and targeted drug delivery of anticancer drugs can be possible by formulating them as NLCs. NLCs can play an important role in targeting anticancer drugs by different mechanisms. This review highlights types, formulation methods, characterization of nanostructured lipid carriers, and strategies to achieve targeted release of anticancer drugs loaded in NLCs.

Keywords: Cancer, nanostructured lipid carriers, drug targeting, lipids, controlled drug delivery, anticancer drugs.

Graphical Abstract

[1]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[2]
Kruijtzer, C.M.; Beijnen, J.H.; Schellens, J.H. Improvement of oral drug treatment by temporary inhibition of drug transporters and/or cytochrome P450 in the gastrointestinal tract and liver: An overview. Oncologist, 2002, 7(6), 516-530.
[http://dx.doi.org/10.1634/theoncologist.7-6-516] [PMID: 12490739]
[3]
Terwogt, J.M.; Schellens, J.H.; Huinink, W.W.; Beijnen, J.H. Clinical pharmacology of anticancer agents in relation to formulations and administration routes. Cancer Treat. Rev., 1999, 25(2), 83-101.
[http://dx.doi.org/10.1053/ctrv.1998.0107] [PMID: 10395834]
[4]
Liao, Z.; Chua, D.; Tan, N.S. Reactive oxygen species: A volatile driver of field cancerization and metastasis. Mol. Cancer, 2019, 18(1), 65.
[http://dx.doi.org/10.1186/s12943-019-0961-y] [PMID: 30927919]
[5]
Cho, K.; Wang, X.; Nie, S.; Chen, Z.G.; Shin, D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res., 2008, 14(5), 1310-1316.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1441] [PMID: 18316549]
[6]
Dadwal, A.; Baldi, A.; Kumar Narang, R. Nanoparticles as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup2), 295-305.
[http://dx.doi.org/10.1080/21691401.2018.1457039] [PMID: 30043651]
[7]
Needham, D.; Dewhirst, M.W. The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv. Drug Deliv. Rev., 2001, 53(3), 285-305.
[http://dx.doi.org/10.1016/S0169-409X(01)00233-2] [PMID: 11744173]
[8]
De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles:applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[9]
Shidhaye, S.S.; Vaidya, R.; Sutar, S.; Patwardhan, A.; Kadam, V.J. Solid lipid nanoparticles and nanostructured lipid carriers--innovative generations of solid lipid carriers. Curr. Drug Deliv., 2008, 5(4), 324-331.
[http://dx.doi.org/10.2174/156720108785915087] [PMID: 18855604]
[10]
Ozpolat, B.; Sood, A.K.; Lopez-Berestein, G. Liposomal siRNA nanocarriers for cancer therapy. Adv. Drug Deliv. Rev., 2014, 66, 110-116.
[http://dx.doi.org/10.1016/j.addr.2013.12.008] [PMID: 24384374]
[11]
Battaglia, L.; Gallarate, M. Lipid nanoparticles: State of the art, new preparation methods and challenges in drug delivery. Expert Opin. Drug Deliv., 2012, 9(5), 497-508.
[http://dx.doi.org/10.1517/17425247.2012.673278] [PMID: 22439808]
[12]
Müller, R.H.; Shegokar, R.; Keck, C.M. 20 years of lipid nanoparticles (SLN and NLC): Present state of development and industrial applications. Curr. Drug Discov. Technol., 2011, 8(3), 207-227.
[http://dx.doi.org/10.2174/157016311796799062] [PMID: 21291409]
[13]
Müller, R.H.; Radtke, M.; Wissing, S.A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm., 2002, 242(1-2), 121-128.
[http://dx.doi.org/10.1016/S0378-5173(02)00180-1] [PMID: 12176234]
[14]
Liu, H.; Wu, T. Optimization of nanostructured lipid carriers for lutein delivery. Colloids Surf. A Physicochem. Eng. Asp., 2010, 353(2-3), 149-156.
[http://dx.doi.org/10.1016/j.colsurfa.2009.11.006]
[15]
Das, S.; Chaudhury, A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech, 2011, 12(1), 62-76.
[http://dx.doi.org/10.1208/s12249-010-9563-0] [PMID: 21174180]
[16]
Beck, R.; Guterres, S.; Pohlmann, A. Nanocosmetics and Nanomedicines: New Approaches for Skin Care; Springer: Germany, 2011.
[http://dx.doi.org/10.1007/978-3-642-19792-5]
[17]
Katouzian, I.; Esfanjani, F.; Jafari, M.; Akhavan, S. Formulation, and application of a new generation of lipid nano-carriers for the food bioactive ingredients. Trends Food Sci. Technol., 2017, 68(11), 14-25.
[http://dx.doi.org/10.1016/j.tifs.2017.07.017]
[18]
Wang, T.; Xue, J.; Hu, Q.; Zhou, M.; Luo, Y. Preparation of lipid nanoparticles with high loading capacity and exceptional gastrointestinal stability for potential oral delivery applications. J. Colloid Interface Sci., 2017, 507, 119-130.
[http://dx.doi.org/10.1016/j.jcis.2017.07.090] [PMID: 28780331]
[19]
Montenegro, L.; Lai, F.; Offera, A.; Sarpietro, G.; Micicche, L.; Maccioni, M. From nanoemulsions to nanostructured lipid carriers: A relevant development in dermal delivery of drugs and cosmetics. J. Drug Deliv. Sci. Technol., 2016, 32, 100-112.
[http://dx.doi.org/10.1016/j.jddst.2015.10.003]
[20]
Beloqui, A.; Solinís, M.Á.; Rodríguez-Gascón, A.; Almeida, A.J.; Préat, V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine, 2016, 12(1), 143-161.
