An Outlook Towards Nano-Sponges: A Unique Drug Delivery System and its Application in Drug Delivery

Page: [884 - 903] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Nanosponges are colloidal and crosslinked nanocarriers consisting of a solid mesh-like network with nanocavities to encompass various types of substances like antineoplastic, proteins, peptides, volatile oil, DNA and then incorporated into topical medications that are mainly formulated such as gels, creams, lotions, ointments, liquid and powders etc. for topical drug delivery system. In the polymeric construction of nanosponges, the release of enthalpy-rich water molecules accounts for high complexation efficiency for different molecular substances. The benefits of nanosponges involve the extended and controlled release of encapsulated particles with excellent competence and great stability. Nanosponges assume a significant part in new varieties of medicaments, beautifiers, farming, horticulture, high atomic weight containing proteins, innovative fire retardants, gas transporters, and water filters. Nanosponges are a novel technology that offers controlled and targeted drug delivery by various routes like oral, parenteral, and topical routes. Nanosponges are an effective transporter for biologically active ingredients; therefore, it is broadly employed in anti-cancer, antiviral, antiplatelet, and antilipidemic therapy. This review article gives attention to the general introduction, merits and demerits, classification, characteristic features, procedures for developing nanosponges, and numerous factors which affect nanosponge formulation, evaluation parameters, and applications in the medicinal industry.

Keywords: Nanosponges, nanocarriers, topical drug delivery system, controlled release, targeted drug delivery, DNA.

Graphical Abstract

[1]
Ahmed, R.Z.; Patil, G.; Zaheer, Z. Nanosponges - a completely new nano-horizon: Pharmaceutical applications and recent advances. Drug Dev. Ind. Pharm., 2013, 39(9), 1263-1272.
[http://dx.doi.org/10.3109/03639045.2012.694610] [PMID: 22681585]
[2]
Ravi, S.C.; Krishnakumar, K.; Nair, S.K. Nanosponges: A targeted drug delivery system and its applications. GSC Biol. Pharm. Sci., 2019, 7(3), 40-47.
[3]
Kumar, M. Priya; Kumar, A.; Kumar, S. Nanosponges: A promising nanocarrier systems for drug delivery. Curr. Res. Pharm. Sci., 2020, 10(1), 1-5.
[http://dx.doi.org/10.24092/CRPS.2020.100101]
[4]
Shameem, S.; Reddy, N.N.; Bhavitha, M.; Kumar, M.S.; Ramaiah, M.B.; Sahithya, K. Nanosponges: A miracle nanocarrier for targeted drug delivery. Int. J. Pharm. Sci. Rev. Res., 2020, 63(2), 82-89.
[5]
Richhariya, N.; Prajapati, S.K.; Sharma, U.K. Nanosponges: An innovative drug delivery system. World J. Pharm. Res., 2015, 4(7), 1751-1753.
[6]
Dhavala, P.B.; Kumar, V.S. An interesting nanosponges as a nanocarrier for novel drug delivery: A review. Int. J. Pham. Med. Res., 2017, 5(2), 1-7.
[7]
Dhanalakshmi, S.; Harikrishnan, N.; Tanisha, B.A.; Pooja, G.; Yuvarani, L.; Begum, A.S.; Kumar, M.T.; Santhosh, A. A perspective view on nanosponge drug delivery system. Drug Invent. Today, 2020, 14(3), 438-445.
[8]
Jain, P.D.; Girase, M.L.; Borse, K.B.; Karandikar, Y.K.; Chintavar, S.; Kharche, A.S.; Gupta, A.M. Nanosponge: A versatile drug delivery system-Review. IJCIRAS, 2019, 1(11), 110-115.
[9]
Arshad, K.; Khan, A.; Bhargav, E.; Reddy, K.; Sowmya, C. Nanosponges: A new approach for drug targeting. Int. J. Adv. Pharm. Res., 2016, 7(3), 381-396.
[10]
Shringirishi, M.; Prajapati, S.K.; Mahor, A.; Alok, S.; Yadav, P.; Verma, A. Nanosponges: A potential nanocarrier for novel drug delivery-a review. Asian Pac. J. Trop. Dis., 2014, 4, S519-S526.
