A Review on an Artificial Intelligence Based Ophthalmic Application

Page: [2150 - 2160] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Artificial intelligence is the leading branch of technology and innovation. The utility of artificial intelligence in the field of medicine is also remarkable. From drug discovery and development to introducing products to the market, artificial intelligence can play its role. As people age, they are more prone to be affected by eye diseases around the globe. Early diagnosis and detection help minimize the risk of vision loss and provide a quality life. With the help of artificial intelligence, the workload of humans and manmade errors can be reduced to an extent. The need for artificial intelligence in the area of ophthalmic is also significant. In this review, we elaborated on the use of artificial intelligence in the field of pharmaceutical product development, mainly with its application in ophthalmic care. AI in the future has a high potential to increase the success rate in the drug discovery phase has already been established. The application of artificial intelligence for drug development, diagnosis, and treatment is also reported with the scientific evidence in this paper.

Keywords: Artificial intelligence, ophthalmic application, drug discovery and development, healthcare, diagnosis, clinical trials.

[1]
Jarrahi MH. Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Bus Horiz 2018; 61(4): 577-86.
[http://dx.doi.org/10.1016/j.bushor.2018.03.007]
[2]
Kersting K. Machine learning and artificial intelligence: Two fellow travelers on the quest for intelligent behavior in machines. Frontiers in big. Data (Basel) 2018; 1: 6.
[http://dx.doi.org/10.3389/fdata.2018.00006] [PMID: 33693322]
[3]
Gunasekeran DV, Wong TY. Artificial intelligence in ophthalmology in 2020: A technology on the Cusp for translation and implementation. Asia Pac J Ophthalmol (Phila) 2020; 9(2): 61-6.
[http://dx.doi.org/10.1097/01.APO.0000656984.56467.2c] [PMID: 32349112]
[4]
Dickson M, Gagnon JP. Key factors in the rising cost of new drug discovery and development. Nat Rev Drug Discov 2004; 3(5): 417-29.
[http://dx.doi.org/10.1038/nrd1382] [PMID: 15136789]
[5]
Dominguez D, Jawara M, Martino N, Sinaii N, Grady C. Commonly performed procedures in clinical research: A benchmark for payment. Contemp Clin Trials 2012; 33(5): 860-8.
[http://dx.doi.org/10.1016/j.cct.2012.05.001] [PMID: 22580210]
[6]
Harrer S, Shah P, Antony B, Hu J. Artificial intelligence for clinical trial design. Trends Pharmacol Sci 2019; 40(8): 577-91.
[http://dx.doi.org/10.1016/j.tips.2019.05.005] [PMID: 31326235]
[7]
Chatzis SP, Siakoulis V, Petropoulos A, Stavroulakis E, Vlachogiannakis N. Forecasting stock market crisis events using deep and statistical machine learning techniques. Expert Syst Appl 2018; 112: 353-71.
[http://dx.doi.org/10.1016/j.eswa.2018.06.032]
[8]
Lu W, Tong Y, Yu Y, Xing Y, Chen C, Shen Y. Applications of artificial intelligence in ophthalmology: General overview. J Ophthalmol 2018; 2018: 5278196.
[http://dx.doi.org/10.1155/2018/5278196] [PMID: 30581604]
[9]
Aksu B, Paradkar A, de Matas M, Özer O, Güneri T, York P. Quality by design approach: Application of artificial intelligence techniques of tablets manufactured by direct compression. AAPS PharmSciTech 2012; 13(4): 1138-46.
[http://dx.doi.org/10.1208/s12249-012-9836-x] [PMID: 22956056]
[10]
Lo’ai AT, Mehmood R, Benkhlifa E, Song H. Mobile cloud computing model and big data analysis for healthcare applications. IEEE Access 2016; 4: 6171-80.
[http://dx.doi.org/10.1109/ACCESS.2016.2613278]
[11]
Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med 2018; 24(10): 1559-67.
[http://dx.doi.org/10.1038/s41591-018-0177-5] [PMID: 30224757]
[12]
Wang Z, Keane PA, Chiang M, Cheung CY, Wong TY, Ting DS. Artificial intelligence and deep learning in ophthalmology. Artif Intell Med 2020; •••: 1-34.
[13]
Lake BM, Ullman TD, Tenenbaum JB, Gershman SJ. Building machines that learn and think like people. Behav Brain Sci 2017; 40: e253.
