Investigating the Metabolic Mechanisms of Butaselen, An Ebselen Analog

Page: [928 - 939] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Butaselen is an ebselen analog that is under clinical trials for treating hepatic and pulmonary fibrosis. Our previous studies showed that butaselen is mainly present in human plasma in the form of M2, a free Se-methylated metabolite.

Objective: This study aimed to investigate the metabolic mechanisms of butaselen.

Methods and Results: Butaselen was incubated with human plasma. Butaselen immediately disappeared, and the butaselen-HSA (human serum albumin) adduct was detected by HPLC-HRMS, showing that butaselen covalently binds to HSA. The butaselen-HSA adduct was precipitated using acetonitrile and then incubated with PBS, Cys, and GSH for 1 hour. The product was M1, a reduced form of butaselen. The results indicated that HSA, Cys, and GSH can reduce the butaselen-HSA covalent bond. The binding site for butaselen could be the cysteine-34 residue of HSA through pronase and trypsin hydrolysis. Incubating butaselen with cysteine, butaselen-Cys, butaselen-2Cys, and M1 were generated, indicating the covalent binding and reduction of butaselen by cysteine. We incubated liver microsomes and cytosol with butaselen, 6.22 and 246 nM M2 were generated, respectively. The results demonstrated that cytosolic enzymes are mainly involved in M2 production. The amount of M2 in the liver cytosol decreased from 246 nM to 2.21 nM when 10 mM m-anisic acid (a specific TPMT enzyme inhibitor) was added, showing that TPMT is responsible for M2 formation.

Conclusion: Butaselen was covalently bound to HSA, and the binding site was the cysteine-34 residue of HSA. The butaselen-HSA adduct was reduced by free thiol compounds to generate M1. M1 was further metabolized to M2 by cytosolic TPMT. This study provides a basis for studying the pharmacokinetics of selenium-containing drugs.

Keywords: Butaselen, ebselen, covalent binding, Se-methylation, cytosol, TPMT.

