The Reactions of p-Tosylmethyl Isocyanide with Aldehydes in the Synthesis of Heterocyclic Compounds: A Review

Page: [372 - 393] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

p-Tosylmethyl isocyanide (TosMIC) and its derivatives represent an important class of polyfunctional reagents, making them privileged “building blocks” in the targeted organic synthesis to design a plethora of heterocycles as well as natural products. This review summarizes and highlights the synthetic potential of p-tosylmethyl isocyanide and its derivatives in the reaction with various aldehydes to afford valuable heterocycles. The catalytic and technological innovations discussed in the review reveal the ease of reaction. Moreover, their mechanistic schemes are also displayed.

Keywords: Aldehydes, p-tosylmethyl isocyanide, heterocycles, cycloaddition, catalysis, natural products.

Graphical Abstract

[1]
(a) Van Leusen, D.; Van Leusen, A.M. Synthetic Uses of Tosylmethyl Isocyaide (TosMIC) In: Organic Reaction; Wiley&Sons: New York, 2001; 57, pp. 417-666.;
(b) Tandon, V.K.; Rai, S. p-toluenesulfonylmethyl isocyanide: A versatile synthon in organic chemistry. Sulfur Rep., 2003, 24(3), 307-385.;
(c) Giustiniano, M.; Basso, A.; Mercalli, V.; Massarotti, A.; Novellino, E.; Tron, G.C.; Zhu, J. To each his own: Isonitriles for all flavors. Functionalized isocyanides as valuable tools in organic synthesis. J. Chem. Soc. Rev., 2017, 46(5), 1295-1357.
[http://dx.doi.org/10.1039/C6CS00444J] [PMID: 27983738];
(d) Mathiyazhagan, A.D.; Anilkumar, G. Recent advances and applications of p-toluenesulfonylmethyl isocyanide (TosMIC). Org. Biomol. Chem., 2019, 17(28), 6735-6747.
[http://dx.doi.org/10.1039/C9OB00847K] [PMID: 31250862];
(e) Kaur, T.; Wadhwa, P.; Sharma, A. Arylsulfonylmethyl isocyanides: A novel paradigm in organic synthesis. RSC Advances, 2015, 5(65), 52769-52787.
[http://dx.doi.org/10.1039/C5RA07876H];
(f) Kumar, K. TosMIC: A powerful synthon for cyclization and sulfonylation. ChemistrySelect, 2020, 5(33), 10298-10328.
[http://dx.doi.org/10.1002/slct.202001344];
(g) Efimov, I.V.; Kulikova, L.N.; Zhilyaev, D.I.; Voskressensky, L.G. Recent advances in the chemistry of isocyanides with activated methylene group. Eur. J. Org. Chem., 2020, 2020(47), 7284-7303.
[http://dx.doi.org/10.1002/ejoc.202000890]
[2]
(a) Altundas, B.; Marrazzo, J.R.; Fleming, F.F. Metalated isocyanides: Formation, structure, and reactivity. Org. Biomol. Chem., 2020, 18(33), 6467-6482.
[http://dx.doi.org/10.1039/D0OB01340D] [PMID: 32766609];
(b) Gutiérrez, S.; Sucunza, D.; Vaquero, J.J. γ-carboline synthesis by heterocyclization of TosMIC derivatives. J. Org. Chem., 2018, 83(12), 6623-6632.
[http://dx.doi.org/10.1021/acs.joc.8b00906] [PMID: 29756452];
(c) Kumar, G.R.; Ramesh, B.; Banik, S.; Reddy, B.V.S. TosMIC and its derivatives as versatile sulfonylating agents for the synthesis of p-toluenesulfonylarenes from aryl halides and arylboronic acids. Tetrahedron, 2020, 76(48), 131674-131680.
[http://dx.doi.org/10.1016/j.tet.2020.131674];
(d) Tripolitsiotis, N.P.; Thomaidi, M.; Neochoritis, C.G. The ugi three-component reaction; a valuable tool in modern organic synthesis. Eur. J. Org. Chem., 2020, 2020(42), 6525-6554.
[http://dx.doi.org/10.1002/ejoc.202001157];
(e) Wang, Y.; Kumar, R.K.; Bi, X. Silver-catalyzed organic reactions of isocyanides. Tetrahedron Lett., 2016, 57(51), 5730-5741.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.005];
(f) Phanindrudu, M.; Jaya, P.; Likhar, P.R.; Tiwari, D.K. Nano copper catalyzed synthesis of symmetrical/unsymmetrical sulfones from Aryl/Alkyl Halides and p-Toluenesulfonylmethylisocyanide: TosMIC as a Tosyl Source. Tetrahedron, 2020, 76(25), 131263-131280.
[http://dx.doi.org/10.1016/j.tet.2020.131263];
(g) Fan, C-L.; Zhang, L-B.; Liu, J.; Hao, X-Q.; Niu, J-L.; Song, M-P. Copper-mediated direct sulfonylation of C(sp2)–H bonds employing TosMIC as a sulfonyl source. Org. Chem. Front., 2019, 6(13), 2215-2219.
[http://dx.doi.org/10.1039/C9QO00391F]
[3]
(a) Theodoropoulou, M.A.; Nikitas, N.F.; Kokotos, C.G. Aldehydes as powerful initiators for photochemical transformations. Beilstein J. Org. Chem., 2020, 16, 833-857.
[http://dx.doi.org/10.3762/bjoc.16.76] [PMID: 32395186];
(b) Chen, H.; Liu, L.; Huang, T.; Chen, J.; Chen, T. Direct dehydrogenation for the synthesis of α,β-unsaturated carbonyl compounds. Adv. Synth. Catal., 2020, 362(16), 3332-3346.
[http://dx.doi.org/10.1002/adsc.202000454];
(c) Kumar, P.; Dutta, S.; Kumar, S.; Bahadur, V.; Van der Eycken, E.V.; Vimaleswaran, K.S.; Parmar, V.S.; Singh, B.K. Aldehydes: Magnificent acyl equivalents for direct acylation. Org. Biomol. Chem., 2020, 18(40), 7987-8033.
[http://dx.doi.org/10.1039/D0OB01458C] [PMID: 33000845];
(d) Keiko, N.A.; Vchislo, N.V. Synthesis of diheteroatomic five-membered heterocyclic compounds from α,β-unsaturated aldehydes. Asian J. Org. Chem., 2016, 5(10), 1169-1197.
[http://dx.doi.org/10.1002/ajoc.201600227];
(e) Keiko, N.A.; Vchislo, N.V. α,β-unsaturated aldehydes in the synthesis of five-membered heterocyclic compounds with one heteroatom: recent advances from developments in metal- and organocatalysis. Asian J. Org. Chem., 2016, 5(4), 439-461.
[http://dx.doi.org/10.1002/ajoc.201600010];
(f) Vchislo, N.V.; Verochkina, E.A. Recent advances in total synthesis of alkaloids from α,β-unsaturated aldehydes. ChemistrySelect, 2020, 5(31), 9579-9589.
