Nucleic Acid Nanotechnology: Trends, Opportunities and Challenges

Page: [50 - 60] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Nucleic acids (DNA and RNA) hold great potential for the advancement of future medicine but suffer from unsatisfactory clinical success due to the challenges accompanied with their delivery. Nucleic acid-mediated nanomaterials have riveted the researchers from the past two decades and exhilarating tasks have prevailed. Nucleic acid nanotechnology offers unique control over the shape, size, time, mechanics and anisotropy. It can transfect numerous types of tissues and cells without any toxic effect, minimize the induced immune response, and penetrate most of the biological barriers and hence it reveals itself as a versatile tool for multidisciplinary research field and for various therapeutic purposes. Nucleic acid combines with other nanoscale objects also by altering the chemical functional groups and reproducing the varied array of nanomaterials. Interestingly, nucleic acidderived nanomaterials are characterized easily at atomic level accuracy. However, this advent of nanoscience has vital issues which must be addressed, such as the high cost of nucleic acids, their self-assembly nature, etc. Hence, the aim of this review is to highlight the systematic advances and methodology of nucleic acid-mediated synthesis of nanomaterials and their therapeutic applications.

Keywords: DNA, RNA, Nanostructure, DNA Origami, SELEX, Therapeutics. 1. INTRODUCTIONc

Graphical Abstract

[1]
Subhashini, D.V.; Singh, R.P.; Manchanda, G. OMICS approaches: Tools to unravel microbial systems. Directorate of Knowledge Management in Agriculture; Indian Council of Agricultural Research, 2017. Available from: https://books.google.co.in/books?id=vSaLtAEACAAJ
[2]
Lächelt, U.; Wagner, E. Nucleic acid therapeutics using polyplexes: A journey of 50 years (and beyond). Chem. Rev., 2015, 115(19), 11043-11078.
[http://dx.doi.org/10.1021/cr5006793] [PMID: 25872804]
[3]
Yan, H. Materials science. Nucleic acid nanotechnology. Science, 2004, 306(5704), 2048-2049.
[http://dx.doi.org/10.1126/science.1106754] [PMID: 15604395]
[4]
Wengel, J. Nucleic acid nanotechnology-towards Angstrom-scale engineering. Org. Biomol. Chem., 2004, 2(3), 277-280.
[http://dx.doi.org/10.1039/B313986G] [PMID: 14747851]
[5]
LaBean, T.H.; Li, H. Constructing novel materials with DNA. Nano Today, 2007, 2(2), 26-35.
[http://dx.doi.org/10.1016/S1748-0132(07)70056-7]
[6]
Lee, D.S.; Qian, H.; Tay, C.Y.; Leong, D.T. Cellular processing and destinies of artificial DNA nanostructures. Chem. Soc. Rev., 2016, 45(15), 4199-4225.
[http://dx.doi.org/10.1039/C5CS00700C] [PMID: 27119124]
[7]
Murakami, A. Ed.; Nucleic Acid Drugs; Springer, 2012, 249.
[http://dx.doi.org/10.1007/978-3-642-30463-7]
[8]
Wong, J.P.; Nagata, L.P.; Christopher, M.E.; Salazar, A.M.; Dale, R.M. Prophylaxis of acute respiratory virus infections using nucleic acid-based drugs. Vaccine, 2005, 23(17-18), 2266-2268.
[http://dx.doi.org/10.1016/j.vaccine.2005.01.037] [PMID: 15755608]
[9]
Wang, X.; Lim, H.J.; Son, A. Characterization of denaturation and renaturation of DNA for DNA hybridization. Environ. Health Toxicol., 2014, 29e2014007
[http://dx.doi.org/10.5620/eht.2014.29.e2014007] [PMID: 25234413]
[10]
Xu, W.; He, W.; Du, Z.; Zhu, L.; Huang, K.; Lu, Y.; Luo, Y. Functional nucleic acid nanomaterials: development, properties, and applica-tions. Angew. Chem. Int. Ed. Engl., 2021, 60(13), 6890-6918.
[http://dx.doi.org/10.1002/anie.201909927] [PMID: 31729826]
[11]
Wittung, P.; Nielsen, P.E.; Buchardt, O.; Egholm, M.; Nordén, B. DNA-like double helix formed by peptide nucleic acid. Nature, 1994, 368(6471), 561-563.
[http://dx.doi.org/10.1038/368561a0] [PMID: 8139692]
[12]
Zhang, Z.; Gao, J.; Yu, Z.; Li, G. Synthesis of tunable DNA-directed trepang-like Au nanocrystals for imaging application. Nanoscale, 2019, 11(39), 18099-18108.
[http://dx.doi.org/10.1039/C9NR06375G] [PMID: 31566198]
[13]
Roy, S.; Caruthers, M. Synthesis of DNA/RNA and their analogs via phosphoramidite and H-phosphonate chemistries. Molecules, 2013, 18(11), 14268-14284.