Graphical Abstract

[1]
Zeng, H.H. Bisbenzisoselenazolonyl derivatives having antineoplastics, anti-inflammatory and antithrombotic activities as well as their use. U.S. Patent 7820829B2, 2010.
[2]
Chiou, J.; Wan, S.; Chan, K.F.; So, P.K.; He, D.; Chan, E.W.; Chan, T.H.; Wong, K.Y.; Tao, J.; Chen, S. Ebselen as a potent covalent inhibitor of New Delhi metallo-β-lactamase (NDM-1). Chem. Commun. (Camb.), 2015, 51(46), 9543-9546.
[http://dx.doi.org/10.1039/C5CC02594J] [PMID: 25970101]
[3]
Parise, A.; Romeo, I.; Russo, N.; Marino, T. The Se-S bond formation in the covalent inhibition mechanism of SARS-CoV-2 main protease by ebselen-like inhibitors: A computational study. Int. J. Mol. Sci., 2021, 22(18), 9792-9812.
[http://dx.doi.org/10.3390/ijms22189792] [PMID: 34575955]
[4]
Amporndanai, K.; Meng, X.; Shang, W.; Jin, Z.; Rogers, M.; Zhao, Y.; Rao, Z.; Liu, Z.J.; Yang, H.; Zhang, L.; O’Neill, P.M.; Samar Hasnain, S. Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. Nat. Commun., 2021, 12(1), 3061-3067.
[http://dx.doi.org/10.1038/s41467-021-23313-7] [PMID: 34031399]
[5]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[6]
Baillie, T.A. Targeted covalent inhibitors for drug design. Angew. Chem. Int. Ed. Engl., 2016, 55(43), 13408-13421.
[http://dx.doi.org/10.1002/anie.201601091] [PMID: 27539547]
[7]
Fischer, H.; Terlinden, R.; Löhr, J.P.; Römer, A. A novel biologically active selenoorganic compound. VIII. Biotransformation of ebselen. Xenobiotica, 1988, 18(12), 1347-1359.
[http://dx.doi.org/10.3109/00498258809042259] [PMID: 3271007]
[8]
Zheng, W.; He, R.; Boada, R.; Subirana, M.A.; Ginman, T.; Ottosson, H.; Valiente, M.; Zhao, Y.; Hassan, M. A general covalent binding mod-el between cytotoxic selenocompounds and albumin revealed by mass spectrometry and X-ray absorption spectroscopy. Sci. Rep., 2020, 10(1), 1274-1283.
[http://dx.doi.org/10.1038/s41598-020-57983-y] [PMID: 31988319]
[9]
Ballard, T.E.; Dahal, U.P.; Bessire, A.J.; Schneider, R.P.; Geoghegan, K.F.; Vaz, A.D. A tag-free collisionally induced fragmentation approach to detect drug-adducted proteins by mass spectrometry. Rapid Commun. Mass Spectrom., 2015, 29(22), 2175-2183.
[http://dx.doi.org/10.1002/rcm.7375] [PMID: 26467230]
[10]
Tailor, A.; Waddington, J.C.; Meng, X.; Park, B.K. Mass spectrometric and functional aspects of drug-protein conjugation. Chem. Res. Toxicol., 2016, 29(12), 1912-1935.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00147] [PMID: 27689879]
[11]
Bessire, A.J.; Ballard, T.E.; Charati, M.; Cohen, J.; Green, M.; Lam, M.H.; Loganzo, F.; Nolting, B.; Pierce, B.; Puthenveetil, S.; Roberts, L.; Schildknegt, K.; Subramanyam, C. Determination of antibody-drug conjugate released payload species using directed in vitro assays and mass spectrometric interrogation. Bioconjug. Chem., 2016, 27(7), 1645-1654.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00192] [PMID: 27206324]
[12]
Riccardi Sirtori, F.; Altomare, A.; Carini, M.; Aldini, G.; Regazzoni, L. MS methods to study macromolecule-ligand interaction: Applications in drug discovery. Methods, 2018, 144, 152-174.
[http://dx.doi.org/10.1016/j.ymeth.2018.06.005] [PMID: 29890284]
[13]
Tian, Q.; Jiang, J.; Yin, H.; Ma, J.; Deng, G.; Zhou, J.; Zhong, D. Quantification of the major circulating metabolite of BS1801, an ebselen analog, in human plasma. J. Pharm. Biomed. Anal., 2022, 212, 114638.
[http://dx.doi.org/10.1016/j.jpba.2022.114638] [PMID: 35149420]
[14]
Liu, C.; Chen, Z.; Zhong, K.; Li, L.; Zhu, W.; Chen, X.; Zhong, D. Human liver cytochrome P450 enzymes and microsomal thiol methyl-transferase are involved in the stereoselective formation and methylation of the pharmacologically active metabolite of clopidogrel. Drug Metab. Dispos., 2015, 43(10), 1632-1641.