[http://dx.doi.org/10.1002/slct.202002872];
(g) Yuan, Z.; Liao, J.; Jiang, H.; Cao, P.; Li, Y. Aldehyde catalysis – from simple aldehydes to artificial enzymes. RSC Advances, 2020, 10(58), 35433-35448.
[http://dx.doi.org/10.1039/D0RA06651F]
[4]
(a) Zhang, H-Z.; Zhao, Z-L.; Zhou, C.H. Recent advance in oxazole-based medicinal chemistry. Eur. J. Med. Chem., 2018, 144, 444-492.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.044] [PMID: 29288945];
(b) Zhang, D.; Guo, J.; Zhang, M.; Liu, X.; Ba, M.; Tao, X.; Yu, L.; Guo, Y.; Dai, J. Oxazole-containing diterpenoids from cell cultures of salvia miltiorrhiza and their anti-hiv-1 activities. J. Nat. Prod., 2017, 80(12), 3241-3246.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00659] [PMID: 29185738];
(c) Zhou, H.; Cheng, J-Q.; Wang, Z-S.; Chen, F-H.; Liu, X-H. Oxazole: A promising building block for the development of potent antitumor agents. Curr. Top. Med. Chem., 2016, 16(30), 3582-3589.
[http://dx.doi.org/10.2174/1568026616666160414122521] [PMID: 27086791];
(d) Swellmeen, L. 1,3-Oxazole derivatives: A review of biological activities as antipathogenic. Pharma Chem., 2016, 8(13), 269-286.;
(e) Kakkar, S.; Narasimhan, B. A comprehensive review on biological activities of oxazole derivatives. BMC Chem., 2019, 13(1), 16.
[http://dx.doi.org/10.1186/s13065-019-0531-9] [PMID: 31384765]
[5]
(a) Gong, Z-H.; Leu, C-M.; Wu, F-I.; Shu, C-F. Hyperbranched poly(aryl ether oxazole)s: Synthesis, characterization, and modification. Macromolecules, 2000, 33(23), 8527-8533.
[http://dx.doi.org/10.1021/ma000789y];
(b) Tarasenko, E.A.; Beletskaya, I.P. Poly(ethylene glycol)-supported chiral pyridine-2,6-bis(oxazoline): Synthesis and application as a recyclable ligand in Cui-catalyzed enantioselective direct addition of terminal alkynes to imines. Mend. Mendeleev Commun., 2016, 26(6), 477-479.
[http://dx.doi.org/10.1016/j.mencom.2016.11.005];
(c) Wang, Y.; Yang, G.; Xie, F.; Zhang, W. A ferrocene-based NH-free phosphine-oxazoline ligand for iridium-catalyzed asymmetric hydrogenation of ketones. Org. Lett., 2018, 20(19), 6135-6139.
[http://dx.doi.org/10.1021/acs.orglett.8b02591] [PMID: 30226059];
(d) Hargaden, G.C.; Guiry, P.J. Recent applications of oxazoline-containing ligands in asymmetric catalysis. Chem. Rev., 2009, 109(6), 2505-2550.
[http://dx.doi.org/10.1021/cr800400z] [PMID: 19378971];
(e) Mazuela, J.; Tolstoy, P.; Pàmies, O.; Andersson, P.G.; Diéguez, M. Phosphite-oxazole/imidazole ligands in asymmetric intermolecular Heck reaction. Org. Biomol. Chem., 2011, 9(3), 941-946.
[http://dx.doi.org/10.1039/C0OB00656D] [PMID: 21152643];
(f) Dhawan, S.; Kumar, V.; Girase, P.S.; Mokoena, S.; Karpoormath, R. Recent progress in iodine-catalysed C-O/C-N bond formation of 1,3-oxazoles: A comprehensive review. ChemistrySelect, 2021, 6(4), 754-787.
[http://dx.doi.org/10.1002/slct.202003969]
[6]
(a) Van Leusen, A.M.; Hoogenboom, B.E.; Siderius, H. A novel and efficient synthesis of oxazoles from tosylmethylisocyanide and carbonyl compounds. Tetrahedron Lett., 1972, 13(23), 2369-2372.
[http://dx.doi.org/10.1016/S0040-4039(01)85305-3];
(b) Zheng, X.; Liu, W.; Zhang, D. Recent advances in the synthesis of oxazole-based molecules via van leusen oxazole synthesis. Molecules, 2020, 25(7), 1594.
[http://dx.doi.org/10.3390/molecules25071594] [PMID: 32244317]
[7]
Skorotetcky, M.S.; Borshchev, O.V.; Cherkev, G.V.; Ponomarenko, S.A. Synthesis of nanostructured organosilicon luminophores based on phenyloxazoles. Russ. J. Org. Chem., 2019, 55(1), 25-41.
[http://dx.doi.org/10.1134/S1070428019010056]
[8]
(a) Kotha, S.; Todeti, S.; Gopal, M.B.; Datta, A. Synthesis and photophysical properties of C3-symmetric star-shaped molecules containing heterocycles such as furan, thiophene, and oxazole. ACS Omega, 2017, 2(10), 6291-6297.
[http://dx.doi.org/10.1021/acsomega.7b00941] [PMID: 31457237];
(b) Shah, S.R.; Thakore, R.R.; Vyas, T.A.; Sridhar, B. Conformationally flexible C 3-symmetric 1,3-oxazoles as molecular scaffolds. Synlett, 2016, 27(2), 294-300.
[http://dx.doi.org/10.1055/s-0035-1560576]
[9]
Rizeq, N.; Georgiades, S.N. Linear and branched pyridyl–oxazole oligomers: Synthesis and circular dichroism detectable effect on c-Myc G-quadruplex helicity. Eur. J. Org. Chem., 2016, 2016(1), 122-131.
[http://dx.doi.org/10.1002/ejoc.201501269]
[10]
Medeiros-Silva, J.; Guédin, A.; Salgado, G.F.; Mergny, J-L.; Queiroz, J.A.; Cabrita, E.J.; Cruz, C. Phenanthroline-bis-oxazole ligands for binding and stabilization of G-quadruplexes. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(5 Pt B)(5, part B), 1281-1292.
[http://dx.doi.org/10.1016/j.bbagen.2016.11.024] [PMID: 27865994]
[11]
(a) Sadanandam, P.; Sathaiah, N.; Jyothi, V.; Chari, M.A.; Shobha, D.; Das, P.; Mukkanti, K. Synthesis and characterisation of 5-(6-substituted phenyl -2H-chromen-3- yl) oxazole derivatives. Lett. Org. Chem., 2012, 9(9), 683-690.
[http://dx.doi.org/10.2174/157017812803521126];
(b) Lechel, T.; Kumar, R.; Bera, M.K.; Zimmer, R.; Reissig, H-U. The LANCA three-component reaction to highly substituted β-ketoenamides - versatile intermediates for the synthesis of functionalized pyridine, pyrimidine, oxazole and quinoxaline derivatives. Beilstein J. Org. Chem., 2019, 15, 655-678.