[http://dx.doi.org/10.3390/molecules181114268] [PMID: 24252996]
[14]
Liedl, T.; Sobey, T.L.; Simmel, F.C. DNA-based nanodevices. Nano Today, 2007, 2(2), 36-41.
[http://dx.doi.org/10.1016/S1748-0132(07)70057-9]
[15]
Gothelf, K.V.; LaBean, T.H. DNA-programmed assembly of nanostructures. Org. Biomol. Chem., 2005, 3(22), 4023-4037.
[http://dx.doi.org/10.1039/b510551j] [PMID: 16267576]
[16]
Krishnan, Y.; Seeman, N.C. Introduction: Nucleic acid nanotechnology. Chem. Rev., 2019, 119(10), 6271-6272.
[http://dx.doi.org/10.1021/acs.chemrev.9b00181] [PMID: 31117417]
[17]
Roco, M.C.; Mirkin, C.A.; Hersam, M.C. Nanotechnology research directions for societal needs in 2020: Retrospective and outlook; Springer Science & Business Media, 2011.
[http://dx.doi.org/10.1007/978-94-007-1168-6]
[18]
Shapiro, J.A.A.A. 21st century view of evolution: Genome system architecture, repetitive DNA, and natural genetic engineering. Gene, 2005, 345(1), 91-100.
[http://dx.doi.org/10.1016/j.gene.2004.11.020] [PMID: 15716117]
[19]
Li, Z.; Wang, C.; Li, J.; Zhang, J.; Fan, C.; Willner, I.; Tian, H. Functional DNA structures and their biomedical applications. CCS Chemis-try, 2020, 2(5), 707-728.
[http://dx.doi.org/10.31635/ccschem.020.202000236]
[20]
Hong, E.; Halman, J.R.; Shah, A.B.; Khisamutdinov, E.F.; Dobrovolskaia, M.A.; Afonin, K.A. Structure and composition define immuno-recognition of nucleic acid nanoparticles. Nano Lett., 2018, 18(7), 4309-4321.
[http://dx.doi.org/10.1021/acs.nanolett.8b01283] [PMID: 29894623]
[21]
Jin, J.O.; Kim, G.; Hwang, J.; Han, K.H.; Kwak, M.; Lee, P.C. Nucleic acid nanotechnology for cancer treatment. Biochim. Biophys. Acta, 2020, 1874188377
[22]
Veedu, R.N.; Wengel, J. Locked nucleic acids: Promising nucleic acid analogs for therapeutic applications. Chem. Biodivers., 2010, 7(3), 536-542.
[http://dx.doi.org/10.1002/cbdv.200900343] [PMID: 20232325]
[23]
Ma’ayan, A.; Jenkins, S.L.; Goldfarb, J.; Iyengar, R. Network analysis of FDA approved drugs and their targets. Mt. Sinai J. Med., 2007, 74(1), 27-32.
[http://dx.doi.org/10.1002/msj.20002] [PMID: 17516560]
[24]
Wang, H.; Wang, Y.; Jin, J.; Yang, R. Gold nanoparticle-based colorimetric and “turn-on” fluorescent probe for mercury(II) ions in aque-ous solution. Anal. Chem., 2008, 80(23), 9021-9028.
[http://dx.doi.org/10.1021/ac801382k] [PMID: 19551976]
[25]
Chen, W.Y.; Lan, G.Y.; Chang, H.T. Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions. Anal. Chem., 2011, 83(24), 9450-9455.
[http://dx.doi.org/10.1021/ac202162u] [PMID: 22029551]
[26]
Thompson, D.G.; Enright, A.; Faulds, K.; Smith, W.E.; Graham, D. Ultrasensitive DNA detection using oligonucleotide-silver nanoparticle conjugates. Anal. Chem., 2008, 80(8), 2805-2810.
[http://dx.doi.org/10.1021/ac702403w] [PMID: 18307361]
[27]
Polsky, R.; Gill, R.; Kaganovsky, L.; Willner, I. Nucleic acid-functionalized Pt nanoparticles: Catalytic labels for the amplified electro-chemical detection of biomolecules. Anal. Chem., 2006, 78, 2268-2271.
[http://dx.doi.org/10.1021/ac0519864] [PMID: 16579607]
[28]
Fang, C.; Fan, Y.; Kong, J.M.; Zhang, G.J.; Linn, L.; Rafeah, S. DNA-templated preparation of palladium nanoparticles and their applica-tion. Sens. Actuators B Chem., 2007, 126, 684-690.
[http://dx.doi.org/10.1016/j.snb.2007.04.031]
[29]
Alemdaroglu, F.E.; Alemdaroglu, N.C.; Langguth, P.; Herrmann, A. DNA block copolymer micelles – a combinatorial tool for cancer nanotechnology. Adv. Mater., 2008, 20(5), 899-902.