[http://dx.doi.org/10.1016/j.nano.2015.09.004] [PMID: 26410277]
[21]
Purohit, K. N, andgude, D.; Poddar, S. Nano-lipid carriers for topical application: Current scenario. Asian J. Pharm., 2016, 9(5), 1-9.
[22]
Li, Q.; Cai, T.; Huang, Y.; Xia, X.; Cole, S.P.C.; Cai, Y. A review of the structure, preparation and application of NLCs, PNPs and PLNs. Nanomaterials, 2017, 7(6), 122-147.
[http://dx.doi.org/10.3390/nano7060122] [PMID: 28554993]
[23]
Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm., 2009, 366(1-2), 170-184.
[http://dx.doi.org/10.1016/j.ijpharm.2008.10.003] [PMID: 18992314]
[24]
Uner, M. Preparation, characterization and physico-chemical properties of Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC): Their benefits as colloidal drug carrier systems. Pharmazie, 2006, 61(5), 375-386.
[PMID: 16724531]
[25]
Tiwari, R.; Pathak, K. Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: Comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int. J. Pharm., 2011, 415(1-2), 232-243.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.044] [PMID: 21640809]
[26]
Sarathchandiran, I. A review on nanotechnology in solid lipid nanoparticles. Int. J. Pharm. Dev. Tech., 2012, 2(1), 45-61.
[27]
Cipolla, D.; Shekunov, B.; Blanchard, J.; Hickey, A. Lipid-based carriers for pulmonary products: Preclinical development and case studies in humans. Adv. Drug Deliv. Rev., 2014, 75, 53-80.
[http://dx.doi.org/10.1016/j.addr.2014.05.001] [PMID: 24819218]
[28]
Jaiswal, P.; Gidwani, B.; Vyas, A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 27-40.
[http://dx.doi.org/10.3109/21691401.2014.909822] [PMID: 24813223]
[29]
Kumar, S.; Dilbagh, N.; Saharan, R.; Bhanjana, G. Nanotechnology as emerging tool for enhancing solubility of poorly water-soluble drugs. Bionanoscience, 2012, 2(4), 227-250.
[http://dx.doi.org/10.1007/s12668-012-0060-7]
[30]
Jagdevappa, P.; Prashant, G.; Ravindra, K.; Sachin, J.; Satish, M.; Meghanath, S. Applications of solid lipid nanoparticle in novel drug delivery system. Br. Biomed. Bull., 2013, 1(2), 103-118.
[31]
Gaba, B.; Fazil, M.; Ali, A.; Baboota, S.; Sahni, J.K.; Ali, J. Nanostructured lipid (NLCs) carriers as a bioavailability enhancement tool for oral administration. Drug Deliv., 2015, 22(6), 691-700.
[http://dx.doi.org/10.3109/10717544.2014.898110] [PMID: 24670099]
[32]
Jenning, V.; Schäfer-Korting, M.; Gohla, S. Vitamin A-loaded solid lipid nanoparticles for topical use: Drug release properties. J. Control. Release, 2000, 66(2-3), 115-126.
[http://dx.doi.org/10.1016/S0168-3659(99)00223-0] [PMID: 10742573]
[33]
Mitri, K.; Shegokar, R.; Gohla, S.; Anselmi, C.; Müller, R.H. Lipid nanocarriers for dermal delivery of lutein: Preparation, characterization, stability and performance. Int. J. Pharm., 2011, 414(1-2), 267-275.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.008] [PMID: 21596122]
[34]
Müller, R.H.; Radtke, M.; Wissing, S.A. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev., 2002, 54(Suppl. 1), S131-S155.
[http://dx.doi.org/10.1016/S0169-409X(02)00118-7] [PMID: 12460720]
[35]
Tamjidi, F.; Shahedi, M.; Varshosaz, J.; Nasirpour, A. Nanostructured Lipid Carriers (NLC): A potential delivery system for bioactive food molecules. Innov. Food Sci. Emerg. Technol., 2013, 19, 29-43.
[http://dx.doi.org/10.1016/j.ifset.2013.03.002]
[36]
Müller, R.H.; Mäder, K.; Gohla, S. Solid Lipid Nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[37]
Fundarò, A.; Cavalli, R.; Bargoni, A.; Vighetto, D.; Zara, G.P.; Gasco, M.R. Non-stealth and stealth Solid Lipid Nanoparticles (SLN) carrying doxorubicin: Pharmacokinetics and tissue distribution after i.v. administration to rats. Pharmacol. Res., 2000, 42(4), 337-343.
[http://dx.doi.org/10.1006/phrs.2000.0695] [PMID: 10987994]
[38]
Severino, P.; Pinho, S.C.; Souto, E.B.; Santana, M.H. Polymorphism, crystallinity and hydrophilic-lipophilic balance of stearic acid and stearic acid-capric/caprylic triglyceride matrices for production of stable nanoparticles. Colloids Surf. B Biointerfaces, 2011, 86(1), 125-130.
[http://dx.doi.org/10.1016/j.colsurfb.2011.03.029] [PMID: 21543196]
[39]
Vivek, K.; Reddy, H.; Murthy, R.S. Investigations of the effect of the lipid matrix on drug entrapment, in vitro release, and physical stability of olanzapine-loaded solid lipid nanoparticles. AAPS PharmSciTech, 2007, 8(4), E83.
[http://dx.doi.org/10.1208/pt0804083] [PMID: 18181544]
[40]
Chawla, V.; Saraf, A. Glycerylbehenate and its suitability for production of aceclofenac solid lipid nanoparticles. J. Am. Oil Chem. Soc., 2011, 88(1), 119-126.