[http://dx.doi.org/10.1016/S2222-1808(14)60667-8]
[11]
Kaity, S.; Maiti, S.; Ghosh, A.K.; Pal, D.; Ghosh, A.; Banerjee, S. Microsponges: A novel strategy for drug delivery system. J. Adv. Pharm. Technol. Res., 2010, 1(3), 283-290.
[http://dx.doi.org/10.4103/0110-5558.72416] [PMID: 22247859]
[12]
Swaminathan, S.; Cavalli, R.; Trotta, F. Cyclodextrin-based nanosponges: A versatile platform for cancer nanotherapeutics development. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(4), 579-601.
[http://dx.doi.org/10.1002/wnan.1384] [PMID: 26800431]
[13]
Singh, D.; Soni, G.C.; Prajapati, S.K. Recent advances in nanosponges as drug delivery system: A review. Eur. J. Pharm. Med. Res., 2016, 3, 364-371.
[14]
Rahi, N.; Kumar, K. Nanosponge: A new era of versatile drug delivery system. UJPR, 2017, 2(3), 31-39.
[http://dx.doi.org/10.22270/ujpr.v2i3.RW4]
[15]
Pawar, S.; Shende, P.; Trotta, F. Diversity of β-cyclodextrin-based nanosponges for transformation of actives. Int. J. Pharm., 2019, 565, 333-350.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.015] [PMID: 31082468]
[16]
Trotta, F.; Dianzani, C.; Caldera, F.; Mognetti, B.; Cavalli, R. The application of nanosponges to cancer drug delivery. Expert Opin. Drug Deliv., 2014, 11(6), 931-941.
[http://dx.doi.org/10.1517/17425247.2014.911729] [PMID: 24811423]
[17]
Patil, T.S.; Nalawade, N.A.; Kakade, V.K.; Kale, S.N. Nanosponges: A novel targeted drug delivery for cancer treatment. Int. J. Adv. Res. Dev., 2017, 2(4), V2I4-1169.
[18]
Shivani, S.; Poladi, K.K. Nanosponges-novel emerging drug delivery system: A review. Int. J. Pharm. Sci. Res., 2015, 6(2), 529.
[19]
Thakre, A.R.; Gholse, Y.N.; Kasliwal, R.H. Nanosponges: A novel approach of drug delivery system. J. Med. Pharm. Allied Sci., 2016, 78(92), 78.
[20]
Selvamuthukumar, S.; Anandam, S.; Krishnamoorthy, K.; Rajappan, M. Nanosponges: A novel class of drug delivery system-review. J. Pharm. Pharm. Sci., 2012, 15(1), 103-111.
[http://dx.doi.org/10.18433/J3K308] [PMID: 22365092]
[21]
Ghurghure, S.; Pathan, M.S.; Surwase, P. Nanosponges: A novel approach for targeted drug delivery system. Int. J. Chem. Study, 2018, 2(6), 15-23.
[22]
Balasaheb, M.T.; Patil, P.M.; Jahagirdar, A.C.; Khandekar, D.B. Nanosponge an emerging drug delivery system. Int. J. Pharm. Life Sci., 2015, 5(6), 529-540.
[23]
Patel, E.K.; Oswal, R.J. Nanosponge and micro sponges: A novel drug delivery system. Int. J. Res. Pharm. Chem., 2012, 2(2), 2281-2781.
[24]
Jadhav, P.A.; Jadhav, S.A. Review on: Nanosize delivery system. World J. Pharm. Pharm. Sci., 2017, 6(9), 433-444.
[http://dx.doi.org/10.20959/wjpps20179-9945]
[25]
Miranda, J.C.; Martins, T.E.; Veiga, F.; Ferraz, H.G. Cyclodextrins and ternary complexes: Technology to improve solubility of poorly soluble drugs. Braz. J. Pharm. Sci., 2011, 47(4), 665-681.
[http://dx.doi.org/10.1590/S1984-82502011000400003]
[26]
Tejashri, G.; Amrita, B.; Darshana, J. Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharm., 2013, 63(3), 335-358.
[http://dx.doi.org/10.2478/acph-2013-0021] [PMID: 24152895]
[27]
Swaminathan, S.; Cavalli, R.; Trotta, F.; Ferruti, P.; Ranucci, E.; Gerges, I.; Manfredi, A.; Marinotto, D.; Vavia, P.R. In vitro release modulation and conformational stabilization of a model protein using swellable polyamidoamine nanosponges of β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem., 2010, 68(1), 183-191.