[http://dx.doi.org/10.3762/bjoc.15.61] [PMID: 30931007]
[12]
(a) Šagud, I.; Faraguna, F. Marinić, Ž.; Šindler-Kulyk, M. Photochemical approach to naphthoxazoles and fused heterobenzoxazoles from 5-(phenyl/heteroarylethenyl)oxazoles. J. Org. Chem., 2011, 76(8), 2904-2908.
[http://dx.doi.org/10.1021/jo1025942] [PMID: 21388233];
(b) Šagud, I.; Šindler-Kulyk, M. Škorić, I.; Kelava, V.; Marinić, Ž. Synthesis of Naphthoxazoles by Photocyclization of 4-/5-(Phenylethenyl)oxazoles. Eur. J. Org. Chem., 2018, 2018(25), 3326-3335.
[http://dx.doi.org/10.1002/ejoc.201800737];
(c) Šagud, I. Božić, S.; Marinić, Z.; Šindler-Kulyk, M. Photochemical approach to functionalized benzobicyclo[3.2.1]octene structures via fused oxazoline derivatives from 4- and 5-(o-vinylstyryl)oxazoles. Beilstein J. Org. Chem., 2014, 10, 2222-2229.
[http://dx.doi.org/10.3762/bjoc.10.230] [PMID: 25246981]
[13]
Elshina, V.G.; Novokshonov, V.V.; Verochkina, E.A.; Ushakov, I.A.; Rosentsveig, I.B.; Vchislo, N.V. Synthesis of oxazolines and oxazoles by the reaction of propynals with tosylmethyl isocyanide. Mend. Commun., 2019, 29, 651-652.
[14]
Vchislo, N.V.; Fedoseeva, V.G.; Novokshonov, V.V.; Larina, L.I.; Rozentsveig, I.B.; Verochkina, E.A. Synthesis of new alkoxy/alkylthiovinylated oxazoles using tosylmethyl isocyanide. Mendeleev Commun., 2020, 30(3), 350-351.
[http://dx.doi.org/10.1016/j.mencom.2020.05.030]
[15]
Rashamuse, T.J.; Harrison, A.T.; Mosebi, S.; van Vuuren, S.; Coyanis, E.M.; Bode, M.L. Design, synthesis and biological evaluation of imidazole and oxazole fragments as HIV-1 integrase-LEDGF/p75 disruptors and inhibitors of microbial pathogens. Bioorg. Med. Chem., 2020, 28(1), 115210.
[http://dx.doi.org/10.1016/j.bmc.2019.115210] [PMID: 31753802]
[16]
García-Ramírez, V.G.; Contreras-Celedón, C.; Rodriguez-García, G.; Chacón-García, L.; Cortes-García, C.J. Synthesis of 1,3-oxazoles via van leusen reaction in a pressure reactor and preliminary studies of cations recognition. Proceedings, 2019, 41(1), 7.
[17]
Rahimzadeh, G.; Kianmehr, E.; Mahdavi, M. Improvement of the Van Leusen reaction in the presence of β-cyclodextrin: A green and efficient synthesis of oxazoles in water. Z. Naturforsch. B. J. Chem. Sci., 2017, 72(12), 923-926.
[http://dx.doi.org/10.1515/znb-2017-0005]
[18]
Abraham, R.; Prakash, P.; Mahendran, K.; Ramanathan, M. A novel and convenient oxidation-controlled procedure for the synthesis of oxazolines from TosMIC and aldehydes in water – Anti biofilm activity. Arab. J. Chem., 2020, 13(1), 2153-2161.
[http://dx.doi.org/10.1016/j.arabjc.2018.03.022]
[19]
Savanur, H.M.; Kalkhambkar, R.G.; Laali, K.K. Libraries of C-5 substituted imidazoles and oxazoles by sequential van Leusen (VL)–Suzuki, VL–Heck and VL–Sonogashira in imidazolium-ils with piperidine-appended-il as base. Eur. J. Org. Chem., 2018, 2018(38), 5285-5288.
[http://dx.doi.org/10.1002/ejoc.201800804]
[20]
(a) Zhang, M-Z.; Chen, Q.; Xie, C-H.; Mulholland, N.; Turner, S.; Irwin, D.; Gu, Y-C.; Yang, G-F.; Clough, J. Synthesis and antifungal activity of novel streptochlorin analogues. Eur. J. Med. Chem., 2015, 92, 776-783.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.043] [PMID: 25633493];
(b) Zhang, M-Z.; Chen, Q.; Mulholland, N.; Beattie, D.; Irwin, D.; Gu, Y-C.; Yang, G.F.; Clough, J. Synthesis and fungicidal activity of novel pimprinine analogues. Eur. J. Med. Chem., 2012, 53, 283-291.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.012] [PMID: 22560632]
[21]
Yasaei, Z.; Mohammadpour, Z.; Shiri, M.; Tanbakouchian, Z.; Fazelzadeh, S. Isocyanide reactions toward the synthesis of 3-(Oxazol-5-yl)quinoline-2-carboxamides and 5-(2-Tosylquinolin-3-yl)oxazole. Front Chem., 2019, 7, 433.
[http://dx.doi.org/10.3389/fchem.2019.00433] [PMID: 31259168]
[22]
Wu, B.; Wen, J.; Zhang, J.; Li, J.; Xiang, Y-Z.; Yu, X-Q. One-pot van leusen synthesis of 4,5-disubstituted oxazoles in ionic liquids. Synlett, 2009, 3, 500-504.
[23]
Zarganes-Tzitzikas, T.; Clemente, G.S.; Elsinga, P.H.; Dömling, A. MCR Scaffolds Get Hotter with 18F-Labeling. Molecules, 2019, 24(7), 1327.
[http://dx.doi.org/10.3390/molecules24071327] [PMID: 30987302]
[24]
Soeta, T.; Matsumoto, A.; Sakata, Y.; Ukaji, Y. Development of a one-pot synthetic method for multifunctional oxazole derivatives using isocyanide dichloride. J. Org. Chem., 2017, 82(9), 4930-4935.