[http://dx.doi.org/10.1007/s11746-010-1618-6]
[41]
Rowe, C.; Sheskey, J.; Quinn, E. Handbook of Pharmaceutical Excipients; Pharmaceutical Press: London, 2009.
[42]
Shah, D.; Limketkai, N. The use of medium-chain triglycerides in gastrointestinal disorders. Pract. Gastroenterol., 2017, 41, 20-28.
[43]
Belfrage, P.; Vaughan, M. Simple liquid-liquid partition system for isolation of labeled oleic acid from mixtures with glycerides. J. Lipid Res., 1969, 10(3), 341-344.
[http://dx.doi.org/10.1016/S0022-2275(20)43094-9] [PMID: 5785006]
[44]
Gramdorf, S.; Hermann, S.; Hentschel, A. Crystallized miniemulsions: Influence of operating parameters during high‐pressure homogenization on size and shape of particles. Colloids Surf. A Physicochem. Eng. Asp., 2008, 331(1), 108-113.
[http://dx.doi.org/10.1016/j.colsurfa.2008.07.016]
[45]
Valls, V.; Goicoechea, M.; Muniz, P.; Saez, T.; Cabo, R. Effect of corn oil and vitamin E on the oxidative status of adipose tissues and liver in rat. Food Chem., 2003, 81(2), 281-286.
[http://dx.doi.org/10.1016/S0308-8146(02)00425-9]
[46]
Helgason, T.; Awad, T.S.; Kristbergsson, K.; Decker, E.A.; McClements, D.J.; Weiss, J. Impact of surfactant properties on oxidative stability of beta-carotene encapsulated within solid lipid nanoparticles. J. Agric. Food Chem., 2009, 57(17), 8033-8040.
[http://dx.doi.org/10.1021/jf901682m] [PMID: 19691283]
[47]
Triplett, D.; Rathman, F. Optimization of β-carotene loaded solid lipid nanoparticles preparation using a high shear homogenization technique. J. Nanopart., 2008, 11(3), 601-614.
[http://dx.doi.org/10.1007/s11051-008-9402-3]
[48]
Manjunath, K.; Reddy, J.S.; Venkateswarlu, V. Solid lipid nanoparticles as drug delivery systems. Methods Find. Exp. Clin. Pharmacol., 2005, 27(2), 127-144.
[http://dx.doi.org/10.1358/mf.2005.27.2.876286] [PMID: 15834465]
[49]
Sivaramakrishnan, R.; Nakamura, C.; Mehnert, W.; Korting, H.C.; Kramer, K.D.; Schäfer-Korting, M. Glucocorticoid entrapment into lipid carriers--characterisation by parelectric spectroscopy and influence on dermal uptake. J. Control. Release, 2004, 97(3), 493-502.
[http://dx.doi.org/10.1016/S0168-3659(04)00169-5] [PMID: 15212881]
[50]
Puri, A.; Loomis, K.; Smith, B.; Lee, J.H.; Yavlovich, A.; Heldman, E.; Blumenthal, R. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst., 2009, 26(6), 523-580.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i6.10] [PMID: 20402623]
[51]
Trujillo, C.; Wright, J. Properties and stability of solid lipid particle dispersions based on canola stearin and poloxamer 188. J. Am. Oil Chem. Soc., 2010, 87(7), 715-730.
[http://dx.doi.org/10.1007/s11746-010-1553-6]
[52]
Whitehurst, J. Emulsifiers in Food Technology; Blackwell Publishing Ltd: Oxford, United States, 2004.
[http://dx.doi.org/10.1002/9780470995747]
[53]
Using emulsifiers to improve food texture In: Texture in Foods; McKenna, M.; Krog, N., Eds.; Florida : CRC Press, 2003; pp. 216-274.
[54]
Souto, E.B.; Müller, R.H. Investigation of the factors influencing the incorporation of clotrimazole in SLN and NLC prepared by hot high-pressure homogenization. J. Microencapsul., 2006, 23(4), 377-388.
[http://dx.doi.org/10.1080/02652040500435295] [PMID: 16854814]
[55]
Zhuang, C.Y.; Li, N.; Wang, M.; Zhang, X.N.; Pan, W.S.; Peng, J.J.; Pan, Y.S.; Tang, X. Preparation and characterization of vinpocetine loaded Nanostructured Lipid Carriers (NLC) for improved oral bioavailability. Int. J. Pharm., 2010, 394(1-2), 179-185.
[http://dx.doi.org/10.1016/j.ijpharm.2010.05.005] [PMID: 20471464]
[56]
Severino, P.; Santana, M.H.; Souto, E.B. Optimizing SLN and NLC by 2(2) full factorial design: Effect of homogenization technique. Mater. Sci. Eng. C, 2012, 32(6), 1375-1379.
[http://dx.doi.org/10.1016/j.msec.2012.04.017] [PMID: 24364934]
[57]
Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71(4), 349-358.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[58]
Shah, R.M.; Malherbe, F.; Eldridge, D.; Palombo, E.A.; Harding, I.H. Physicochemical characterization of Solid Lipid Nanoparticles (SLNs) prepared by a novel microemulsion technique. J. Colloid Interface Sci., 2014, 428, 286-294.
[http://dx.doi.org/10.1016/j.jcis.2014.04.057] [PMID: 24910064]
[59]
Gasco, R. Method for producing solid lipid microspheres having a narrow size distribution. U. S. Patent 4,250,236, 1991.
[60]
Luo, Y.; Chen, D.; Ren, L.; Zhao, X.; Qin, J. Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J. Control. Release, 2006, 114(1), 53-59.