[http://dx.doi.org/10.1017/S0140525X16001837] [PMID: 27881212]
[14]
Muthukrishnan N, Maleki F, Ovens K, Reinhold C, Forghani B, Forghani R. Brief history of artificial intelligence. Neuroimaging Clin N Am 2020; 30(4): 393-9.
[http://dx.doi.org/10.1016/j.nic.2020.07.004] [PMID: 33038991]
[15]
Rajaraman V. JohnMcCarthy—Father of artificial intelligence. Resonance 2014; 19(3): 198-207.
[http://dx.doi.org/10.1007/s12045-014-0027-9]
[16]
Bourquin J, Schmidli H, van Hoogevest P, Leuenberger H. Basic concepts of artificial neural networks (ANN) modeling in the application to pharmaceutical development. Pharm Dev Technol 1997; 2(2): 95-109.
[http://dx.doi.org/10.3109/10837459709022615] [PMID: 9552436]
[17]
Lungarella M, Iida F, Bongard JC, Pfeifer R. AI in the 21st century–with historical reflections In: 50 Years of Artificial Intelligence. Berlin, Heidelberg: Springer 2007; pp. 1-8.
[18]
Powles J, Hodson H. Google DeepMind and healthcare in an age of algorithms. Health Technol (Berl) 2017; 7(4): 351-67.
[http://dx.doi.org/10.1007/s12553-017-0179-1] [PMID: 29308344]
[19]
Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, Campbell JP. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol 2020; 9(2): 14.
[PMID: 32704420]
[20]
Agatonovic-Kustrin S, Beresford R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal 2000; 22(5): 717-27.
[http://dx.doi.org/10.1016/S0731-7085(99)00272-1] [PMID: 10815714]
[21]
Bournez O, Dowek G, Gilleron R, et al. A Guided Tour of Artificial Intelligence Research-Volume III. In: Interfaces and Applications of Artificial Intelligence Theoretical Computer Science Computational Complexity. Springer 2020.
[22]
Ma Z, Ma J, Miao Y, Liu X. Privacy-preserving and high-accurate outsourced disease predictor on random forest. Inf Sci 2019; 496: 225-41.
[http://dx.doi.org/10.1016/j.ins.2019.05.025]
[23]
Philip JT, George ST. Performance comparison of neural network backpropagation algorithms in detecting p300 signals from mindspeller data. In: 2019 2nd International Conference on Signal Processing and Communication (ICSPC). IEEE 2019; pp. 117-21.
[http://dx.doi.org/10.1109/ICSPC46172.2019.8976735]
[24]
Hassani H, Silva ES, Unger S. Artificial intelligence (AI) or intelligence augmentation (IA): What is the future?. Ai 2020; 1(2): 143-55.
[25]
Mazlan AU. Supervised and unsupervised machine learning for cancer classification: Recent development. 2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS). 2021; pp. 392-5.
[26]
Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R, Muharemagic E. Deep learning applications and challenges in big data analytics. J Big Data 2015; 2(1): 1-21.
[http://dx.doi.org/10.1186/s40537-014-0007-7]
[27]
Moen E, Bannon D, Kudo T, Graf W, Covert M, Van Valen D. Deep learning for cellular image analysis. Nat Methods 2019; 16(12): 1233-46.
[http://dx.doi.org/10.1038/s41592-019-0403-1] [PMID: 31133758]
[28]
Ibrahim I, Abdulazeez A. The role of machine learning algorithms for diagnosing diseases. J Appl Sci Technol Trends 2021; 2(01): 10-9.
[http://dx.doi.org/10.38094/jastt20179]
[29]
Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J 2019; 6(2): 94-8.
[http://dx.doi.org/10.7861/futurehosp.6-2-94] [PMID: 31363513]
[30]
Harding GH, Epstein AL. Technology evaluation. Clin Eng Handb 2004; pp. 114-8.
[31]
Grassmann F, Mengelkamp J, Brandl C, et al. A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology 2018; 125(9): 1410-20.
[http://dx.doi.org/10.1016/j.ophtha.2018.02.037] [PMID: 29653860]
[32]
Williams GA, Scott IU, Haller JA, Maguire AM, Marcus D, McDonald HR. Single-field fundus photography for diabetic retinopathy screening: A report by the American Academy of Ophthalmology. Ophthalmology 2004; 111(5): 1055-62.