[http://dx.doi.org/10.1021/acs.joc.7b00296] [PMID: 28402117]
[25]
(a) Shalini, K.; Sharma, P.K.; Kumar, N. Imidazole and its biological activities: A review. Der Chemica Sinica, 2010, 1(3), 36-47.;
(b) Cornec, A-S.; Monti, L.; Kovalevich, J.; Makani, V.; James, M.J.; Vijayendran, K.G.; Oukoloff, K.; Yao, Y.; Lee, V.M-Y.; Trojanowski, J.Q.; Smith, A.B., III; Brunden, K.R.; Ballatore, C. Multitargeted imidazoles: Potential therapeutic leads for alzheimer’s and other neurodegenerative diseases. J. Med. Chem., 2017, 60(12), 5120-5145.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00475] [PMID: 28530811];
(c) Juchum, M.; Günther, M.; Döring, E.; Sievers-Engler, A.; Lämmerhofer, M.; Laufer, S. Trisubstituted imidazoles with a rigidized hinge binding motif act as single digit nm inhibitors of clinically relevant EGFR L858R/T790M and L858R/T790M/C797S Mutants: An example of target hopping. J. Med. Chem., 2017, 60(11), 4636-4656.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00178] [PMID: 28482151];
(d) Marsilje, T.H.; Roses, J.B.; Calderwood, E.F.; Stroud, S.G.; Forsyth, N.E.; Blackburn, C.; Yowe, D.L.; Miao, W.; Drabic, S.V.; Bohane, M.D.; Daniels, J.S.; Li, P.; Wu, L.; Patane, M.A.; Claiborne, C.F. Synthesis and biological evaluation of imidazole-based small molecule antagonists of the melanocortin 4 receptor (MC4-R). Bioorg. Med. Chem. Lett., 2004, 14(14), 3721-3725.
[http://dx.doi.org/10.1016/j.bmcl.2004.05.003] [PMID: 15203150];
(e) Reddy, K.R.; Reddy, A.S.; Shankar, R.; Kant, R.; Das, P. Copper-catalyzed oxidative c−h amination: Synthesis of imidazo[1,2-a]-N-Heterocycles from N-heteroaryl enaminones. Asian J. Org. Chem., 2015, 4(6), 573-583.
[http://dx.doi.org/10.1002/ajoc.201500052];
(f) Pozharskii, A.F.; Soldatenkov, A.T.; Katritzky, A.R. Heterocycles in life and society: An introduction to heterocyclic chemistry, biochemistry and applications; Wiley&Sons: New York, 2011.
[http://dx.doi.org/10.1002/9781119998372]
[26]
(a) Hojabri, L.; Hartikka, A.; Moghaddam, F.M.; Arvidsson, P.I. A new imidazole-containing imidazolidinone catalyst for organocatalyzed asymmetric conjugate addition of nitroalkanes to aldehydes. Adv. Synth. Catal., 2007, 349(4-5), 740-748.
[http://dx.doi.org/10.1002/adsc.200600316];
(b) Zhang, Z.; Xie, F.; Jia, J.; Zhang, W. Chiral bicycle imidazole nucleophilic catalysts: Rational design, facile synthesis, and successful application in asymmetric Steglich rearrangement. J. Am. Chem. Soc., 2010, 132(45), 15939-15941.
[http://dx.doi.org/10.1021/ja109069k] [PMID: 20977235];
(c) Li, Y.; Giulionatti, M.; Houghten, R.A. Macrolactonization of peptide thioesters catalyzed by imidazole and its application in the synthesis of kahalalide B and analogues. Org. Lett., 2010, 12(10), 2250-2253.
[http://dx.doi.org/10.1021/ol100596p] [PMID: 20426464];
(d) Dupont, J.; de Souza, R.F.; Suarez, P.A.Z. Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev., 2002, 102(10), 3667-3692.
[http://dx.doi.org/10.1021/cr010338r] [PMID: 12371898];
(e) Hahn, F.E.; Jahnke, M.C. Heterocyclic carbenes: Synthesis and coordination chemistry. Angew. Chem. Int. Ed. Engl., 2008, 47(17), 3122-3172.
[http://dx.doi.org/10.1002/anie.200703883] [PMID: 18398856];
(f) Suzuki, Y.; Ota, S.; Fukuta, Y.; Ueda, Y.; Sato, M. N-heterocyclic carbene-catalyzed nucleophilic aroylation of fluorobenzenes. J. Org. Chem., 2008, 73(6), 2420-2423.
[http://dx.doi.org/10.1021/jo7023569] [PMID: 18290659];
(g) Arduengo, A.J., III; Harlow, R.L.; Kline, M.J. A stable crystalline carbine. J. Am. Chem. Soc., 1991, 113(1), 361-363.
[http://dx.doi.org/10.1021/ja00001a054]
[27]
(a) Zheng, X.; Ma, Z.; Zhang, D. Synthesis of imidazole-based medicinal molecules utilizing the van leusen imidazole synthesis. Pharmaceuticals (Basel), 2020, 13(3), 37.
[http://dx.doi.org/10.3390/ph13030037] [PMID: 32138202];
(b) Van Leusen, A.M.; Wildeman, J.; Oldenziel, O.H. Chemistry of sulfonylmethyl isocyanides. 12. Base-induced cycloaddition of sulfonylmethyl isocyanides to carbon,nitrogen double bonds. Synthesis of 1,5-disubstituted and 1,4,5-trisubstituted imidazoles from aldimines and imidoyl chlorides. J. Org. Chem., 1977, 42(7), 1153-1159.
[http://dx.doi.org/10.1021/jo00427a012];
(c) Van Leusen, D.; Van Leusen, A.M. Synthetic Uses of Tosylmethyl Isocyanide (TosMIC); Wiley: Hoboken, New Jersey, 2004, pp. 417-666.;
(d) Sisko, J.; Kassick, A.J.; Mellinger, M.; Filan, J.J.; Allen, A.; Olsen, M.A. An investigation of imidazole and oxazole syntheses using aryl-substituted TosMIC reagents. J. Org. Chem., 2000, 65(5), 1516-1524.
[http://dx.doi.org/10.1021/jo991782l] [PMID: 10814116]
[28]
Lim, Z.; Duggan, P.J.; Meyer, A.G.; Tuck, K.L. An iterative in silico and modular synthetic approach to aqueous soluble tercyclic α-helix mimetics. Org. Biomol. Chem., 2014, 12(25), 4432-4444.
[http://dx.doi.org/10.1039/c4ob00647j] [PMID: 24847981]
[29]
Fallarini, S.; Massarotti, A.; Gesù, A.; Giovarruscio, S.; Coda Zabetta, G.; Bergo, R.; Giannelli, B.; Brunco, A.; Lombardi, G.; Sorbaa, G.; Pirali, T. In silico-driven multicomponent synthesis of 4,5- and 1,5-disubstituted imidazoles as indoleamine 2,3-dioxygenase inhibitors. MedChemComm, 2016, 7(3), 409-419.