[http://dx.doi.org/10.1124/dmd.115.064949] [PMID: 26220948]
[15]
Kazui, M.; Hagihara, K.; Izumi, T.; Ikeda, T.; Kurihara, A. Hepatic microsomal thiol methyltransferase is involved in stereoselective methyla-tion of pharmacologically active metabolite of prasugrel. Drug Metab. Dispos., 2014, 42(7), 1138-1145.
[http://dx.doi.org/10.1124/dmd.114.057661] [PMID: 24733788]
[16]
Obach, R.S.; Prakash, C.; Kamel, A.M. Reduction and methylation of ziprasidone by glutathione, aldehyde oxidase, and thiol S-methyltransferase in humans: An in vitro study. Xenobiotica, 2012, 42(11), 1049-1057.
[http://dx.doi.org/10.3109/00498254.2012.683203] [PMID: 22559212]
[17]
Karanam, B.V.; Hop, C.E.; Liu, D.Q.; Wallace, M.; Dean, D.; Satoh, H.; Komuro, M.; Awano, K.; Vincent, S.H. In vitro metabolism of MK-0767 [(+/-)-5-[(2,4-dioxothiazolidin-5-yl)methyl]-2-methoxy-N-[[(4-trifluoromethyl) phenyl]methyl]benzamide], a peroxisome proliferator-activated receptor alpha/gamma agonist. I. Role of cytochrome P450, methyltransferases, flavin monooxygenases, and esterases. Drug Metab. Dispos., 2004, 32(9), 1015-1022.
[http://dx.doi.org/10.1124/dmd.104.000034] [PMID: 15319344]
[18]
Burgueño-Rodríguez, G.; Méndez, Y.; Olano, N.; Dabezies, A.; Bertoni, B.; Souto, J.; Castillo, L.; da Luz, J.; Soler, A.M. Ancestry and TPMT-VNTR polymorphism: Relationship with hematological toxicity in uruguayan patients with acute lymphoblastic leukemia. Front. Pharmacol., 2020, 11, 594262-594269.
[http://dx.doi.org/10.3389/fphar.2020.594262] [PMID: 33424606]
[19]
Harmand, P.O.; Solassol, J. Thiopurine drugs in the treatment of ulcerative colitis: Identification of a novel deleterious mutation in TPMT. Genes (Basel), 2020, 11(10), 1212-1225.
[http://dx.doi.org/10.3390/genes11101212] [PMID: 33081236]
[20]
Relling, M.V.; Schwab, M.; Whirl-Carrillo, M.; Suarez-Kurtz, G.; Pui, C.H.; Stein, C.M.; Moyer, A.M.; Evans, W.E.; Klein, T.E.; Antillon-Klussmann, F.G.; Caudle, K.E.; Kato, M.; Yeoh, A.E.J.; Schmiegelow, K.; Yang, J.J. Clinical pharmacogenetics implementation consortium guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update. Clin. Pharmacol. Ther., 2019, 105(5), 1095-1105.
[http://dx.doi.org/10.1002/cpt.1304] [PMID: 30447069]
[21]
Lee, D.H.; Kim, D.H. S-methylation of 2-mercaptopyrazine in rat liver microsomes and cytosol. Xenobiotica, 1999, 29(9), 909-916.
[http://dx.doi.org/10.1080/004982599238155] [PMID: 10548451]
[22]
Yang, R.J.; Tseng, C.C.; Ju, W.J.; Wang, H.L.; Fu, L.M. A rapid paper-based detection system for determination of human serum albumin concentration. Chem. Eng. J., 2018, 352, 241-246.
[http://dx.doi.org/10.1016/j.cej.2018.07.022]
[23]
Hu, W.; Tedesco, S.; Faedda, R.; Petrone, G.; Cacciola, S.O.; O’Keefe, A.; Sheehan, D. Covalent selection of the thiol proteome on activated thiol sepharose: A robust tool for redox proteomics. Talanta, 2010, 80(4), 1569-1575.
[http://dx.doi.org/10.1016/j.talanta.2009.10.047] [PMID: 20082816]
[24]
Hansen, R.E.; Roth, D.; Winther, J.R. Quantifying the global cellular thiol-disulfide status. Proc. Natl. Acad. Sci. USA, 2009, 106(2), 422-427.
[http://dx.doi.org/10.1073/pnas.0812149106] [PMID: 19122143]
[25]
Pereira, C.D.; Minamino, N.; Takao, T. Free tiol of transthyretin in human plasma most accessible to modification/oxidation. Anal. Chem., 2015, 87(21), 10785-10791.
[http://dx.doi.org/10.1021/acs.analchem.5b03431] [PMID: 26441309]
[26]
Pavićević, I.D.; Jovanović, V.B.; Takić, M.M.; Penezić, A.Z.; Aćimović, J.M.; Mandić, L.M. Fatty acids binding to human serum albumin: Changes of reactivity and glycation level of Cysteine-34 free thiol group with methylglyoxal. Chem. Biol. Interact., 2014, 224, 42-50.
[http://dx.doi.org/10.1016/j.cbi.2014.10.008] [PMID: 25451573]
[27]