[http://dx.doi.org/10.1016/j.jconrel.2006.05.010] [PMID: 16828192]
[61]
Jenning, V.; Thünemann, A.F.; Gohla, S.H. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int. J. Pharm., 2000, 199(2), 167-177.
[http://dx.doi.org/10.1016/S0378-5173(00)00378-1] [PMID: 10802410]
[62]
Tsai, M.J.; Wu, P.C.; Huang, Y.B.; Chang, J.S.; Lin, C.L.; Tsai, Y.H.; Fang, J.Y. Baicalein loaded in tocol Nanostructured Lipid Carriers (tocol NLCs) for enhanced stability and brain targeting. Int. J. Pharm., 2012, 423(2), 461-470.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.009] [PMID: 22193056]
[63]
Trotta, M.; Debernardi, F.; Caputo, O. Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique. Int. J. Pharm., 2003, 257(1-2), 153-160.
[http://dx.doi.org/10.1016/S0378-5173(03)00135-2] [PMID: 12711170]
[64]
Hu, F.Q.; Jiang, S.P.; Du, Y.Z.; Yuan, H.; Ye, Y.Q.; Zeng, S. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf. B Biointerfaces, 2005, 45(3-4), 167-173.
[http://dx.doi.org/10.1016/j.colsurfb.2005.08.005] [PMID: 16198092]
[65]
Parveen, S.; Sahoo, S.K. Polymeric nanoparticles for cancer therapy. J. Drug Target., 2008, 16(2), 108-123.
[http://dx.doi.org/10.1080/10611860701794353] [PMID: 18274932]
[66]
Kirby, B.J.; Hasselbrink, E.F., Jr Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis, 2004, 25(2), 187-202.
[http://dx.doi.org/10.1002/elps.200305754] [PMID: 14743473]
[67]
Jacobs, C.; Kayser, O.; Müller, R.H. Nanosuspensions as a new approach for the formulation for the poorly soluble drug tarazepide. Int. J. Pharm., 2000, 196(2), 161-164.
[http://dx.doi.org/10.1016/S0378-5173(99)00412-3] [PMID: 10699709]
[68]
Manjunath, K.; Venkateswarlu, V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J. Control. Release, 2005, 107(2), 215-228.
[http://dx.doi.org/10.1016/j.jconrel.2005.06.006] [PMID: 16014318]
[69]
Mittal, V.; Matsko, B. Analytical Imaging Techniques for Soft Matter Characterization; Springer Science & Business Media: New York, 2012.
[http://dx.doi.org/10.1007/978-3-642-30400-2]
[70]
Kathe, N.; Henriksen, B.; Chauhan, H. Physicochemical characterization techniques for solid lipid nanoparticles: Principles and limitations. Drug Dev. Ind. Pharm., 2014, 40(12), 1565-1575.
[http://dx.doi.org/10.3109/03639045.2014.909840] [PMID: 24766553]
[71]
Schubert, M.A.; Müller-Goymann, C.C. Solvent injection as a new approach for manufacturing lipid nanoparticles--evaluation of the method and process parameters. Eur. J. Pharm. Biopharm., 2003, 55(1), 125-131.
[http://dx.doi.org/10.1016/S0939-6411(02)00130-3] [PMID: 12551713]
[72]
Kaur, S.; Nautyal, U.; Singh, R.; Singh, S.; Devi, A. Nanostructured Lipid Carrier (NLC): The new generation of lipid nanoparticles. Asian Pac. J. Health Sci., 2015, 2, 76-93.
[http://dx.doi.org/10.21276/apjhs.2015.2.2.14]
[73]
Doktorovova, S.; Souto, E.B. Nanostructured lipid carrier-based hydrogel formulations for drug delivery: A comprehensive review. Expert Opin. Drug Deliv., 2009, 6(2), 165-176.
[http://dx.doi.org/10.1517/17425240802712590] [PMID: 19239388]
[74]
Chen, G.; Li, D.; Jin, Y.; Zhang, W.; Teng, L.; Bunt, C.; Wen, J. Deformable liposomes by reverse-phase evaporation method for an enhanced skin delivery of (+)-catechin. Drug Dev. Ind. Pharm., 2014, 40(2), 260-265.
[http://dx.doi.org/10.3109/03639045.2012.756512] [PMID: 23356860]
[75]
Crucho, C.I.C.; Barros, M.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C, 2017, 80, 771-784.
[http://dx.doi.org/10.1016/j.msec.2017.06.004] [PMID: 28866227]
[76]
Hu, F.Q.; Jiang, S.P.; Du, Y.Z.; Yuan, H.; Ye, Y.Q.; Zeng, S. Preparation and characteristics of monostearin nanostructured lipid carriers. Int. J. Pharm., 2006, 314(1), 83-89.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.040] [PMID: 16563671]
[77]
Forny, L.; Saleh, K.; Denoyel, R.; Pezron, I. Contact angle assessment of hydrophobic silica nanoparticles related to the mechanisms of dry water formation. Langmuir, 2010, 26(4), 2333-2338.
[http://dx.doi.org/10.1021/la902759s] [PMID: 20141200]
[78]
Castelli, F.; Puglia, C.; Sarpietro, M.G.; Rizza, L.; Bonina, F. Characterization of indomethacin-loaded lipid nanoparticles by differential scanning calorimetry. Int. J. Pharm., 2005, 304(1-2), 231-238.