[http://dx.doi.org/10.1039/C5MD00317B]
[30]
Brant, M.G.; Goodwin-Tindall, J.; Stover, K.R.; Stafford, P.M.; Wu, F.; Meek, A.R.; Schiavini, P.; Wohnig, S.; Weaver, D.F. Identification of potent indoleamine 2,3-dioxygenase 1 (ido1) inhibitors based on a phenylimidazole scaffold. ACS Med. Chem. Lett., 2018, 9(2), 131-136.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00488] [PMID: 29456801]
[31]
Kondaparla, S.; Manhas, A.; Dola, V.R.; Srivastava, K.; Puri, S.K.; Katti, S.B. Design, synthesis and antiplasmodial activity of novel imidazole derivatives based on 7-chloro-4-aminoquinoline. Bioorg. Chem., 2018, 80, 204-211.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.012] [PMID: 29940342]
[32]
Latacz, G.; Hogendorf, A.S.; Hogendorf, A.; Lubelska, A. Wierońska, J.M.; Woźniak, M.; Cieślik, P.; Kieć-Kononowicz, K.; Handzlik, J.; Bojarski, A.J. Search for a 5-CT alternative. In vitro and in vivo evaluation of novel pharmacological tools: 3-(1-alkyl-1H-imidazol-5-yl)-1H-indole-5-carboxamides, low-basicity 5-HT7 receptor agonists. MedChemComm, 2018, 9(11), 1882-1890.
[http://dx.doi.org/10.1039/C8MD00313K] [PMID: 30568756]
[33]
Hogendorf, A.S.; Hogendorf, A. Popiołek-Barczyk, K.; Ciechanowska, A.; Mika, J.; Satała, G.; Walczak, M.; Latacz, G.; Handzlik, J.; Kieć-Kononowicz, K.; Ponimaskin, E.; Schade, S.; Zeug, A.; Bijata, M.; Kubicki, M.; Kurczab, R.; Lenda, T.; Staroń, J.; Bugno, R.; Duszyńska, B.; Pilarski, B.; Bojarski, A.J. Fluorinated indole-imidazole conjugates: Selective orally bioavailable 5-HT7 receptor low-basicity agonists, potential neuropathic painkillers. Eur. J. Med. Chem., 2019, 170, 261-275.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.017] [PMID: 30904783]
[34]
Guan, Z.R.; Liu, Z.M.; Ding, M.W. New efficient synthesis of 1H-imidazo-[4,5-c]quinolines by a sequential Van Leusen/Staudinger/aza-Wittig/carbodiimide-mediated cyclization. Tetrahedron, 2018, 74(50), 7186-7192.
[http://dx.doi.org/10.1016/j.tet.2018.10.052]
[35]
(a) Stucchi, M.; Grazioso, G.; Lammi, C.; Manara, S.; Zanoni, C.; Arnoldi, A.; Lesma, G.; Silvani, A. Disrupting the PCSK9/LDLR protein-protein interaction by an imidazole-based minimalist peptidomimetic. Org. Biomol. Chem., 2016, 14(41), 9736-9740.
[http://dx.doi.org/10.1039/C6OB01642A] [PMID: 27722650];
(b) Lammi, C.; Sgrignani, J.; Arnoldi, A.; Lesma, G.; Spatti, C.; Silvani, A.; Grazioso, G. Computationally driven structure optimization, synthesis, and biological evaluation of imidazole-based proprotein convertase Subtilisin/Kexin 9 (PCSK9) inhibitors. J. Med. Chem., 2019, 62(13), 6163-6174.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00402] [PMID: 31260298]
[36]
Geigle, S.N.; Petersen, A.C.; Satz, A.L. Development of DNA-Compatible van leusen three-component imidazole synthesis. Org. Lett., 2019, 21(22), 9001-9004.
[http://dx.doi.org/10.1021/acs.orglett.9b03406] [PMID: 31664846]
[37]
Rashamuse, T.J.; Njengele, Z.; Coyanis, E.M.; Sayed, Y.; Mosebi, S.; Bode, M.L. Design, synthesis and biological evaluation of novel 2-(5-aryl-1H-imidazol-1-yl) derivatives as potential inhibitors of the HIV-1 Vpu and host BST-2 protein interaction. Eur. J. Med. Chem., 2020, 190, 112111.
[http://dx.doi.org/10.1016/j.ejmech.2020.112111] [PMID: 32058240]
[38]
(a) Ahmad, S.; Alam, O.; Naim, M.J.; Shaquiquzzaman, M.; Alam, M.M.; Iqbal, M. Pyrrole: An insight into recent pharmacological advances with structure activity relationship. Eur. J. Med. Chem., 2018, 157, 527-561.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.002] [PMID: 30119011];
(b) Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhimana, S.; Sharma, P. Pyrrole: A resourceful small molecule in key medicinal hetero-aromatics. RSC Advances, 2015, 5(20), 15233-15266.
[http://dx.doi.org/10.1039/C4RA15710A];
(c) Trofimov, B.A.; Nedolya, N.A. Pyrroles and their benzo derivatives: Reactivity. Comprehensive Heterocyclic Chemistry III. 3; Elsevier: Amsterdam, 2008, pp. 45-268.
[http://dx.doi.org/10.1016/B978-008044992-0.00302-3];
(d) Bergman, J.; Janosik, T. Five-membered heterocycles: Pyrrole and related systemsModern Heterocyclic Chemistry; Alvarez-Builla, J.; Vaquero, J.J; Barluenga, J., Ed.; Wiley-VCH, 2011, p. 269.;
(e) Wood, J.M.; Furkert, D.P.; Brimble, M.A. 2-Formylpyrrole natural products: Origin, structural diversity, bioactivity and synthesis. Nat. Prod. Rep., 2019, 36(2), 289-306.
[http://dx.doi.org/10.1039/C8NP00051D] [PMID: 30039828];
(f) Saccoliti, F.; Madia, V.N.; Tudino, V.; De Leo, A.; Pescatori, L.; Messore, A.; De Vita, D.; Scipione, L.; Brun, R.; Kaiser, M.; Mäser, P.; Calvet, C.M.; Jennings, G.K.; Podust, L.M.; Pepe, G.; Cirilli, R.; Faggi, C.; Di Marco, A.; Battista, M.R.; Summa, V.; Costi, R.; Di Santo, R. Design, synthesis, and biological evaluation of new 1-(Aryl-1 H-pyrrolyl)(phenyl)methyl-1 H-imidazole derivatives as antiprotozoal agents. J. Med. Chem., 2019, 62(3), 1330-1347.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01464] [PMID: 30615444];
(g) Wang, Y.; Zhang, C.; Li, S. Progress in cyclizations of 4-acetylenic ketones: Synthesis of furans and pyrroles. ChemistrySelect, 2020, 5(28), 8656-8668.
[http://dx.doi.org/10.1002/slct.202002379]
[39]
a) Philkhana, S.C.; Badmus, F.O.; Dos Reis, I.C.; Kartika, R. Recent advancements in pyrrole synthesis. Synthesis, 2021, 53(9), 1531-1555.
[http://dx.doi.org/10.1055/s-0040-1706713] [PMID: 34366491];
(b) Leonardi, M.; Estevez, V.; Villacampa, M.; Menendez, J.C. The hantzsch pyrrole synthesis: Non-conventional variations and applications of a neglected classical reaction. Synthesis, 2019, 51(4), 816-828.
[http://dx.doi.org/10.1055/s-0037-1610320];
(c) Trofimov, B.A.; Mikhaleva, A.I.; Ivanov, A.V.; Shcherbakova, V.S.; Ushakov, I.A. Expedient one-pot synthesis of pyrroles from ketones, hydroxylamine, and 1,2-dichloroethane. Tetrahedron, 2015, 71(1), 124-128.