[http://dx.doi.org/10.1007/s10847-010-9765-9]
[28]
Singh, V.; Xu, J.; Wu, L.; Liu, B.; Guo, T.; Guo, Z.; York, P.; Gref, R.; Zhang, J. Ordered and disordered cyclodextrin nanosponges with diverse physicochemical properties. RSC Adv., 2017, 7(38), 23759-23764.
[http://dx.doi.org/10.1039/C7RA00584A]
[29]
Cavalli, R.; Trotta, F.; Tumiatti, W. Cyclodextrin-based nanosponges for drug delivery. J. Incl. Phenom. Macrocycl. Chem., 2006, 56(1), 209-213.
[http://dx.doi.org/10.1007/s10847-006-9085-2]
[30]
Berto, S.; Bruzzoniti, M.C.; Cavalli, R.; Perrachon, D.; Prenesti, E.; Sarzanini, C.; Trotta, F.; Tumiatti, W. Highly crosslinked ionic β-cyclodextrin polymers and their interaction with heavy metals. J. Incl. Phenom. Macrocycl. Chem., 2007, 57(1-4), 637-643.
[http://dx.doi.org/10.1007/s10847-006-9270-3]
[31]
Jain, A.; Prajapati, S.K.; Kumari, A.; Mody, N.; Bajpai, M. Engineered nanosponges as versatile biodegradable carriers: An insight. J. Drug Deliv. Sci. Technol., 2020, 57, 101643.
[http://dx.doi.org/10.1016/j.jddst.2020.101643]
[32]
Ciambelli, P.; Bagnasco, G.; Lisi, L.; Turco, M.; Chiarello, G.; Musci, M.; Notaro, M.; Robba, D.; Ghetti, P. Vanadium oxide catalysts supported on laser-synthesized titania powders: Characterization and catalytic activity in the selective reduction of nitric oxide. Appl. Catal. B, 1992, 1(2), 61-77.
[http://dx.doi.org/10.1016/0926-3373(92)80033-V]
[33]
Guo, L.; Gao, G.; Liu, X.; Liu, F. Preparation and characterization of TiO2 nanosponge. Mater. Chem. Phys., 2008, 111(2-3), 322-325.
[http://dx.doi.org/10.1016/j.matchemphys.2008.04.016]
[34]
Zhou, H.; Liu, M.; Li, Y.; Liu, C.; Gao, H.; Cao, Z.; Zhang, D.; Jin, X.; Chen, Q.; Liu, Y.; Yang, J. Carbon nanosponge cathode materials and graphite-protected etched al foil anode for dual-ion hybrid supercapacitor. J. Electrochem. Soc., 2018, 165(13), A3100-A3107.
[http://dx.doi.org/10.1149/2.0681813jes]
[35]
Liu, Q.Q.; Wang, L.; Xiao, A.G.; Yu, H.J.; Tan, Q.H. A hyper-cross-linked polystyrene with nano-pore structure. Eur. Polym. J., 2008, 44(8), 2516-2522.
[http://dx.doi.org/10.1016/j.eurpolymj.2008.05.033]
[36]
Chadwick, E.G.; Beloshapkin, S.; Tanner, D.A. Microstructural characterisation of metallurgical grade porous silicon nanosponge particles. J. Mater. Sci., 2012, 47(5), 2396-2404.
[http://dx.doi.org/10.1007/s10853-011-6060-0]
[37]
Shende, P.K.; Gaud, R.S.; Bakal, R.; Patil, D. Effect of inclusion complexation of meloxicam with β-cyclodextrin- and β-cyclodextrin-based nanosponges on solubility, in vitro release and stability studies. Colloids Surf. B Biointerfaces, 2015, 136, 105-110.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.002] [PMID: 26364091]
[38]
Shende, P.; Kulkarni, Y.A.; Gaud, R.S.; Deshmukh, K.; Cavalli, R.; Trotta, F.; Caldera, F. Acute and repeated dose toxicity studies of different β-cyclodextrin-based nanosponge formulations. J. Pharm. Sci., 2015, 104(5), 1856-1863.
[http://dx.doi.org/10.1002/jps.24416] [PMID: 25754724]
[39]
Osmani, R.A.; Thirumaleshwar, S.; Bhosale, R.R.; Kulkarni, P.K. Nanosponges: The spanking accession in drug delivery-An updated comprehensive review. Pharm. Sin., 2014, 5(6), 7-21.