[http://dx.doi.org/10.1016/j.ijpharm.2005.08.011] [PMID: 16188405]
[79]
Yuan, H.; Wang, L.L.; Du, Y.Z.; You, J.; Hu, F.Q.; Zeng, S. Preparation and characteristics of nanostructured lipid carriers for control-releasing progesterone by melt-emulsification. Colloids Surf. B Biointerfaces, 2007, 60(2), 174-179.
[http://dx.doi.org/10.1016/j.colsurfb.2007.06.011] [PMID: 17656075]
[80]
Tran, S.; DeGiovanni, P.J.; Piel, B.; Rai, P. Cancer nanomedicine: A review of recent success in drug delivery. Clin. Transl. Med., 2017, 6(1), 44-65.
[http://dx.doi.org/10.1186/s40169-017-0175-0] [PMID: 29230567]
[81]
Karaman, S.; Detmar, M. Mechanisms of lymphatic metastasis. J. Clin. Invest., 2014, 124(3), 922-928.
[http://dx.doi.org/10.1172/JCI71606] [PMID: 24590277]
[82]
Disibio, G.; French, S.W. Metastatic patterns of cancers: Results from a large autopsy study. Arch. Pathol. Lab. Med., 2008, 132(6), 931-939.
[http://dx.doi.org/10.5858/2008-132-931-MPOCRF] [PMID: 18517275]
[83]
Bahrami, B.; Hojjat-Farsangi, M.; Mohammadi, H.; Anvari, E.; Ghalamfarsa, G.; Yousefi, M.; Jadidi-Niaragh, F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett., 2017, 190, 64-83.
[http://dx.doi.org/10.1016/j.imlet.2017.07.015] [PMID: 28760499]
[84]
Chabner, B.A.; Roberts, T.G., Jr Timeline: Chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72.
[http://dx.doi.org/10.1038/nrc1529] [PMID: 15630416]
[85]
Liao, Z.; Tan, Z.W.; Zhu, P.; Tan, N.S. Cancer-associated fibroblasts in tumor microenvironment - Accomplices in tumor malignancy. Cell. Immunol., 2019, 343103729.
[http://dx.doi.org/10.1016/j.cellimm.2017.12.003] [PMID: 29397066]
[86]
Steichen, S.D.; Caldorera-Moore, M.; Peppas, N.A. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur. J. Pharm. Sci., 2013, 48(3), 416-427.
[http://dx.doi.org/10.1016/j.ejps.2012.12.006] [PMID: 23262059]
[87]
Giordano, K.F.; Jatoi, A. The cancer anorexia/weight loss syndrome: Therapeutic challenges. Curr. Oncol. Rep., 2005, 7(4), 271-276.
[http://dx.doi.org/10.1007/s11912-005-0050-9] [PMID: 15946586]
[88]
Torchilin, V.P. Drug targeting. Eur. J. Pharm. Sci., 2000, 11(Suppl. 2), S81-S91.
[http://dx.doi.org/10.1016/S0928-0987(00)00166-4] [PMID: 11033430]
[89]
Anderson, P.M.; Schroeder, G.; Skubitz, K.M. Oral glutamine reduces the duration and severity of stomatitis after cytotoxic cancer chemotherapy. Cancer, 1998, 83(7), 1433-1439.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19981001)83:7<1433::AID-CNCR22>3.0.CO;2-4] [PMID: 9762946]
[90]
Kalyanaraman, B.; Joseph, J.; Kalivendi, S.; Wang, S.; Konorev, E.; Kotamraju, S. Doxorubicin-induced apoptosis: Implications in cardiotoxicity. Mol. Cell. Biochem., 2002, 234-235(1-2), 119-124.
[http://dx.doi.org/10.1023/A:1015976430790] [PMID: 12162424]
[91]
Lu, P. Monitoring cardiac function in patients receiving doxorubicin. Semin. Nucl. Med., 2005, 35(3), 197-201.
[http://dx.doi.org/10.1053/j.semnuclmed.2005.02.005] [PMID: 16098293]
[92]
Wheate, N.J.; Walker, S.; Craig, G.E.; Oun, R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans., 2010, 39(35), 8113-8127.
[http://dx.doi.org/10.1039/c0dt00292e] [PMID: 20593091]
[93]
Mays, A.N.; Osheroff, N.; Xiao, Y.; Wiemels, J.L.; Felix, C.A.; Byl, J.A.; Saravanamuttu, K.; Peniket, A.; Corser, R.; Chang, C.; Hoyle, C.; Parker, A.N.; Hasan, S.K.; Lo-Coco, F.; Solomon, E.; Grimwade, D. Evidence for direct involvement of epirubicin in the formation of chromosomal translocations in t(15;17) therapy-related acute promyelocytic leukemia. Blood, 2010, 115(2), 326-330.
[http://dx.doi.org/10.1182/blood-2009-07-235051] [PMID: 19884644]
[94]
Serpe, L. Conventional chemotherapeutic drug nanoparticles for cancer treatment. Nanotechnol. Life Sci., 2006, 7, 1-38.
[95]
Guo, X.; Wang, L.; Wei, X.; Zhou, S. Polymer-based drug delivery systems for cancer treatment. J. Polym. Sci. A Polym. Chem., 2016, 54(22), 3525-3550.
[http://dx.doi.org/10.1002/pola.28252]
[96]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[97]
Chevalier, M.; García, M.; Alvarez, V. Biopolymeric nanoparticles as drug carriers for intravenous administrations. Biopolymers and Nanocomposites for Biomedical and Pharmaceutical Applications;; Sharmin, E.; Zafar, F., Eds.; 63-92.
[98]
Lazarovits, J.; Chen, Y.Y.; Sykes, E.A.; Chan, W.C. Nanoparticle-blood interactions: The implications on solid tumour targeting. Chem. Commun., 2015, 51(14), 2756-2767.