[http://dx.doi.org/10.1002/adma.200700866]
[30]
Stephanopoulos, N.; Tong, G.J.; Hsiao, S.C.; Francis, M.B. Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells. ACS Nano, 2010, 4(10), 6014-6020.
[http://dx.doi.org/10.1021/nn1014769] [PMID: 20863095]
[31]
Kim, S.E.; Ahn, K.Y.; Park, J.S.; Kim, K.R.; Lee, K.E.; Han, S.S. J. Anal. Chem., 2011, 83, 5834-5843.
[http://dx.doi.org/10.1021/ac200657s]
[32]
Sokolova, V.V.; Radtke, I.; Heumann, R.; Epple, M. Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles. Biomaterials, 2006, 27(16), 3147-3153.
[http://dx.doi.org/10.1016/j.biomaterials.2005.12.030] [PMID: 16469375]
[33]
Lin, C.; Jungmann, R.; Leifer, A.M.; Li, C.; Levner, D.; Church, G.M.; Shih, W.M.; Yin, P. Submicrometre geometrically encoded fluores-cent barcodes self-assembled from DNA. Nat. Chem., 2012, 4(10), 832-839.
[http://dx.doi.org/10.1038/nchem.1451] [PMID: 23000997]
[34]
Kumar, P.; Degaonkar, R.; Guenther, D.C.; Abramov, M.; Schepers, G.; Capobianco, M.; Jiang, Y.; Harp, J.; Kaittanis, C.; Janas, M.M.; Castoreno, A.; Zlatev, I.; Schlegel, M.K.; Herdewijn, P.; Egli, M.; Manoharan, M. Chimeric siRNAs with chemically modified pento-furanose and hexopyranose nucleotides: Altritol-nucleotide (ANA) containing GalNAc-siRNA conjugates: In vitro and in vivo RNAi activi-ty and resistance to 5′-exonuclease. Nucleic Acids Res., 2020, 48(8), 4028-4040.
[http://dx.doi.org/10.1093/nar/gkaa125] [PMID: 32170309]
[35]
Kristen, L. Kozielski, Yuan Rui; Jordan, J. Non-viral nucleic acid containing nanoparticles as cancer therapeutics. Expert Opin. Drug Deliv., 2016, 13(10), 1475-1487.
[http://dx.doi.org/10.1080/17425247.2016.1190707]
[36]
Génin, N.E.J.; Weinzierl, R.O.J. Nucleotide loading modes of human rna polymerase ii as deciphered by molecular simulations. Biomolecules, 2020, 10(9), 1289.
[http://dx.doi.org/10.3390/biom10091289] [PMID: 32906795]
[37]
Sanstead, P.J.; Stevenson, P.; Tokmakoff, A. Sequence-dependent mechanism of DNA oligonucleotide dehybridization resolved through infrared spectroscopy. J. Am. Chem. Soc., 2016, 138(36), 11792-11801.
[http://dx.doi.org/10.1021/jacs.6b05854] [PMID: 27519555]
[38]
Müller, J. Functional metal ions in nucleic acids. Metallomics, 2010, 2(5), 318-327.
[http://dx.doi.org/10.1039/c000429d] [PMID: 21072378]
[39]
Hinds, S.; Taft, B.J.; Levina, L.; Sukhovatkin, V.; Dooley, C.J.; Roy, M.D.; MacNeil, D.D.; Sargent, E.H.; Kelley, S.O. Nucleotide-directed growth of semiconductor nanocrystals. J. Am. Chem. Soc., 2006, 128(1), 64-65.
[http://dx.doi.org/10.1021/ja057002+] [PMID: 16390123]
[40]
Cushing, B.L.; Kolesnichenko, V.L.; O’Connor, C.J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev., 2004, 104(9), 3893-3946.
[http://dx.doi.org/10.1021/cr030027b] [PMID: 15352782]
[41]
Seeman, N.C.; Sleiman, H.F. DNA nanotechnology. Nat. Rev. Mater., 2017, 3(1), 1-23.
[42]
Chen, Y.J.; Groves, B.; Muscat, R.A.; Seelig, G. DNA nanotechnology from the test tube to the cell. Nat. Nanotechnol., 2015, 10(9), 748-760.
[http://dx.doi.org/10.1038/nnano.2015.195] [PMID: 26329111]
[43]
Freitas, R.A., Jr What is nanomedicine? Nanomedicine, 2005, 1(1), 2-9.
[http://dx.doi.org/10.1016/j.nano.2004.11.003] [PMID: 17292052]
[44]
Wong, D.T. Salivary diagnostics powered by nanotechnologies, proteomics and genomics. J. Am. Dent. Assoc., 2006, 137(3), 313-321.