[40]
Bachkar, B.A.; Gadhe, L.T.; Battase, P.; Mahajan, N.; Wagh, R.; Talele, S. Nanosponges: A potential nanocarrier for targeted drug delivery. World J. Pharm. Res., 2015, 4(3), 751-768.
[41]
Singh, P.; Ren, X.; Guo, T.; Wu, L.; Shakya, S.; He, Y.; Wang, C.; Maharjan, A.; Singh, V.; Zhang, J. Biofunctionalization of β-cyclodextrin nanosponges using cholesterol. Carbohydr. Polym., 2018, 190, 23-30.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.044] [PMID: 29628242]
[42]
Mamba, B.B.; Krause, R.W.; Malefetse, T.J.; Gericke, G.; Sithole, S.P. Cyclodextrin nanosponges in the removal of organic matter to produce water for power generation. Water S.A., 2008, 34(5), 657-660.
[http://dx.doi.org/10.4314/wsa.v34i5.180666]
[43]
Bolmal, U.B.; Manvi, F.V.; Kotha, R.; Palla, S.S.; Paladugu, A.; Reddy, K.R. Recent advances in nanosponges as drug delivery system. Int. J. Pharm. Sci. Nanotechnol., 2013, 6(1), 1934-1944.
[http://dx.doi.org/10.37285/ijpsn.2013.6.1.3]
[44]
Waghmare, S.G.; Nikhade, R.R.; Kosalge, S.B. Nanosponges: Novel approach for controlled release drug delivery system. Int. J. Pharm. Pharm. Res., 2017, 9(3), 101-106.
[45]
Bhatt, P.C.; Srivastava, P.; Pandey, P.; Khan, W.; Panda, B.P. Nose to brain delivery of astaxanthin-loaded solid lipid nanoparticles: Fabrication, radio labeling, optimization and biological studies. RSC Adv., 2016, 6(12), 10001-10010.
[http://dx.doi.org/10.1039/C5RA19113K]
[46]
Pandey, Y.R.; Kumar, S.; Gupta, B.K.; Ali, J.; Baboota, S. Intranasal delivery of paroxetine nanoemulsion via the olfactory region for the management of depression: Formulation, behavioural and biochemical estimation. Nanotechnology, 2016, 27(2), 025102.
[http://dx.doi.org/10.1088/0957-4484/27/2/025102] [PMID: 26629830]
[47]
Moura, F.C.; Lago, R.M. Catalytic growth of carbon nanotubes and nanofibers on vermiculite to produce floatable hydrophobic “nanosponges” for oil spill remediation. Appl. Catal. B, 2009, 90(3-4), 436-440.
[http://dx.doi.org/10.1016/j.apcatb.2009.04.003]
[48]
Pawar, A.Y.; Naik, A.K.; Jadhav, K.R. Nanosponges: A novel drug delivery system. Asian J. Pharm., 2016, 10(4), S456-S463.
[49]
Panda, S.; Vijayalakshmi, S.V.; Pattnaik, S.; Swain, R.P. Nanosponges: A novel carrier for targeted drug delivery. Int. J. Pharmatech Res., 2015, 8, 213-214.
[50]
Waghmare, S.G.; Nikhade, R.R.; Satish, D.; Kosalge, B. Nanosponges: A novel approach for controlled release drug delivery system. Int. J. Pharm. Pharm. Res., 2017, 9(3), 101-1.
[51]
Trotta, F.; Zanetti, M.; Cavalli, R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J. Org. Chem., 2012, 8(1), 2091-2099.
[http://dx.doi.org/10.3762/bjoc.8.235] [PMID: 23243470]
[52]
Lembo, D.; Trotta, F.; Cavalli, R. Cyclodextrin-based nanosponges as vehicles for antiviral drugs: Challenges and perspectives. Nanomedicine (Lond.), 2018, 13(5), 477-480.
[http://dx.doi.org/10.2217/nnm-2017-0383] [PMID: 29376455]
[53]
Vishwakarma, A.; Nikam, P.; Mogal, R.; Talele, S. Review on nanosponges: A benefication for novel drug delivery. Int. J. Pharm. Tech. Res., 2014, 6, 11-20.
[54]
Mateo, C.; Palomo, J.M.; Fernandez-Lorente, G.; Guisan, J.M.; Fernandez-Lafuente, R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol., 2007, 40(6), 1451-1463.