[http://dx.doi.org/10.1039/C4CC07644C] [PMID: 26829150]
[99]
Chen, D.; Ganesh, S.; Wang, W.; Amiji, M. Plasma protein adsorption and biological identity of systemically administered nanoparticles. Nanomedicine, 2017, 12(17), 2113-2135.
[http://dx.doi.org/10.2217/nnm-2017-0178] [PMID: 28805542]
[100]
Tonigold, M.; Simon, J.; Estupiñán, D.; Kokkinopoulou, M.; Reinholz, J.; Kintzel, U.; Kaltbeitzel, A.; Renz, P.; Domogalla, M.P.; Steinbrink, K.; Lieberwirth, I.; Crespy, D.; Landfester, K.; Mailänder, V. Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona. Nat. Nanotechnol., 2018, 13(9), 862-869.
[http://dx.doi.org/10.1038/s41565-018-0171-6] [PMID: 29915272]
[101]
Lunov, O.; Syrovets, T.; Loos, C.; Beil, J.; Delacher, M.; Tron, K.; Nienhaus, G.U.; Musyanovych, A.; Mailänder, V.; Landfester, K.; Simmet, T. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano, 2011, 5(3), 1657-1669.
[http://dx.doi.org/10.1021/nn2000756] [PMID: 21344890]
[102]
Malik, A.B.; Lynch, J.J.; Cooper, J.A. Endothelial barrier function. J. Invest. Dermatol., 1989, 93(2)(Suppl.), 62S-67S.
[http://dx.doi.org/10.1038/jid.1989.11] [PMID: 2546995]
[103]
Rehm, M.; Zahler, S.; Lötsch, M.; Welsch, U.; Conzen, P.; Jacob, M.; Becker, B.F. Endothelial glycocalyx as an additional barrier determining extravasation of 6% hydroxyethyl starch or 5% albumin solutions in the coronary vascular bed. Anesthesiology, 2004, 100(5), 1211-1223.
[http://dx.doi.org/10.1097/00000542-200405000-00025] [PMID: 15114220]
[104]
Dull, R.O.; Dinavahi, R.; Schwartz, L.; Humphries, D.E.; Berry, D.; Sasisekharan, R.; Garcia, J.G. Lung endothelial heparan sulfates mediate cationic peptide-induced barrier dysfunction: A new role for the glycocalyx. Am. J. Physiol. Lung Cell. Mol. Physiol., 2003, 285(5), L986-L995.
[http://dx.doi.org/10.1152/ajplung.00022.2003] [PMID: 12754183]
[105]
Matsumoto, Y.; Nichols, J.W.; Toh, K.; Nomoto, T.; Cabral, H.; Miura, Y.; Christie, R.J.; Yamada, N.; Ogura, T.; Kano, M.R.; Matsumura, Y.; Nishiyama, N.; Yamasoba, T.; Bae, Y.H.; Kataoka, K. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nat. Nanotechnol., 2016, 11(6), 533-538.
[http://dx.doi.org/10.1038/nnano.2015.342] [PMID: 26878143]
[106]
Marcucci, F.; Corti, A. How to improve exposure of tumor cells to drugs: Promoter drugs increase tumor uptake and penetration of effector drugs. Adv. Drug Deliv. Rev., 2012, 64(1), 53-68.
[http://dx.doi.org/10.1016/j.addr.2011.09.007] [PMID: 21983328]
[107]
Jang, S.H.; Wientjes, M.G.; Lu, D.; Au, J.L. Drug delivery and transport to solid tumors. Pharm. Res., 2003, 20(9), 1337-1350.
[http://dx.doi.org/10.1023/A:1025785505977] [PMID: 14567626]
[108]
Iyer, A.K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today, 2006, 11(17-18), 812-818.
[http://dx.doi.org/10.1016/j.drudis.2006.07.005] [PMID: 16935749]
[109]
Netti, P.A.; Berk, D.A.; Swartz, M.A.; Grodzinsky, A.J.; Jain, R.K. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res., 2000, 60(9), 2497-2503.
[PMID: 10811131]
[110]
Ratain, J.; Mick, R. Principles of pharmacokinetics and pharmacodynamics. Principles of Antineoplastic Drug Development and Pharmacology;; Schilsky, R.L.; Milano, G.A.; Ratain, M.J., Eds.; Marcel Dekker: New York, 1996, pp. 123-142.
[111]
Tipton, M. Side effects of cancer chemotherapy.Handbook of Cancer Chemotherapy;; Skeel, R.T, Ed.; Williams & Wilkins: Philedelphia, 2003, pp. 561-580.
[112]
Powis, G. The Toxicity of Anticancer Drugs; Pergamon Press: New York, 1991.
[113]
Kuwazuru, Y.; Yoshimura, A.; Hanada, S.; Utsunomiya, A.; Makino, T.; Ishibashi, K.; Kodama, M.; Iwahashi, M.; Arima, T.; Akiyama, S. Expression of the multidrug transporter, P-glycoprotein, in acute leukemia cells and correlation to clinical drug resistance. Cancer, 1990, 66(5), 868-873.
[http://dx.doi.org/10.1002/1097-0142(19900901)66:5<868::AID-CNCR2820660510>3.0.CO;2-Z] [PMID: 1974821]
[114]
Beyer, I.; van Rensburg, R.; Lieber, A. Overcoming physical barriers in cancer therapy. Tissue Barriers, 2013, 1(1), e23647.