[http://dx.doi.org/10.1016/j.tet.2014.11.031];
(d) Trofimov, B.A.; Mikhaleva, A.I.; Schmidt, E.Yu.; Sobenina, L.N. Chemistry of Pyrroles; CRC Press Taylor&Fransis Group, 2014, p. 398.
[http://dx.doi.org/10.1201/b17510];
(e) Khajuria, R.; Dham, S.; Kapoor, K.K. Active methylenes in the synthesis of a pyrrole motif: An imperative structural unit of pharmaceuticals, natural products and optoelectronic materials. RSC Advances, 2016, 6(43), 37039-37066.
[http://dx.doi.org/10.1039/C6RA03411J]
[40]
(a) Milgram, B.C.; Eskildsen, K.; Richter, S.M.; Scheidt, W.R.; Scheidt, K.A. Microwave-assisted Piloty-Robinson synthesis of 3,4-disubstituted pyrroles. J. Org. Chem., 2007, 72(10), 3941-3944.
[http://dx.doi.org/10.1021/jo070389+] [PMID: 17432915];
(b) Keiko, N.A.; Vchislo, N.V. α,β-Unsaturated aldehydes in the synthesis of pyrroles (microreview). Chem. Heterocycl. Compd., 2017, 53(5), 498-500.
[http://dx.doi.org/10.1007/s10593-017-2082-0];
(c) Huang, W.; Chen, S.; Chen, Z.; Yue, M.; Li, M.; Gu, Y. Synthesis of multisubstituted pyrroles from enolizable aldehydes and primary amines promoted by iodine. J. Org. Chem., 2019, 84(9), 5655-5666.
[http://dx.doi.org/10.1021/acs.joc.9b00596] [PMID: 30990706];
(d) Kong, H-H.; Pan, H-L.; Ding, M-W. Synthesis of 2-tetrazolyl-substituted 3-Acylpyrroles via a sequential Ugi-Azide/Ag-Catalyzed oxidative cycloisomerization reaction. J. Org. Chem., 2018, 83(20), 12921-12930.
[http://dx.doi.org/10.1021/acs.joc.8b01984] [PMID: 30213184];
e) Gao, X.; Wang, P.; Wang, Q.; Chen, J.; Lei, A. Electrochemical oxidative annulation of amines and aldehydes or ketones to synthesize polysubstituted pyrroles. Green Chem., 2019, 21(18), 4941-4945.
[http://dx.doi.org/10.1039/C9GC02118C]
[41]
Ma, Z.; Ma, D.; Zhang, D. Zhang, synthesis of multi-substituted pyrrole derivatives through [3+2] cycloaddition with Tosylmethyl Isocyanides (TosMICs) and electron-deficient compounds. Molecules, 2018, 23(10), 2666.
[http://dx.doi.org/10.3390/molecules23102666]
[42]
Chen, W.; Shao, J.; Li, Z.; Giulianotti, M.A.; Yu, Y. Synthesis of 2,3,4-trisubstituted pyrroles via a facile reaction of vinyl azides and tosylmethyl isocyanide. Can. J. Chem., 2011, 90(2), 214-221.
[http://dx.doi.org/10.1139/v11-150]
[43]
Sharma, R.; Kumar, K.; Chouhan, M.; Grover, V.; Nair, V.A. Lithium hydroxide mediated synthesis of 3,4-disubstituted pyrroles. RSC Advances, 2013, 3(34), 14521-14527.
[http://dx.doi.org/10.1039/c3ra42569j]
[44]
Kaur, R.; Kumar, K. One-pot synthesis of [4-(tert-butyl)-1H-pyrrol-3-yl](phenyl)methanone from tosylmethyl isocyanide and carbonyl compound. Chem. Heterocycl. Compd., 2018, 54(7), 700-702.
[http://dx.doi.org/10.1007/s10593-018-2335-6]
[45]
Kumar, K.; More, S.S.; Goyal, S.; Gangar, M.; Khatik, G.L.; Rawal, R.K.; Nair, V.A. A convenient synthesis of 4-alkyl-3-benzoylpyrroles from α,β-unsaturated ketones and tosylmethyl isocyanide. Tetrahedron Lett., 2016, 57(21), 2315-2319.
[http://dx.doi.org/10.1016/j.tetlet.2016.04.056]
[46]
Konstantinidou, M.; Gkermani, A.; Hadjipavlou-Litina, D. Synthesis and pharmacochemistry of new pleiotropic pyrrolyl derivatives. Molecules, 2015, 20(9), 16354-16374.
[http://dx.doi.org/10.3390/molecules200916354] [PMID: 26378503]
[47]
Chávez-Santos, R.M.; Reyes-Gutiérrez, P.E.; Torres-Ochoa, R.O.; Ramírez-Apan, M.T.; Martínez, R. 5,6-Dihydropyrrolo[2,1-a]isoquinolines as Alternative of New Drugs with Cytotoxic Activity. Chem. Pharm. Bull. (Tokyo), 2017, 65(10), 973-981.
[http://dx.doi.org/10.1248/cpb.c17-00409] [PMID: 28740026]
[48]
Manasa, K.L.; Sastry, K.N.V.; Tangella, Y.; Babu, B.N. Tandem synthesis of 3,4-disubstituted pyrroles from aldehydes, 1,3-diketones and TosMIC under metal-free conditions. ChemistrySelect, 2018, 3(10), 2730-2733.
[http://dx.doi.org/10.1002/slct.201800110]
[49]
Aitha, A. Payili, N.; Rekula, S.R.; Yennam, S.; Anireddy, J.S. ′′One-Pot′′ selective synthesis of 3,4-disubstituted pyrroles and benzo[f]indole-4,9-diones from 1,3-indanedione, aromatic aldehydes and TosMIC. ChemistrySelect, 2017, 2(24), 7246-7250.
[http://dx.doi.org/10.1002/slct.201700997]
[50]
Singh, M.; Paul, A.K.; Singh, V. A transition metal-free approach towards the regioselective synthesis of β-carboline tethered pyrroles and 2,3-dihydro-1H-pyrroles. New J. Chem., 2020, 44(28), 12370-12383.
[http://dx.doi.org/10.1039/D0NJ02315A]
[51]
Wu, T.; Pan, L.; Xu, X.; Liu, Q. Regiodivergent heterocyclization: A strategy for the synthesis of substituted pyrroles and furans using α-formyl ketene dithioacetals as common precursors. Chem. Commun. (Camb.), 2014, 50(15), 1797-1800.