[http://dx.doi.org/10.14219/jada.archive.2006.0180] [PMID: 16570464]
[45]
Bissonnette, L.; Bergeron, M.G. Next revolution in the molecular theranostics of infectious diseases: Microfabricated systems for person-alized medicine. Expert Rev. Mol. Diagn., 2006, 6(3), 433-450.
[http://dx.doi.org/10.1586/14737159.6.3.433] [PMID: 16706745]
[46]
Yang, Y.J.; Singh, R.P.; Lan, X.; Zhang, C.S.; Li, Y.Z.; Li, Y.Q.; Sheng, D.H. Genome editing in model strain Myxococcus xanthus DK1622 by a site-specific Cre/loxP recombination system. Biomolecules, 2018, 8(4), 137.
[http://dx.doi.org/10.3390/biom8040137] [PMID: 30404219]
[47]
Yang, Y.J.; Lin, W.; Singh, R.P.; Xu, Q.; Chen, Z.; Yuan, Y.; Zou, P.; Li, Y.; Zhang, C. Genomic, transcriptomic and enzymatic insight into lignocellulolytic system of a plant pathogen Dickeya sp. WS52 to digest sweet pepper and tomato stalk. Biomolecules, 2019, 9(12), 753.
[http://dx.doi.org/10.3390/biom9120753]
[48]
Xu, P.F.; Noh, H.; Lee, J.H.; Domaille, D.W.; Nakatsuka, M.A.; Goodwin, A.P.; Cha, J.N. Imparting the unique properties of DNA into complex material architectures and functions. Mater. Today, 2013, 16(7-8), 290-296.
[http://dx.doi.org/10.1016/j.mattod.2013.07.001] [PMID: 25525408]
[49]
Zhao, W.; Ali, M.M.; Brook, M.A.; Li, Y. Rolling circle amplification: Applications in nanotechnology and biodetection with functional nucleic acids. Angew. Chem. Int. Ed. Engl., 2008, 47(34), 6330-6337.
[http://dx.doi.org/10.1002/anie.200705982] [PMID: 18680110]
[50]
Gopinath, S.C.B. Methods developed for SELEX. Anal. Bioanal. Chem., 2007, 387(1), 171-182.
[http://dx.doi.org/10.1007/s00216-006-0826-2] [PMID: 17072603]
[51]
Seeman, N.C. DNA nanotechnology: Novel DNA constructions. Annu. Rev. Biophys. Biomol. Struct., 1998, 27(1), 225-248.
[http://dx.doi.org/10.1146/annurev.biophys.27.1.225] [PMID: 9646868]
[52]
LaBean, T.H. Introduction to Self-Assembling DNA Nanostructures for Computation and; Computational Biology and Genome Informatics, 2003, p. 35.
[http://dx.doi.org/10.1142/9789812564498_0002]
[53]
Seeman, N.C. An overview of structural DNA nanotechnology. Mol. Biotechnol., 2007, 37(3), 246-257.
[http://dx.doi.org/10.1007/s12033-007-0059-4] [PMID: 17952671]
[54]
Grebenovsky, N.M. Development of New Concepts for Photoswitchable DNA-nanostructures Doctoral dissertation, Johann Wolfgang Goethe-Universität Frankfurt am Main, 2019.
[55]
Seeman, N.C. DNA nicks and nodes and nanotechnology. Nano Lett., 2001, 1(1), 22-26.
[http://dx.doi.org/10.1021/nl000182v]
[56]
Rothemund, P.W. Folding DNA to create nanoscale shapes and patterns. Nature, 2006, 440(7082), 297-302.
[http://dx.doi.org/10.1038/nature04586] [PMID: 16541064]
[57]
Wang, S.; Park, S.S.; Buru, C.T.; Lin, H.; Chen, P.C.; Roth, E.W.; Farha, O.K.; Mirkin, C.A. Colloidal crystal engineering with metal-organic framework nanoparticles and DNA. Nat. Commun., 2020, 11(1), 2495.
[http://dx.doi.org/10.1038/s41467-020-16339-w] [PMID: 32427872]
[58]
Ho, W.; Gao, M.; Li, F.; Li, Z.; Zhang, X.Q.; Xu, X. Next-Generation Vaccines: Nanoparticle-Mediated DNA and mRNA Delivery. Adv. Healthc. Mater., 2021, 10(8)e2001812
[http://dx.doi.org/10.1002/adhm.202001812] [PMID: 33458958]
[59]
Bujold, K.E.; Lacroix, A.; Sleiman, H.F. DNA nanostructures at the interface with biology. Chem, 2018, 4(3), 495-521.
[http://dx.doi.org/10.1016/j.chempr.2018.02.005]
[60]
Wang, J.; Li, J.; Liu, S.; Meng, X.; Yang, X.; Huang, J.; Wang, K. Amplified AND logic platform for cell identification. Chem. Commun. (Camb.), 2020, 56(76), 11267-11270.