[http://dx.doi.org/10.1016/j.ophtha.2004.02.004] [PMID: 15121388]
[33]
Bellemo V, Lim G, Rim TH, et al. Artificial intelligence screening for diabetic retinopathy: The real-world emerging application. Curr Diab Rep 2019; 19(9): 72.
[http://dx.doi.org/10.1007/s11892-019-1189-3] [PMID: 31367962]
[34]
Sopharak A, Uyyanonvara B, Barman S, Williamson TH. Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods. Comput Med Imaging Graph 2008; 32(8): 720-7.
[http://dx.doi.org/10.1016/j.compmedimag.2008.08.009] [PMID: 18930631]
[35]
Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med 2019; 25(1): 24-9.
[http://dx.doi.org/10.1038/s41591-018-0316-z] [PMID: 30617335]
[36]
Fraenkl SA, Mozaffarieh M, Flammer J. Retinal vein occlusions: The potential impact of a dysregulation of the retinal veins. EPMA J 2010; 1(2): 253-61.
[http://dx.doi.org/10.1007/s13167-010-0025-2] [PMID: 21258633]
[37]
Lee JG, Jun S, Cho YW, et al. Deep learning in medical imaging: General overview. Korean J Radiol 2017; 18(4): 570-84.
[http://dx.doi.org/10.3348/kjr.2017.18.4.570] [PMID: 28670152]
[38]
Dogra MR, Katoch D, Dogra M. An update on retinopathy of prematurity (ROP). Indian J Pediatr 2017; 84(12): 930-6.
[http://dx.doi.org/10.1007/s12098-017-2404-3] [PMID: 28674824]
[39]
Karna P, Muttineni J, Angell L, Karmaus W. Retinopathy of prematurity and risk factors: A prospective cohort study. BMC Pediatr 2005; 5(1): 18.
[http://dx.doi.org/10.1186/1471-2431-5-18] [PMID: 15985170]
[40]
Gehrs KM, Anderson DH, Johnson LV, Hageman GS. Age-related macular degeneration--emerging pathogenetic and therapeutic concepts. Ann Med 2006; 38(7): 450-71.
[http://dx.doi.org/10.1080/07853890600946724] [PMID: 17101537]
[41]
Au Eong KG. Age-related macular degeneration: An emerging challenge for eye care and public health professionals in the Asia Pacific region. Ann Acad Med Singap 2006; 35(3): 133-5.
[PMID: 16625260]
[42]
Yim J, Chopra R, Spitz T, et al. Predicting conversion to wet age-related macular degeneration using deep learning. Nat Med 2020; 26(6): 892-9.
[http://dx.doi.org/10.1038/s41591-020-0867-7] [PMID: 32424211]
[43]
Koh JE, Ng EY, Bhandary SV, Laude A, Acharya UR. Automated detection of retinal health using PHOG and SURF features extracted from fundus images. Appl Intell 2018; 48(5): 1379-93.
[44]
Wang YH, Lin GY. Exploring AI-healthcare innovation: Natural language processing-based patents analysis for technology-driven roadmapping. Kybernetes 2022. (Ahead of print).
[http://dx.doi.org/10.1108/K-03-2021-0170]
[45]
Kale D, Little S. From imitation to innovation: The evolution of R&D capabilities and learning processes in the Indian pharmaceutical industry. Technol Anal Strateg Manage 2007; 19(5): 589-609.
[46]
Shah N. Pharmaceutical supply chains: Key issues and strategies for optimisation. Comput Chem Eng 2004; 28(6-7): 929-41.
[47]
Ekins S, Puhl AC, Zorn KM, et al. Exploiting machine learning for end-to-end drug discovery and development. Nat Mater 2019; 18(5): 435-41.
[http://dx.doi.org/10.1038/s41563-019-0338-z] [PMID: 31000803]
[48]
Bergström CAS, Charman WN, Porter CJH. Computational prediction of formulation strategies for beyond-rule-of-5 compounds. Adv Drug Deliv Rev 2016; 101: 6-21.
[http://dx.doi.org/10.1016/j.addr.2016.02.005] [PMID: 26928657]
[49]
Zhavoronkov A. Artificial intelligence for drug discovery, biomarker development, and generation of novel chemistry. Mol Pharm 2018; 15(10): 4311-3.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00930] [PMID: 30269508]
[50]
Rifaioglu AS, Atas H, Martin MJ, Cetin-Atalay R, Atalay V, Doğan T. Recent applications of deep learning and machine intelligence on in silico drug discovery: Methods, tools and databases. Brief Bioinform 2019; 20(5): 1878-912.