[http://dx.doi.org/10.1016/j.enzmictec.2007.01.018]
[55]
Boscolo, B.; Trotta, F.; Ghibaudi, E. High catalytic performances of Pseudomonas fluorescens lipase adsorbed on a new type of cyclodextrin-based nanosponges. J. Mol. Catal., B Enzym., 2010, 62(2), 155-161.
[http://dx.doi.org/10.1016/j.molcatb.2009.10.002]
[56]
Sapino, S.; Carlotti, M.E.; Cavalli, R.; Ugazio, E.; Berlier, G.; Gastaldi, L.; Morel, S. Photochemical and antioxidant properties of gamma-oryzanol in beta-cyclodextrin-based nanosponges. J. Incl. Phenom. Macrocycl. Chem., 2013, 75(1-2), 69-76.
[http://dx.doi.org/10.1007/s10847-012-0147-3]
[57]
Pandey, P.; Purohit, D.; Dureja, H. Nanosponges–A promising novel drug delivery system. Recent Pat. Nanotechnol., 2018, 12(3), 180-191.
[http://dx.doi.org/10.2174/1872210512666180925102842] [PMID: 30251614]
[58]
Wong, V.N.; Fernando, G.; Wagner, A.R.; Zhang, J.; Kinsel, G.R.; Zauscher, S.; Dyer, D.J. Separation of peptides with polyionic nanosponges for MALDI-MS analysis. Langmuir, 2009, 25(3), 1459-1465.
[http://dx.doi.org/10.1021/la802723r] [PMID: 19123797]
[59]
Krishna, A.V.; Gowda, V.D.; Karki, R. Formulation and evaluation of nanosponges loaded bifonazole for fungal infection. Antiinfect. Agents, 2021, 19(1), 64-75.
[http://dx.doi.org/10.2174/2211352518999200711164437]
[60]
Prabhu, P.P.; Gujaran, T.V.; Mehta, C.H.; Suresh, A.; Koteshwara, K.B.; Pai, K.G.; Nayak, U.Y. Development of lapatinib nanosponges for enhancing bioavailability. J. Drug Deliv. Sci. Technol., 2021, 65, 102684.
[http://dx.doi.org/10.1016/j.jddst.2021.102684]
[61]
Harsha, G.; Shaik, N.B.; Lakshmi, P.K.; Latha, K. Formulation and evaluation of sertaconazole nitrate loaded nanosponges for topical application. Res. J. Pharm. Technol., 2021, 14(2), 595-902.
[http://dx.doi.org/10.5958/0974-360X.2021.00159.1]
[62]
Gupta, B.; Dalal, P.; Rao, R. Cyclodextrin decorated nanosponges of sesamol: Antioxidant, anti-tyrosinase and photostability assessment. Food Biosci., 2021, 42, 101098.
[http://dx.doi.org/10.1016/j.fbio.2021.101098]
[63]
Kapileshwari, G.R.; Barve, A.R.; Kumar, L.; Bhide, P.J.; Joshi, M.; Shirodkar, R.K. Novel drug delivery system of luliconazole-Formulation and characterisation. J. Drug Deliv. Sci. Technol., 2020, 55, 101302.
[http://dx.doi.org/10.1016/j.jddst.2019.101302]
[64]
Iriventi, P.; Gupta, N.V.; Osmani, R.A.M.; Balamuralidhara, V. Design & development of nanosponge loaded topical gel of curcumin and caffeine mixture for augmented treatment of psoriasis. Daru, 2020, 28(2), 489-506.
[http://dx.doi.org/10.1007/s40199-020-00352-x] [PMID: 32472531]
[65]
Dubey, P.; Shende, P. CDI cross-linked nanosponges of citronella oil for controlled mosquito-repellent activity. Curr. Nanomater., 2020, 5(3), 214-223.
[http://dx.doi.org/10.2174/2405461505999200826111952]
[66]
Argenziano, M.; Gigliotti, C.L.; Clemente, N.; Boggio, E.; Ferrara, B.; Trotta, F.; Pizzimenti, S.; Barrera, G.; Boldorini, R.; Bessone, F.; Dianzani, U.; Cavalli, R.; Dianzani, C. Improvement in the anti-tumor efficacy of doxorubicin nanosponges in in vitro and in mice bearing breast tumor models. Cancers (Basel), 2020, 12(1), 162.