[http://dx.doi.org/10.1039/D0CC04159A] [PMID: 32821889]
[61]
Song, C.; Zhang, J.; Liu, Y.; Guo, X.; Guo, Y.; Jiang, X.; Wang, L. Highly sensitive SERS assay of DENV gene via a cascade signal ampli-fication strategy of localized catalytic hairpin assembly and hybridization chain reaction. Sens. Actuators B Chem., 2020, 325128970
[http://dx.doi.org/10.1016/j.snb.2020.128970] [PMID: 33012990]
[62]
Zhao, D.; Yin, Q.; Chang, Y.; Liu, M. Nucleic acid circuits for cell imaging: From the test tube to the cell. Trends Analyt. Chem., 2020, 122115706
[http://dx.doi.org/10.1016/j.trac.2019.115706]
[63]
Yang, F.; Cheng, Y.; Cao, Y.; Zhang, Y.; Dong, H.; Lu, H.; Zhang, X. MicroRNA triggered DNA “nano wheel” for visualizing intracellular microRNA via localized DNA cascade reaction. Anal. Chem., 2019, 91(15), 9828-9835.
[http://dx.doi.org/10.1021/acs.analchem.9b01487] [PMID: 31282147]
[64]
Hunter, P. Nucleic acid-based nanotechnology: The ability of DNA and RNA to fold into precise and complex shapes can be exploited for applications both in biology and electronics. EMBO Rep., 2018, 19(1), 13-17.
[http://dx.doi.org/10.15252/embr.201745518] [PMID: 29217658]
[65]
Deng, Z.; Mao, C. Molecular lithography with DNA nanostructures. Angew. Chem. Int. Ed., 2004, 43(31), 4068-4070.
[http://dx.doi.org/10.1002/anie.200460257] [PMID: 15300697]
[66]
Xue, C.; Zhang, S.; Li, C.; Yu, X.; Ouyang, C.; Lu, Y.; Wu, Z.S. Y-shaped backbone-rigidified triangular DNA scaffold-directed stepwise movement of a DNAzyme walker for sensitive microRNA imaging within living cells. Anal. Chem., 2019, 91(24), 15678-15685.
[http://dx.doi.org/10.1021/acs.analchem.9b03784] [PMID: 31793769]
[67]
Jiang, Q.; Zhao, S.; Liu, J.; Song, L.; Wang, Z.G.; Ding, B. Rationally designed DNA-based nanocarriers. Adv. Drug Deliv. Rev., 2019, 147, 2-21.
[http://dx.doi.org/10.1016/j.addr.2019.02.003] [PMID: 30769047]
[68]
Bi, S.; Li, L.; Zhang, S. Triggered polycatenated DNA scaffolds for DNA sensors and aptasensors by a combination of rolling circle ampli-fication and DNAzyme amplification. Anal. Chem., 2010, 82(22), 9447-9454.
[http://dx.doi.org/10.1021/ac1021198] [PMID: 20954711]
[69]
Wang, H.; Zheng, J.; Sun, Y.; Li, T. Cellular environment-responsive intelligent DNA logic circuits for controllable molecular sensing. Biosens. Bioelectron., 2018, 117, 729-735.
[http://dx.doi.org/10.1016/j.bios.2018.07.006] [PMID: 30014947]
[70]
Lin, C.; Liu, Y.; Yan, H. Designer DNA nanoarchitectures. Biochemistry, 2009, 48(8), 1663-1674.
[http://dx.doi.org/10.1021/bi802324w] [PMID: 19199428]
[71]
Gu, H.; Chao, J.; Xiao, S.J.; Seeman, N.C. Dynamic patterning programmed by DNA tiles captured on a DNA origami substrate. Nat. Nanotechnol., 2009, 4(4), 245-248.
[http://dx.doi.org/10.1038/nnano.2009.5] [PMID: 19350035]
[72]
Seeman, N.C. DNA in a material world. Nature, 2003, 421(6921), 427-431.
[http://dx.doi.org/10.1038/nature01406] [PMID: 12540916]
[73]
Seeman, N.C.; Lukeman, P.S. Nucleic acid nanostructures: Bottom-up control of geometry on the nanoscale. Rep. Prog. Phys., 2005, 68(1), 237-270.
[http://dx.doi.org/10.1088/0034-4885/68/1/R05] [PMID: 25152542]
[74]
Kim, B.; Jo, S.; Son, J.; Kim, J.; Kim, M.H.; Hwang, S.U.; Dugasani, S.R.; Kim, B.D.; Liu, W.K.; Kim, M.K.; Park, S.H. Ternary and senary representations using DNA double-crossover tiles. Nanotechnology, 2014, 25(10)105601
[http://dx.doi.org/10.1088/0957-4484/25/10/105601] [PMID: 24532021]
[75]
Wang, W.; Lin, T.; Zhang, S.; Bai, T.; Mi, Y.; Wei, B. Self-assembly of fully addressable DNA nanostructures from double crossover tiles. Nucleic Acids Res., 2016, 44(16), 7989-7996.