[http://dx.doi.org/10.1039/C3CC48546C] [PMID: 24366181]
[52]
a) Krake, S.H.; Martinez, P.D.G.; McLaren, J.; Ryan, E.; Chen, G.; White, K.; Charman, S.A.; Campbell, S.; Willis, P.; Dias, L.C. Novel inhibitors of Plasmodium falciparum based on 2,5-disubstituted furans. Eur. J. Med. Chem., 2017, 126, 929-936.;
(b) Boto, A.; Alvarez, L.; Majumdar, K.C.; Chattopadhyay, S.K. Heterocycles in Natural Product Synthesis; Wiley-VCH: Weinheim, 2011, p. 99.;
(c) Gidron, O. Diskin-Posner, Y.; Bendikov, M. α-oligofurans. J. Am. Chem. Soc., 2010, 132(7), 2148-2150.
[http://dx.doi.org/10.1021/ja9093346] [PMID: 20121137];
(d) Liang, X-T.; Sun, B-C.; Liu, C.; Li, Y-H.; Zhang, N.; Xu, Q-Q.; Zhang, Z-C.; Han, Y-X.; Chen, J-H.; Yang, Z. Asymmetric Total Synthesis of (-)-Spirochensilide A, Part 1: Diastereoselective synthesis of the ABCD ring and stereoselective total synthesis of 13(R)-demethyl spirochensilide A. J. Org. Chem., 2021, 86(3), 2135-2157.
[http://dx.doi.org/10.1021/acs.joc.0c02494] [PMID: 33433196]
[53]
a) Zhang, Z.; Huber, G.W. Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chem. Soc. Rev., 2018, 47(4), 1351-1390.
[http://dx.doi.org/10.1039/C7CS00213K] [PMID: 29297525];
b) Montagnon, T.; Tofi, M.; Vassilikogiannakis, G. Using singlet oxygen to synthesize polyoxygenated natural products from furans. Acc. Chem. Res., 2008, 41(8), 1001-1011.
[http://dx.doi.org/10.1021/ar800023v] [PMID: 18605738];
(c) Teixeira, I.F.; Lo, B.T.W.; Kostetskyy, P.; Ye, L.; Tang, C.C.; Mpourmpakis, G.; Tsang, S.C.E. Direct catalytic conversion of biomass-derived furan and ethanol to ethylbenzene. ACS Catal., 2018, 8(3), 1843-1850.
[http://dx.doi.org/10.1021/acscatal.7b03952]
[54]
(a) Damavandi, S.; Sandaroos, R.; Pashirzad, M. Synthesis of polysubstituted furans via a novel and efficient heterocyclization approach. Res. Chem. Intermed., 2012, 38(8), 1969-1974.
[http://dx.doi.org/10.1007/s11164-012-0518-9];
(b) Tang, S.; Liu, K.; Long, Y.; Qi, X.; Lan, Y.; Lei, A. Tuning radical reactivity using iodine in oxidative C(sp(3))-H/C(sp)-H cross-coupling: An easy way toward the synthesis of furans and indolizines. Chem. Commun. (Camb.), 2015, 51(42), 8769-8772.
[http://dx.doi.org/10.1039/C5CC01825K] [PMID: 25912055];
(c) Kirsch, S.F. Syntheses of polysubstituted furans: Recent developments. Org. Biomol. Chem., 2006, 4(11), 2076-2080.
[http://dx.doi.org/10.1039/b602596j] [PMID: 16729118]
[55]
(a) Miao, Y-H.; Hu, Y-H.; Yang, J.; Liu, T.; Sun, J.; Wang, X-J. Natural source, bioactivity and synthesis of benzofuran derivatives. RSC Advances, 2019, 9(47), 27510-27540.
[http://dx.doi.org/10.1039/C9RA04917G];
(b) Khanam, H. Shamsuzzaman, Bioactive Benzofuran derivatives: A review. Eur. J. Med. Chem., 2015, 97, 483-504.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.039] [PMID: 25482554];
(c) Asif, M. Mini review on important biological properties of benzofuran derivatives. J. Anal. Pharm. Res., 2016, 3(2), 50.
[http://dx.doi.org/10.15406/japlr.2016.03.00050];
(d) Liang, Z.; Xu, H.; Tian, Y.; Guo, M.; Su, X.; Guo, C. Design, synthesis and antifungal activity of novel benzofuran-triazole hybrids. Molecules, 2016, 21(6), 732.
[http://dx.doi.org/10.3390/molecules21060732] [PMID: 27338311]
[56]
García-Gonzáleza, M.C.; González-Zamora, E.; Santillan, R.; Farfán, N. Synthesis of 2-Imino-3-aminobenzofurans via multicomponent reactions from TosMIC. Synlett, 2011, 2011(03), 308-310.
[http://dx.doi.org/10.1055/s-0030-1259325]
[57]
(a) Li, L.; Li, Z.; Liu, M.; Shen, W.; Wang, B.; Guo, H.; Lu, Y. Design, synthesis and antimycobacterial activity of novel imidazo[1,2-a]pyridine amide-cinnamamide Hybrids. Molecules, 2015, 21(1), E49.
[http://dx.doi.org/10.3390/molecules21010049] [PMID: 26729085];
(b) Krause, M.; Foks, H.; Gobis, K. Pharmacological potential and synthetic approaches of imidazo[4,5-b]pyridine and Imidazo[4,5-c]pyridine derivatives. Molecules, 2017, 22(3), 399.
[http://dx.doi.org/10.3390/molecules22030399] [PMID: 28273868];
(c) Damghani, T.; Moosavi, F.; Khoshneviszadeh, M.; Mortazavi, M.; Pirhadi, S.; Kayani, Z.; Saso, L.; Edraki, N.; Firuzi, O. Imidazopyridine hydrazone derivatives exert antiproliferative effect on lung and pancreatic cancer cells and potentially inhibit receptor tyrosine kinases including c-Met. Sci. Rep., 2021, 11(1), 3644.
[http://dx.doi.org/10.1038/s41598-021-83069-4] [PMID: 33574356];
(d) Nair, D.K.; Mobin, S.M.; Namboothiri, I.N.N. Synthesis of imidazopyridines from the Morita-Baylis-Hillman acetates of nitroalkenes and convenient access to Alpidem and Zolpidem. Org. Lett., 2012, 14(17), 4580-4583.
[http://dx.doi.org/10.1021/ol3020418] [PMID: 22920993];
(e) Benson, N.; Suleiman, O.; Odoh, S.O.; Woydziak, Z.R. Pyrazole, imidazole, and isoindolone dipyrrinone analogues: PH-dependent fluorophores that red-shift emission frequencies in a basic solution. J. Org. Chem., 2019, 84(18), 11856-11862.
[http://dx.doi.org/10.1021/acs.joc.9b01708] [PMID: 31438666]
[58]
(a) Bagdi, A.K.; Santra, S.; Monir, K.; Hajra, A. Synthesis of imidazo[1,2-a]pyridines: A decade update. Chem. Commun. (Camb.), 2015, 51(9), 1555-1575.
[http://dx.doi.org/10.1039/C4CC08495K] [PMID: 25407981];
(b) Keiko, N.A.; Vchislo, N.V. Synthesis of imidazo[1,2-a]pyridines from α,β-unsaturated aldehydes (microreview). Chem. Heterocycl. Compd., 2016, 52(4), 222-224.