[http://dx.doi.org/10.1093/bib/bby061] [PMID: 30084866]
[51]
Piriyaprasarth S, Patomchaiviwat V, Sriamonsak P. In silico modeling of pharmaceutical formulation using artificial neural networks. 2009 International Conference on Biomedical and Pharmaceutical Engineering. IEEE 2009, 1-5.
[http://dx.doi.org/10.1109/ICBPE.2009.5384085]
[52]
Schneider P, Walters WP, Plowright AT, et al. Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov 2020; 19(5): 353-64.
[http://dx.doi.org/10.1038/s41573-019-0050-3] [PMID: 31801986]
[53]
Jena AK. Predicting learning outputs and retention through neural network artificial intelligence in photosynthesis, transpiration and translocation. Asia-Pacific Forum Sci Learn Teach 2018; 19(1): 25.
[54]
Ubeyli ED. Adaptive neuro-fuzzy inference system employing wavelet coefficients for detection of ophthalmic arterial disorders. Expert Syst Appl 2008; 34(3): 2201-9.
[http://dx.doi.org/10.1016/j.eswa.2007.02.020]
[55]
Hassanzadeh P, Atyabi F, Dinarvand R. The significance of artificial intelligence in drug delivery system design. Adv Drug Deliv Rev 2019; 151-152: 169-90.
[http://dx.doi.org/10.1016/j.addr.2019.05.001] [PMID: 31071378]
[56]
Rowe RC, Roberts RJ. Artificial intelligence in pharmaceutical product formulation: Knowledge-based and expert systems. Pharm Sci Technol Today 1998; 1(4): 153-9.
[http://dx.doi.org/10.1016/S1461-5347(98)00042-X]
[57]
Dwivedi YK, Hughes L, Ismagilova E, et al. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int J Inf Manage 2021; 57: 101994.
[http://dx.doi.org/10.1016/j.ijinfomgt.2019.08.002]
[58]
Aksu B, Paradkar A, de Matas M, Özer Ö, Güneri T, York P. A quality by design approach using artificial intelligence techniques to control the critical quality attributes of ramipril tablets manufactured by wet granulation. Pharm Dev Technol 2013; 18(1): 236-45.
[http://dx.doi.org/10.3109/10837450.2012.705294] [PMID: 22881350]
[59]
Yu LX. Pharmaceutical quality by design: Product and process development, understanding, and control. Pharm Res 2008; 25(4): 781-91.
[http://dx.doi.org/10.1007/s11095-007-9511-1] [PMID: 18185986]
[60]
Babu KA, Shirlin MS. AS MD. Artificial intelligence in pharma. Int J Curr Res Physiol Pharmacol 2021; 5(1): 2021.
[61]
Awwalu J, Garba AG, Ghazvini A, Atuah R. Artificial intelligence in personalized medicine application of AI algorithms in solving personalized medicine problems. Int J Comp Theory Eng 2015; 7(6): 439-43.
[http://dx.doi.org/10.7763/IJCTE.2015.V7.999]
[62]
Mesko B. The role of artificial intelligence in precision medicine. Expert Rev Precis Med Drug Dev 2017; 2(5): 239-41.
[http://dx.doi.org/10.1080/23808993.2017.1380516]
[63]
Kobrinskii BA. Personalized medicine: Genome, electronic health and intelligent systems. Part 2. Molecular genetics and methods of intellectual analysis. Rossiyskiy Vestnik Perinatologii i Pediatrii 2018; 62(6): 16-22.
[http://dx.doi.org/10.21508/1027-4065-2017-62-6-16-22]
[64]
Ketchen DJ Jr, Snow CC, Hoover VL. Research on competitive dynamics: Recent accomplishments and future challenges. J Manage 2004; 30(6): 779-804.
[http://dx.doi.org/10.1016/j.jm.2004.06.002]
[65]
Mak KK, Pichika MR. Artificial intelligence in drug development: Present status and future prospects. Drug Discov Today 2019; 24(3): 773-80.
[http://dx.doi.org/10.1016/j.drudis.2018.11.014] [PMID: 30472429]