[http://dx.doi.org/10.1093/nar/gkw670] [PMID: 27484479]
[76]
Le, J.D.; Pinto, Y.; Seeman, N.C.; Musier-Forsyth, K.; Taton, T.A.; Kiehl, R.A. DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett., 2004, 4(12), 2343-2347.
[http://dx.doi.org/10.1021/nl048635]
[77]
Salim, N.; Ahmad, N.; Musa, S.H.; Hashim, R.; Tadros, T.F.; Basri, M. Nanoemulsion as a topical delivery system of antipsoriatic drugs. RSC Advances, 2016, 6(8), 6234-6250.
[http://dx.doi.org/10.1039/C5RA14946K]
[78]
Heuer-Jungemann, A.; Liedl, T. From DNA tiles to functional DNA materials. Trends Chem., 2019, 1(9), 799-814.
[http://dx.doi.org/10.1016/j.trechm.2019.07.006]
[79]
Liu, F.; Jiang, Q.; Liu, Q.; Li, N.; Han, Z.; Liu, C.; Ding, B. Logic-gated plasmonic nanodevices based on DNA-templated assembly. CCS Chemistry, 2021, 3(3), 985-993.
[http://dx.doi.org/10.31635/ccschem.020.202000300]
[80]
Saccà, B.; Niemeyer, C.M. DNA origami: The art of folding DNA. Angew. Chem. Int. Ed. Engl., 2012, 51(1), 58-66.
[http://dx.doi.org/10.1002/anie.201105846] [PMID: 22162047]
[81]
Kuzuya, A.; Ohya, Y. Nanomechanical molecular devices made of DNA origami. Acc. Chem. Res., 2014, 47(6), 1742-1749.
[http://dx.doi.org/10.1021/ar400328v] [PMID: 24772996]
[82]
Endo, M.; Yang, Y.; Sugiyama, H. DNA origami technology for biomaterials applications. Biomater. Sci., 2013, 1(4), 347-360.
[http://dx.doi.org/10.1039/C2BM00154C] [PMID: 32481900]
[83]
Jin, Z.; Sun, W.; Ke, Y.; Shih, C.J.; Paulus, G.L.; Hua, Wang Q.; Mu, B.; Yin, P.; Strano, M.S. Metallized DNA nanolithography for encod-ing and transferring spatial information for graphene patterning. Nat. Commun., 2013, 4(1), 1663.
[http://dx.doi.org/10.1038/ncomms2690] [PMID: 23575667]
[84]
Wang, P.; Meyer, T.A.; Pan, V.; Dutta, P.K.; Ke, Y. The beauty and utility of DNA origami. Chem, 2017, 2(3), 359-382.
[http://dx.doi.org/10.1016/j.chempr.2017.02.009]
[85]
Guo, P. RNA nanotechnology: Engineering, assembly and applications in detection, gene delivery and therapy. J. Nanosci. Nanotechnol., 2005, 5(12), 1964-1982.
[http://dx.doi.org/10.1166/jnn.2005.446] [PMID: 16430131]
[86]
Guo, P.; Haque, F. Eds.; RNA nanotechnology and therapeutics; CRC Press: Boca Raton, FL, USA, 2014, pp. 39-45.
[87]
Haque, F.; Pi, F.; Zhao, Z.; Gu, S.; Hu, H.; Yu, H.; Guo, P. RNA versatility, flexibility, and thermostability for practice in RNA nanotech-nology and biomedical applications. Wiley Interdiscip. Rev. RNA, 2018, 9(1)e1452
[http://dx.doi.org/10.1002/wrna.1452] [PMID: 29105333]
[88]
Lin, Y.X.; Wang, Y.; Blake, S.; Yu, M.; Mei, L.; Wang, H.; Shi, J. RNA nanotechnology-mediated cancer immunotherapy. Theranostics, 2020, 10(1), 281-299.
[http://dx.doi.org/10.7150/thno.35568] [PMID: 31903120]
[89]
Wang, B. Ed.; RNA Nanotechnology; CRC Press, 2014.
[http://dx.doi.org/10.1201/b15533]
[90]
Guo, S.; Li, H.; Ma, M.; Fu, J.; Dong, Y.; Guo, P. Size, shape, and sequence-dependent immunogenicity of RNA nanoparticles. Mol. Ther. Nucleic Acids, 2017, 9, 399-408.
[http://dx.doi.org/10.1016/j.omtn.2017.10.010] [PMID: 29246318]
[91]
Howard, K.A.; Rahbek, U.L.; Liu, X.; Damgaard, C.K.; Glud, S.Z.; Andersen, M.Ø.; Hovgaard, M.B.; Schmitz, A.; Nyengaard, J.R.; Besen-bacher, F.; Kjems, J. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol. Ther., 2006, 14(4), 476-484.