[http://dx.doi.org/10.3390/cancers12010162] [PMID: 31936526]
[67]
Jasim, I.K.; Abd Alhammid, S.N.; Abdulrasool, A.A. Synthesis and evaluation of B-cyclodextrin Based Nanosponges of 5-Fluorouracil by Using Ultrasound Assisted Method. Iraqi J. Pharm Sci., 2020, 29(2), 88-98.
[68]
Abou Taleb, S.; Darwish, A.B.; Abood, A.; Mohamed, A.M. Investigation of a new horizon antifungal activity with enhancing the antimicrobial efficacy of ciprofloxacin and its binary mixture via their encapsulation in nanoassemblies: In vitro and in vivo evaluation. Drug Dev. Res., 2020, 81(3), 374-388.
[http://dx.doi.org/10.1002/ddr.21632] [PMID: 31886590]
[69]
Praveen, K.; Balamurugan, K. Targeted drug delivery through nanosponges and its approach. Res. J. Pharm. Technol., 2020, 13(7), 3524-3529.
[http://dx.doi.org/10.5958/0974-360X.2020.00624.1]
[70]
Amer, R.I.; El-Osaily, G.H.; Gad, S.S. Design and optimization of topical terbinafine hydrochloride nanosponges: Application of full factorial design, In vitro and in vivo evaluation. J. Adv. Pharm. Technol. Res., 2020, 11(1), 13-19.
[http://dx.doi.org/10.4103/japtr.JAPTR_85_19] [PMID: 32154153]
[71]
Abass, M.M.; Rajab, N.A. Preparation and characterization of etodolac as a topical nanosponges hydrogel. Iraqi J. Pharm Sci., 2019, 28(1), 64-74.
[http://dx.doi.org/10.31351/vol28iss1pp64-74]
[72]
Argenziano, M.; Haimhoffer, A.; Bastiancich, C.; Jicsinszky, L.; Caldera, F.; Trotta, F.; Scutera, S.; Alotto, D.; Fumagalli, M.; Musso, T.; Castagnoli, C.; Cavalli, R. In vitro enhanced skin permeation and retention of imiquimod loaded in β-cyclodextrin nanosponge hydrogel. Pharmaceutics, 2019, 11(3), 138.
[http://dx.doi.org/10.3390/pharmaceutics11030138] [PMID: 30897794]
[73]
Abbas, N.; Parveen, K.; Hussain, A.; Latif, S.; Uz Zaman, S.; Shah, P.A.; Ahsan, M. Nanosponge-based hydrogel preparation of fluconazole for improved topical delivery. Trop. J. Pharm. Res., 2019, 18(2), 215-222.
[http://dx.doi.org/10.4314/tjpr.v18i2.1]
[74]
Bakliwal, A.A.; Talele, S.G. Formulation and evaluation of nateglinide nanosponges. Indian Drugs., 2018, 55(2), 27-35.
[http://dx.doi.org/10.53879/id.55.02.10717]
[75]
Abbas, N.; Irfan, M.; Hussain, A.; Arshad, M.S.; Hussain, S.Z.; Latif, S.; Bukhari, N.I. Development and evaluation of scaffold-based nanosponge formulation for controlled drug delivery of naproxen and ibuprofen. Trop. J. Pharm. Res., 2018, 17(8), 1465-1474.
[http://dx.doi.org/10.4314/tjpr.v17i8.2]
[76]
Rao, M.R.P.; Chaudhari, J.; Trotta, F.; Caldera, F. Investigation of cyclodextrin-based nanosponges for solubility and bioavailability enhancement of rilpivirine. AAPS PharmSciTech, 2018, 19(5), 2358-2369.
[http://dx.doi.org/10.1208/s12249-018-1064-6] [PMID: 29869305]
[77]
Momin, M.M.; Zaheer, Z.; Zainuddin, R.; Sangshetti, J.N. Extended release delivery of erlotinib glutathione nanosponge for targeting lung cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46(5), 1064-1075.
[http://dx.doi.org/10.1080/21691401.2017.1360324] [PMID: 28758795]
[78]
Sri, K.V.; Santhoshini, G.; Sankar, D.R.; Niharika, K. Formulation and evaluation of rutin loaded nanosponges. Asian J. Res. Pharm. Sci., 2018, 8(1), 21-24.