[http://dx.doi.org/10.1007/s10593-016-1867-x];
(c) Gernet, A.; Sevrain, N.; Volle, J-N.; Ayad, T.; Pirat, J-L.; Virieux, D. Diversity-oriented synthesis toward aryl- and phosphoryl-functionalized imidazo[1,2-a]pyridines. J. Org. Chem., 2020, 85(22), 14730-14743.
[http://dx.doi.org/10.1021/acs.joc.0c02059] [PMID: 33166470];
(d) Reen, G.K.; Kumar, A.; Sharma, P. Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: An updated coverage. Beilstein J. Org. Chem., 2019, 15, 1612-1704.
[http://dx.doi.org/10.3762/bjoc.15.165] [PMID: 31435443]
[59]
(a) Gröbke, K.; Weber, L.; Mehlin, F. Synthesis of Imidazo[1,2-a] annulated pyridines, pyrazines and pyrimidines by a novel three-component condensation. Synlett, 1998, 1998(6), 661-663.
[http://dx.doi.org/10.1055/s-1998-1721];
(b) Bienaymé, H.; Bouzid, K. A new heterocyclic multicomponent reaction for the combinatorial synthesis of fused 3-aminoimidazoles. Angew. Chem. Int. Ed. Engl., 1998, 37(16), 2234-2237.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980904)37:16<2234:AID-ANIE2234>3.0.CO;2-R] [PMID: 29711433];
(c) Rostamnia, S.; Hassankhani, A. RuCl3-catalyzed solvent-free Ugi-type Groebke–Blackburn synthesis of aminoimidazole heterocycles. RSC Advances, 2013, 3(40), 18626-18629.
[http://dx.doi.org/10.1039/c3ra42752h];
(d) Devi, N.; Singh, D.; Mor, S.; Chaudhary, S.; Rawal, R.K.; Kumar, V.; Chowdhury, A.K.; Singh, V. In(OTf)3 catalysed an expeditious synthesis of β-carboline–imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrazine conjugates. RSC Advances, 2016, 6(50), 43881-43891.
[http://dx.doi.org/10.1039/C6RA04841B];
(e) Sharma, S.; Paul, A.K.; La Singh, V. (OTf)3-catalysed one-pot synthesis of pyrazole tethered imidazo[1,2-a]azine derivatives and evaluation of their light emitting properties. New J. Chem., 2020, 44(3), 684-694.
[http://dx.doi.org/10.1039/C9NJ05426J]
[60]
Rahmati, A.; Moazzam, A.; Khalesi, Z. A one-pot four-component synthesis of N-arylidene-2-aryl-imidazo[1,2-a]azin-3-amines. Tetrahedron Lett., 2014, 55(29), 3840-3843.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.098]
[61]
Baenziger, M.; Durantie, E.; Mathes, C. Development of an industrial process based on the groebke–blackburn–bienaymé multicomponent reaction: Efficient preparation of 3-aminoimidazo[1,2-a]pyrazines. Synthesis, 2017, 49(10), 2266-2274.
[http://dx.doi.org/10.1055/s-0036-1588130]
[62]
Shukla, P.; Deswal, D.; Azad, C.S.; Narula, A.K. Novel nucleosides as potential inhibitors of fungal lanosterol 14α-demethylase: An in vitro and in silico study. Future Med. Chem., 2019, 11(20), 2663-2686.
[http://dx.doi.org/10.4155/fmc-2019-0014] [PMID: 31637926]
[63]
Shukla, P.; Deswal, D.; Pandit, M.; Latha, N.; Mahajan, D.; Srivastava, T.; Narula, A.K. Exploration of novel TOSMIC tethered imidazo[1,2-a]pyridine compounds for the development of potential antifungal drug candidate. Drug Dev. Res., 2021, 1-19.
[http://dx.doi.org/10.1002/ddr.21883] [PMID: 34569640]
[64]
(a) Dey, S.K.; Al Kobaisi, M.; Bhosale, S.V. Functionalized quinoxaline for chromogenic and fluorogenic anion sensing. ChemistryOpen, 2018, 7(12), 934-952.
[http://dx.doi.org/10.1002/open.201800163] [PMID: 30524920];
(b) Dey, S.K.; Kobaisi, M.A.; Bhosale, S.V. Cover feature: Functionalized quinoxaline for chromogenic and fluorogenic anion sensing. ChemistryOpen, 2018, 7(12), 931-946.
[http://dx.doi.org/10.1002/open.201800233];
(c) Norwood, V.M., IV; Huigens, R.W., III Harnessing the chemistry of the indole heterocycle to drive discoveries in biology and medicine. ChemBioChem, 2019, 20(18), 2273-2297.
[http://dx.doi.org/10.1002/cbic.201800768] [PMID: 30609199];
(d) Malki, Y.; Maillard, L.T.; Masurier, N. 1,3-diazepine derivatives: Strategies for synthesis. Eur. J. Org. Chem., 2021, ejoc.202100492.
[http://dx.doi.org/10.1002/ejoc.202100492];
(e) Kamble, O.S.; Khatravath, M.; Dandela, R. Applications of ethynylanilines as substrates for construction of indoles and indole-substituted derivatives. ChemistrySelect, 2021, 6(29), 7408-7427.
[http://dx.doi.org/10.1002/slct.202101437]
[65]
Neochoritis, C.; Stephanidou-Stephanatou, J.; Tsoleridis, C.A. Heterocyclizations via TosMIC-based multicomponent reactions: A new approach to one-pot facile synthesis of substituted quinoxaline derivatives. Synlett, 2009, 2, 302-305.
[66]
De Moliner, F.; Hulme, C. Straightforward assembly of phenylimidazoquinoxalines via a one-pot two-step MCR process. Org. Lett., 2012, 14(5), 1354-1357.
[http://dx.doi.org/10.1021/ol3003282] [PMID: 22356134]
[67]
Murugesh, V.; Harish, B.; Adiseshu, M.; Nanubolu, J.B.; Suresh, S. Tandem copper-catalyzed n-arylation–condensation and van leusen reaction: Synthesis of 1,4-benzodiazepines and imidazobenzodiazepines (ImBDs). Adv. Synth. Catal., 2016, 358(8), 1309-1321.
[http://dx.doi.org/10.1002/adsc.201501048]
[68]
Spisa, F.L.; Meneghetti, F.; Pozzia, B.; Tron, G.C. Synthesis of heteroarylogous 1h-indole-3-carboxamidines via a three-component interrupted ugi reaction. Synthesis, 2015, 47(4), 489-496.
[69]
Ramírez-López, S.C.; Unnamatla, M.V.; Gámez-Montaño, R. Solvent-free synthesis of imidazo[1,2-a]pyridin-tetrazolo[1,5-a]quinolines via an IMCR one-pot process. Proceedings, 2019, 9(1), 41.