[http://dx.doi.org/10.1016/j.ymthe.2006.04.010] [PMID: 16829204]
[92]
Reif, R.; Haque, F.; Guo, P. Fluorogenic RNA nanoparticles for monitoring RNA folding and degradation in real time in living cells. Nucleic Acid Ther., 2012, 22(6), 428-437.
[http://dx.doi.org/10.1089/nat.2012.0380] [PMID: 23113765]
[93]
Binzel, D.W.; Li, X.; Burns, N.; Khan, E.; Lee, W.J.; Chen, L.C.; Ellipilli, S.; Miles, W.; Ho, Y.S.; Guo, P. Thermostability, tunability, and tenacity of RNA as rubbery anionic polymeric materials in nanotechnology and nanomedicine-specific cancer targeting with undetectable toxicity. Chem. Rev., 2021, 121(13), 7398-7467.
[http://dx.doi.org/10.1021/acs.chemrev.1c00009] [PMID: 34038115]
[94]
Jasinski, D.; Haque, F.; Binzel, D.W.; Guo, P. Advancement of the emerging field of RNA nanotechnology. ACS Nano, 2017, 11(2), 1142-1164.
[http://dx.doi.org/10.1021/acsnano.6b05737] [PMID: 28045501]
[95]
Khaled, A.; Guo, S.; Li, F.; Guo, P. Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology. Nano Lett., 2005, 5(9), 1797-1808.
[http://dx.doi.org/10.1021/nl051264s] [PMID: 16159227]
[96]
Yoo, B.K.; Santhekadur, P.K.; Gredler, R.; Chen, D.; Emdad, L.; Bhutia, S.; Pannell, L.; Fisher, P.B.; Sarkar, D. Increased RNA-induced silencing complex (RISC) activity contributes to hepatocellular carcinoma. Hepatology, 2011, 53(5), 1538-1548.
[http://dx.doi.org/10.1002/hep.24216] [PMID: 21520169]
[97]
Shu, Y.; Cinier, M.; Fox, S.R.; Ben-Johnathan, N.; Guo, P. Assembly of therapeutic pRNA-siRNA nanoparticles using bipartite approach. Mol. Ther., 2011, 19(7), 1304-1311.
[http://dx.doi.org/10.1038/mt.2011.23] [PMID: 21468002]
[98]
Ku, S.H.; Jo, S.D.; Lee, Y.K.; Kim, K.; Kim, S.H. Chemical and structural modifications of RNAi therapeutics. Adv. Drug Deliv. Rev., 2016, 104, 16-28.
[http://dx.doi.org/10.1016/j.addr.2015.10.015] [PMID: 26549145]
[99]
Mori, Y.; Oi, H.; Suzuki, Y.; Hidaka, K.; Sugiyama, H.; Endo, M.; Matsumura, S.; Ikawa, Y. Flexible assembly of engineered Tetrahymena ribozymes forming polygonal RNA nanostructures with catalytic ability. ChemBioChem, 2021, 22(12), 2168-2176.
[http://dx.doi.org/10.1002/cbic.202100109] [PMID: 33876531]
[100]
Yaradoddi, J.; Kontro, M.H.; Ganachari, S.V.; Sulochana, M.B.; Dayanand, A.; Tapaskar, R.; Shettar, A. RNA nanotechnology. Handbook of Ecomaterials; , 2019.
[101]
Hoeprich, S.; Zhou, Q.; Guo, S.; Shu, D.; Qi, G.; Wang, Y.; Guo, P. Bacterial virus phi29 pRNA as a hammerhead ribozyme escort to de-stroy hepatitis B virus. Gene Ther., 2003, 10(15), 1258-1267.
[http://dx.doi.org/10.1038/sj.gt.3302002] [PMID: 12858191]
[102]
Jiang, F.; Kumar, R.A.; Jones, R.A.; Patel, D.J. Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex. Nature, 1996, 382(6587), 183-186.
[http://dx.doi.org/10.1038/382183a0] [PMID: 8700212]
[103]
Lauridsen, L.H.; Doessing, H.B.; Long, K.S.; Nielsen, A.T. A capture-SELEX strategy for multiplexed selection of RNA aptamers against small molecules. Synthetic Metabolic Pathways; Humana Press: New York, NY, 2018, pp. 291-306.
[http://dx.doi.org/10.1007/978-1-4939-7295-1_18]
[104]
Que-Gewirth, N.S.; Sullenger, B.A. Gene therapy progress and prospects: RNA aptamers. Gene Ther., 2007, 14(4), 283-291.
[http://dx.doi.org/10.1038/sj.gt.3302900] [PMID: 17279100]
[105]
Sundaram, P.; Kurniawan, H.; Byrne, M.E.; Wower, J. Therapeutic RNA aptamers in clinical trials. Eur. J. Pharm. Sci., 2013, 48(1-2), 259-271.