[http://dx.doi.org/10.5958/2231-5659.2018.00005.X]
[79]
Kumar, S.; Trotta, F.; Rao, R. Pooja, Encapsulation of babchi oil in cyclodextrin-based nanosponges: Physicochemical characterization, photodegradation, and in vitro cytotoxicity studies. Pharmaceutics, 2018, 10(4), 169.
[http://dx.doi.org/10.3390/pharmaceutics10040169] [PMID: 30261580]
[80]
Zidan, M.F.; Ibrahim, H.M.; Afouna, M.I.; Ibrahim, E.A. In vitro and in vivo evaluation of cyclodextrin-based nanosponges for enhancing oral bioavailability of atorvastatin calcium. Drug Dev. Ind. Pharm., 2018, 44(8), 1243-1253.
[http://dx.doi.org/10.1080/03639045.2018.1442844] [PMID: 29452493]
[81]
Choi, W.I.; Sahu, A.; Vilos, C.; Kamaly, N.; Jo, S.M.; Lee, J.H.; Tae, G. Bioinspired heparin nanosponge prepared by photo-crosslinking for controlled release of growth factors. Sci. Rep., 2017, 7(1), 14351.
[http://dx.doi.org/10.1038/s41598-017-14040-5] [PMID: 29084990]
[82]
Arvapally, S.; Harini, M.; Harshitha, G.; Arun Kumar, A. Formulation and in vitro evaluation of glipizide nanosponges. Am. J. Pharmtech. Res., 2017, 7, 341-361.
[83]
Bachir, Y.N.; Medjkane, M.; Benaoudj, F.; Sahraoui, N.; Hadj-Ziane, A. Formulation of β-cyclodextrin nanosponges by polycondensation method: Application for natural drugs delivery and preservation. J. Mater. Process. Environ., 2017, 5, 80-85.
[84]
Gangadharappa, H.V.; Prasad, S.M.; Singh, R.P. Formulation, in vitro and in vivo evaluation of celecoxib nanosponge hydrogels for topical application. J. Drug Deliv. Sci. Technol., 2017, 41, 488-501.
[http://dx.doi.org/10.1016/j.jddst.2017.09.004]
[85]
Shringirishi, M.; Mahor, A.; Gupta, R.; Prajapati, S.K.; Bansal, K.; Kesharwani, P. Fabrication and characterization of nifedipine loaded β-cyclodextrin nanosponges: An in vitro and in vivo evaluation. J. Drug Deliv. Sci. Technol., 2017, 41, 344-350.
[http://dx.doi.org/10.1016/j.jddst.2017.08.005]
[86]
Penjuri, S.C.; Ravouru, N.; Damineni, S.; Bns, S.; Poreddy, S.R. Formulation and evaluation of lansoprazole loaded Nanosponges. Turk. J. Pharm. Sci., 2016, 13(3), 304-310.
[http://dx.doi.org/10.4274/tjps.2016.04]
[87]
Dora, C.P.; Trotta, F.; Kushwah, V.; Devasari, N.; Singh, C.; Suresh, S.; Jain, S. Potential of erlotinib cyclodextrin nanosponge complex to enhance solubility, dissolution rate, in vitro cytotoxicity and oral bioavailability. Carbohydr. Polym., 2016, 137, 339-349.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.080] [PMID: 26686138]
[88]
Aldawsari, H.M.; Badr-Eldin, S.M.; Labib, G.S.; El-Kamel, A.H. Design and formulation of a topical hydrogel integrating lemongrass-loaded nanosponges with an enhanced antifungal effect: In vitro/in vivo evaluation. Int. J. Nanomedicine, 2015, 10, 893-902.
[PMID: 25673986]
[89]
Srinivas, P.; Jahnavi Reddy, A. Formulation and evaluation of isoniazid loaded nanosponges for topical delivery. Pharm. Nanotechnol., 2015, 3(1), 68-76.
[http://dx.doi.org/10.2174/2211738503666150501003906]
[90]
Anandam, S.; Selvamuthukumar, S. Fabrication of cyclodextrin nanosponges for quercetin delivery: Physicochemical characterization, photostability, and antioxidant effects. J. Mater. Sci., 2014, 49(23), 8140-8153.