[http://dx.doi.org/10.4161/tisb.23647] [PMID: 24665377]
[115]
Primeau, A.J.; Rendon, A.; Hedley, D.; Lilge, L.; Tannock, I.F. The distribution of the anticancer drug doxorubicin in relation to blood vessels in solid tumors. Clin. Cancer Res., 2005, 11(24 Pt 1), 8782-8788.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1664] [PMID: 16361566]
[116]
Gottesman, M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med., 2002, 53, 615-627.
[http://dx.doi.org/10.1146/annurev.med.53.082901.103929] [PMID: 11818492]
[117]
Ak, Y.; Demirel, G.; Gülbas, Z. MDR1, MRP1 and LRP expression in patients with untreated acute leukaemia: Correlation with 99mTc-MIBI bone marrow scintigraphy. Nucl. Med. Commun., 2007, 28(7), 541-546.
[http://dx.doi.org/10.1097/MNM.0b013e328194f1cd] [PMID: 17538395]
[118]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol., 2018, 16(1), 71-104.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[119]
Cryer, A.M.; Thorley, A.J. Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacol. Ther., 2019, 198, 189-205.
[http://dx.doi.org/10.1016/j.pharmthera.2019.02.010] [PMID: 30796927]
[120]
Haley, B.; Frenkel, E. Nanoparticles for drug delivery in cancer treatment. Urol. Oncol., 2008, 26(1), 57-64.
[http://dx.doi.org/10.1016/j.urolonc.2007.03.015] [PMID: 18190833]
[121]
Chidambaram, M.; Manavalan, R.; Kathiresan, K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J. Pharm. Pharm. Sci., 2011, 14(1), 67-77.
[http://dx.doi.org/10.18433/J30C7D] [PMID: 21501554]
[122]
Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30(11), 592-599.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[123]
Wong, H.L.; Bendayan, R.; Rauth, A.M.; Li, Y.; Wu, X.Y. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv. Drug Deliv. Rev., 2007, 59(6), 491-504.
[http://dx.doi.org/10.1016/j.addr.2007.04.008] [PMID: 17532091]
[124]
Yang, X.Y.; Li, Y.X.; Li, M.; Zhang, L.; Feng, L.X.; Zhang, N. Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Lett., 2013, 334(2), 338-345.
[http://dx.doi.org/10.1016/j.canlet.2012.07.002] [PMID: 22776563]
[125]
Taratula, O.; Kuzmov, A.; Shah, M.; Garbuzenko, O.B.; Minko, T. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J. Control. Release, 2013, 171(3), 349-357.
[http://dx.doi.org/10.1016/j.jconrel.2013.04.018] [PMID: 23648833]
[126]
Strebhardt, K.; Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer, 2008, 8(6), 473-480.
[http://dx.doi.org/10.1038/nrc2394] [PMID: 18469827]
[127]
Rosenblum, D.; Peer, D. Omics-based nanomedicine: The future of personalized oncology. Cancer Lett., 2014, 352(1), 126-136.
[http://dx.doi.org/10.1016/j.canlet.2013.07.029] [PMID: 23941830]
[128]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[PMID: 2946403]
[129]
Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol., 2010, 624, 25-37.
[http://dx.doi.org/10.1007/978-1-60761-609-2_3] [PMID: 20217587]
[130]
Gullotti, E.; Yeo, Y. Extracellularly activated nanocarriers: A new paradigm of tumor targeted drug delivery. Mol. Pharm., 2009, 6(4), 1041-1051.
[http://dx.doi.org/10.1021/mp900090z] [PMID: 19366234]
[131]
Wang, Y.; Zhang, H.; Hao, J.; Li, B.; Li, M.; Xiuwen, W. Lung cancer combination therapy: Co-delivery of paclitaxel and doxorubicin by nanostructured lipid carriers for synergistic effect. Drug Deliv., 2016, 23(4), 1398-1403.
[PMID: 26079530]
[132]
Albanese, A.; Tang, P.S.; Chan, W.C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 2012, 14, 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[133]
Attia, M.F.; Anton, N.; Wallyn, J.; Omran, Z.; Vandamme, T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol., 2019, 71(8), 1185-1198.
[http://dx.doi.org/10.1111/jphp.13098] [PMID: 31049986]
[134]
Huynh, N.T.; Roger, E.; Lautram, N.; Benoît, J.P.; Passirani, C. The rise and rise of stealth nanocarriers for cancer therapy: Passive versus active targeting. Nanomedicine, 2010, 5(9), 1415-1433.
[http://dx.doi.org/10.2217/nnm.10.113] [PMID: 21128723]
[135]
Xu, S.; Olenyuk, B.Z.; Okamoto, C.T.; Hamm-Alvarez, S.F. Targeting receptor-mediated endocytotic pathways with nanoparticles: Rationale and advances. Adv. Drug Deliv. Rev., 2013, 65(1), 121-138.
[http://dx.doi.org/10.1016/j.addr.2012.09.041] [PMID: 23026636]
[136]
Hymel, D.; Peterson, B.R. Synthetic cell surface receptors for delivery of therapeutics and probes. Adv. Drug Deliv. Rev., 2012, 64(9), 797-810.
[http://dx.doi.org/10.1016/j.addr.2012.02.007] [PMID: 22401875]
[137]
Zhou, Y.; Zhang, C.; Liang, W. Development of RNAi technology for targeted therapy--a track of siRNA based agents to RNAi therapeutics. J. Control. Release, 2014, 193, 270-281.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.044] [PMID: 24816071]
[138]
Gabizon, A.; Horowitz, A.T.; Goren, D.; Tzemach, D.; Shmeeda, H.; Zalipsky, S. In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin. Cancer Res., 2003, 9(17), 6551-6559.