Li, J.; Sun, C.; Cai, W.; Li, J.; Rosen, B.P.; Chen, J. Insights into S-adenosyl-l-methionine (SAM)-dependent methyltransferase related diseas-es and genetic polymorphisms. Mutat. Res., 2021, 788, 108396-108412.
[http://dx.doi.org/10.1016/j.mrrev.2021.108396] [PMID: 34893161]
[28]
Loit, E.; Tricco, A.C.; Tsouros, S.; Sears, M.; Ansari, M.T.; Booth, R.A. Pre-analytic and analytic sources of variations in thiopurine methyl-transferase activity measurement in patients prescribed thiopurine-based drugs: A systematic review. Clin. Biochem., 2011, 44(10-11), 751-757.
[http://dx.doi.org/10.1016/j.clinbiochem.2011.03.022] [PMID: 21402061]
[29]
Citterio-Quentin, A.; El Mahmoudi, A.; Perret, T.; Conway, A.; Ryan, A.; Beringer, A.; Lachaux, A.; Boulieu, R. Red Blood cell IMPDH ac-tivity in adults and children with or without azathioprine: Relationship between thiopurine metabolites, ITPA and TPMT activities. Basic Clin. Pharmacol. Toxicol., 2019, 124(5), 600-606.
[http://dx.doi.org/10.1111/bcpt.13176] [PMID: 30451390]
[30]
van Egmond, R.; Barclay, M.L.; Chin, P.K.; Sies, C.W.; Florkowski, C.M. Preanalytical stringency: What factors may confound interpretation of thiopurine S-methyl transferase enzyme activity? Ann. Clin. Biochem., 2013, 50(Pt 5), 479-484.
[http://dx.doi.org/10.1177/0004563212474558] [PMID: 23812896]
[31]
Hon, Y.Y.; Fessing, M.Y.; Pui, C.H.; Relling, M.V.; Krynetski, E.Y.; Evans, W.E. Polymorphism of the thiopurine S-methyltransferase gene in African-Americans. Hum. Mol. Genet., 1999, 8(2), 371-376.
[http://dx.doi.org/10.1093/hmg/8.2.371] [PMID: 9931346]
[32]
Zhou, H.; Li, L.; Yang, P.; Yang, L.; Zheng, J.E.; Zhou, Y.; Han, Y. Optimal predictor for 6-mercaptopurine intolerance in Chinese children with acute lymphoblastic leukemia: NUDT15, TPMT, or ITPA genetic variants? BMC Cancer, 2018, 18(1), 516-524.
[http://dx.doi.org/10.1186/s12885-018-4398-2] [PMID: 29720126]
[33]
Wang, H.H.; He, Y.; Wang, H.X.; Liao, C.L.; Peng, Y.; Tao, L.J.; Zhang, W.; Yang, H.X. Comparison of TPMT and NUDT15 polymorphisms in Chinese patients with inflammatory bowel disease. World J. Gastroenterol., 2018, 24(8), 941-948.
[http://dx.doi.org/10.3748/wjg.v24.i8.941] [PMID: 29491687]
[34]
Kham, S.K.; Soh, C.K.; Aw, D.C.; Yeoh, A.E. TPMT*26 (208F-->L), a novel mutation detected in a Chinese. Br. J. Clin. Pharmacol., 2009, 68(1), 120-123.
[http://dx.doi.org/10.1111/j.1365-2125.2009.03405.x] [PMID: 19660010]
[35]
Wang, M.; Xu, M.; Long, Y.; Fargue, S.; Southall, N.; Hu, X.; McKew, J.C.; Danpure, C.J.; Zheng, W. High throughput cell-based assay for identification of glycolate oxidase inhibitors as a potential treatment for primary hyperoxaluria Type 1. Sci. Rep., 2016, 6(1), 34060-34071.
[http://dx.doi.org/10.1038/srep34060] [PMID: 27670739]
[36]
Atcheson, B.; Taylor, P.J.; Pillans, P.I.; Tett, S.E. Measurement of free drug and clinical end-point by high-performance liquid chromatog-raphy-mass spectrometry applications and implications for pharmacokinetic and pharmacodynamic studies. Anal. Chim. Acta, 2003, 492(1-2), 157-169.
[http://dx.doi.org/10.1016/S0003-2670(03)00359-3]
[37]
Patsalos, P.N.; Zugman, M.; Lake, C.; James, A.; Ratnaraj, N.; Sander, J.W. Serum protein binding of 25 antiepileptic drugs in a routine clini-cal setting: A comparison of free non-protein-bound concentrations. Epilepsia, 2017, 58(7), 1234-1243.
[http://dx.doi.org/10.1111/epi.13802] [PMID: 28542801]
[38]
Abbas, M.; Ahmad, L.; Shah, Y.; Gill, M.; Watson, D.G. Development of a method to measure free and bound ropivacaine in human plasma using equilibrium dialysis and hydrophilic interaction chromatography coupled to high resolution mass spectrometry. Talanta, 2013, 117, 60-63.
[http://dx.doi.org/10.1016/j.talanta.2013.08.049] [PMID: 24209310]