[http://dx.doi.org/10.1007/s10853-014-8523-6]
[91]
Ansari, R.; Maheshwari, R.; Mahajan, S.C.; Jain, V. Development and characterization of hydrogel system bearing minoxidil loaded β–cyclodextrin based nanosponges for topical delivery. Drug Deliv. Lett., 2014, 4(2), 148-155.
[http://dx.doi.org/10.2174/2210303104666140313232454]
[92]
Rao, M.; Bajaj, A.; Khole, I.; Munjapara, G.; Trotta, F. In vitro and in vivo evaluation of β-cyclodextrin-based nanosponges of telmisartan. J. Incl. Phenom. Macrocycl. Chem., 2013, 77(1-4), 135-145.
[http://dx.doi.org/10.1007/s10847-012-0224-7]
[93]
Swaminathan, S.; Vavia, P.R.; Trotta, F.; Cavalli, R. Nanosponges encapsulating dexamethasone for ocular delivery: Formulation design, physicochemical characterization, safety and corneal permeability assessment. J. Biomed. Nanotechnol., 2013, 9(6), 998-1007.
[http://dx.doi.org/10.1166/jbn.2013.1594] [PMID: 23858964]
[94]
Torne, S.; Darandale, S.; Vavia, P.; Trotta, F.; Cavalli, R. Cyclodextrin-based nanosponges: Effective nanocarrier for tamoxifen delivery. Pharm. Dev. Technol., 2013, 18(3), 619-625.
[http://dx.doi.org/10.3109/10837450.2011.649855] [PMID: 22235935]
[95]
Darandale, S.S.; Vavia, P.R. Cyclodextrin-based nanosponges of curcumin: Formulation and physicochemical characterization. J. Incl. Phenom. Macrocycl. Chem., 2013, 75(3-4), 315-322.
[http://dx.doi.org/10.1007/s10847-012-0186-9]
[96]
Lembo, D.; Swaminathan, S.; Donalisio, M.; Civra, A.; Pastero, L.; Aquilano, D.; Vavia, P.; Trotta, F.; Cavalli, R. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int. J. Pharm., 2013, 443(1-2), 262-272.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.031] [PMID: 23279938]
[97]
Shende, P.; Deshmukh, K.; Trotta, F.; Caldera, F. Novel cyclodextrin nanosponges for delivery of calcium in hyperphosphatemia. Int. J. Pharm., 2013, 456(1), 95-100.
[http://dx.doi.org/10.1016/j.ijpharm.2013.08.012] [PMID: 23954237]
[98]
Mognetti, B.; Barberis, A.; Marino, S.; Berta, G.; De Francia, S.; Trotta, F.; Cavalli, R. In vitro enhancement of anti-cancer activity of paclitaxel by a Cremophor free cyclodextrin-based nanosponge formulation. J. Incl. Phenom. Macrocycl. Chem., 2012, 74(1-4), 201-210.
[http://dx.doi.org/10.1007/s10847-011-0101-9]
[99]
Shende, P.K.; Trotta, F.; Gaud, R.S.; Deshmukh, K.; Cavalli, R.; Biasizzo, M. Influence of different techniques on formulation and comparative characterization of inclusion complexes of ASA with β-cyclodextrin and inclusion complexes of ASA with PMDA cross-linked β-cyclodextrin nanosponges. J. Incl. Phenom. Macrocycl. Chem., 2012, 74(1-4), 447-454.
[http://dx.doi.org/10.1007/s10847-012-0140-x]
[100]
Ansari, K.A.; Vavia, P.R.; Trotta, F.; Cavalli, R. Cyclodextrin-based nanosponges for delivery of resveratrol: In vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech, 2011, 12(1), 279-286.
[http://dx.doi.org/10.1208/s12249-011-9584-3] [PMID: 21240574]
[101]
Swaminathan, S.; Pastero, L.; Serpe, L.; Trotta, F.; Vavia, P.; Aquilano, D.; Trotta, M.; Zara, G.; Cavalli, R. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur. J. Pharm. Biopharm., 2010, 74(2), 193-201.
[http://dx.doi.org/10.1016/j.ejpb.2009.11.003] [PMID: 19900544]
[102]
Swaminathan, S.; Vavia, P.R.; Trotta, F.; Torne, S. Formulation of betacyclodextrin based nanosponges of itraconazole. J. Incl. Phenom. Macrocycl. Chem., 2007, 57(1), 89-94.
[http://dx.doi.org/10.1007/s10847-006-9216-9]