[PMID: 14695160]
[139]
Adams, G.P.; Schier, R.; McCall, A.M.; Simmons, H.H.; Horak, E.M.; Alpaugh, R.K.; Marks, J.D.; Weiner, L.M. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res., 2001, 61(12), 4750-4755.
[PMID: 11406547]
[140]
Gosk, S.; Moos, T.; Gottstein, C.; Bendas, G. VCAM-1 directed immunoliposomes selectively target tumor vasculature in vivo. Biochim. Biophys. Acta, 2008, 1778(4), 854-863.
[http://dx.doi.org/10.1016/j.bbamem.2007.12.021] [PMID: 18211818]
[141]
Minko, T.; Rodriguez-Rodriguez, L.; Pozharov, V. Nanotechnology approaches for personalized treatment of multidrug resistant cancers. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1880-1895.
[http://dx.doi.org/10.1016/j.addr.2013.09.017] [PMID: 24120655]
[142]
Khajavinia, A.; Varshosaz, J.; Dehkordi, A.J. Targeting etoposide to acute myelogenous leukaemia cells using nanostructured lipid carriers coated with transferrin. Nanotechnology, 2012, 23(40), 405101.
[http://dx.doi.org/10.1088/0957-4484/23/40/405101] [PMID: 22983592]
[143]
Gref, R.; Minamitake, Y.; Peracchia, M.T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-circulating polymeric nanospheres. Science, 1994, 263(5153), 1600-1603.
[http://dx.doi.org/10.1126/science.8128245] [PMID: 8128245]
[144]
Roser, M.; Fischer, D.; Kissel, T. Surface-modified biodegradable albumin nano- and microspheres. II: Effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur. J. Pharm. Biopharm., 1998, 46(3), 255-263.
[http://dx.doi.org/10.1016/S0939-6411(98)00038-1] [PMID: 9885296]
[145]
Rudmann, D.G.; Alston, J.T.; Hanson, J.C.; Heidel, S. High molecular weight polyethylene glycol cellular distribution and PEG-associated cytoplasmic vacuolation is molecular weight dependent and does not require conjugation to proteins. Toxicol. Pathol., 2013, 41(7), 970-983.
[http://dx.doi.org/10.1177/0192623312474726] [PMID: 23788571]
[146]
Gao, W.; Xiang, B.; Meng, T.T.; Liu, F.; Qi, X.R. Chemotherapeutic drug delivery to cancer cells using a combination of folate targeting and tumor microenvironment-sensitive polypeptides. Biomaterials, 2013, 34(16), 4137-4149.
[http://dx.doi.org/10.1016/j.biomaterials.2013.02.014] [PMID: 23453200]
[147]
Zhang, X.; Gan, Y.; Gan, L.; Nie, S.; Pan, W. PEGylated nanostructured lipid carriers loaded with 10-hydroxycamptothecin: An efficient carrier with enhanced anti-tumour effects against lung cancer. J. Pharm. Pharmacol., 2008, 60(8), 1077-1087.
[http://dx.doi.org/10.1211/jpp.60.8.0014] [PMID: 18644200]
[148]
Shete, H.; Chatterjee, S.; De, A.; Patravale, V. Long chain lipid based tamoxifen NLC. Part II: Pharmacokinetic, biodistribution and in vitro anticancer efficacy studies. Int. J. Pharm., 2013, 454(1), 584-592.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.036] [PMID: 23535344]
[149]
Chen, Y.; Zhou, L.; Yuan, L.; Zhang, Z.H.; Liu, X.; Wu, Q. Formulation, characterization, and evaluation of in vitro skin permeation and in vivo pharmacodynamics of surface-charged tripterine-loaded nanostructured lipid carriers. Int. J. Nanomedicine, 2012, 7, 3023-3032.
[PMID: 22787398]
[150]
Liu, Q.; Li, J.; Pu, G.; Zhang, F.; Liu, H.; Zhang, Y. Co-delivery of baicalein and doxorubicin by hyaluronic acid decorated nanostructured lipid carriers for breast cancer therapy. Drug Deliv., 2016, 23(4), 1364-1368.
[http://dx.doi.org/10.3109/10717544.2015.1031295] [PMID: 25874959]
[151]
Kaur, P.; Garg, T.; Rath, G.; Murthy, R.S.; Goyal, A.K. Development, optimization and evaluation of surfactant-based pulmonary nanolipid carrier system of paclitaxel for the management of drug resistance lung cancer using Box-Behnken design. Drug Deliv., 2016, 23(6), 1912-1925.
[PMID: 25544602]
[152]
Liu, D.; Liu, Z.; Wang, L.; Zhang, C.; Zhang, N. Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf. B Biointerfaces, 2011, 85(2), 262-269.
[http://dx.doi.org/10.1016/j.colsurfb.2011.02.038] [PMID: 21435845]
[153]
Han, Y.; Li, Y.; Zhang, P.; Sun, J.; Li, X.; Sun, X.; Kong, F. Nanostructured lipid carriers as novel drug delivery system for lung cancer gene therapy. Pharm. Dev. Technol., 2016, 21(3), 277-281.
[http://dx.doi.org/10.3109/10837450.2014.996900] [PMID: 25560648]
[154]
Wang, H.; Liu, S.; Jia, L.; Chu, F.; Zhou, Y.; He, Z.; Guo, M.; Chen, C.; Xu, L. Nanostructured lipid carriers for MicroRNA delivery in tumor gene therapy. Cancer Cell Int., 2018, 18, 101.
[http://dx.doi.org/10.1186/s12935-018-0596-x] [PMID: 30008618]