[http://dx.doi.org/10.1016/j.ejps.2012.10.014] [PMID: 23142634]
[106]
Germer, K.; Leonard, M.; Zhang, X. RNA aptamers and their therapeutic and diagnostic applications. Int. J. Biochem. Mol. Biol., 2013, 4(1), 27-40.
[PMID: 23638319]
[107]
Serganov, A.; Nudler, E. A decade of riboswitches. Cell, 2013, 152(1-2), 17-24.
[http://dx.doi.org/10.1016/j.cell.2012.12.024] [PMID: 23332744]
[108]
Mandal, M.; Breaker, R.R. Gene regulation by riboswitches. Nat. Rev. Mol. Cell Biol., 2004, 5(6), 451-463.
[http://dx.doi.org/10.1038/nrm1403] [PMID: 15173824]
[109]
Breaker, R.R. Riboswitches and the RNA world. Cold Spring Harb. Perspect. Biol., 2012, 4(2)a003566
[http://dx.doi.org/10.1101/cshperspect.a003566] [PMID: 21106649]
[110]
Tucker, B.J.; Breaker, R.R. Riboswitches as versatile gene control elements. Curr. Opin. Struct. Biol., 2005, 15(3), 342-348.
[http://dx.doi.org/10.1016/j.sbi.2005.05.003] [PMID: 15919195]
[111]
Afonin, K.A.; Bindewald, E.; Yaghoubian, A.J.; Voss, N.; Jacovetty, E.; Shapiro, B.A.; Jaeger, L. In vitro assembly of cubic rna-based scaffolds designed in silico. In: Therapeutic RNA Nanotechnology; Jenny Stanford Publishing, 2021. pp. 45-66.Jenny Stanford Publishing, 2021; pp.
[112]
Guo, L.; Kondo, M.; Fukawa, M.; Saitoh, K.; Matsuda, A. High rate deposition of microcrystalline silicon using conventional plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys., 1998, 37(10A), L1116-L1118.
[http://dx.doi.org/10.1143/JJAP.37.L1116]
[113]
Zheng, Shu X.; Liu, Y.; Palumbo, F.S.; Luo, Y.; Prestwich, G.D. In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials, 2004, 25(7-8), 1339-1348.
[http://dx.doi.org/10.1016/j.biomaterials.2003.08.014] [PMID: 14643608]
[114]
Shu, Y.; Haque, F.; Shu, D.; Li, W.; Zhu, Z.; Kotb, M.; Lyubchenko, Y.; Guo, P. Fabrication of 14 different RNA nanoparticles for specif-ic tumor targeting without accumulation in normal organs. RNA, 2013, 19(6), 767-777.
[http://dx.doi.org/10.1261/rna.037002.112] [PMID: 23604636]
[115]
Petrov, A.I.; Zirbel, C.L.; Leontis, N.B. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas. RNA, 2013, 19(10), 1327-1340.
[http://dx.doi.org/10.1261/rna.039438.113] [PMID: 23970545]
[116]
Westhof, E.; Masquida, B.; Jaeger, L. RNA tectonics: Towards RNA design. Fold. Des., 1996, 1(4), R78-R88.
[http://dx.doi.org/10.1016/S1359-0278(96)00037-5] [PMID: 9079386]
[117]
Jaeger, L.; Westhof, E.; Leontis, N.B. TectoRNA: Modular assembly units for the construction of RNA nano-objects. Nucleic Acids Res., 2001, 29(2), 455-463.
[http://dx.doi.org/10.1093/nar/29.2.455] [PMID: 11139616]
[118]
Leontis, N.B.; Lescoute, A.; Westhof, E. The building blocks and motifs of RNA architecture. Curr. Opin. Struct. Biol., 2006, 16(3), 279-287.
[http://dx.doi.org/10.1016/j.sbi.2006.05.009] [PMID: 16713707]
[119]
Leontis, N.B.; Westhof, E. Analysis of RNA motifs. Curr. Opin. Struct. Biol., 2003, 13(3), 300-308.
[http://dx.doi.org/10.1016/S0959-440X(03)00076-9] [PMID: 12831880]
[120]
Ishikawa, J.; Furuta, H.; Ikawa, Y. RNA tectonics (tectoRNA) for RNA nanostructure design and its application in synthetic biology. Wiley Interdiscip. Rev. RNA, 2013, 4(6), 651-664.
[http://dx.doi.org/10.1002/wrna.1185] [PMID: 23836522]
[121]
Parlea, L.; Bindewald, E.; Sharan, R.; Bartlett, N.; Moriarty, D.; Oliver, J.; Afonin, K.A.; Shapiro, B.A. Ring Catalog: A resource for design-ing self-assembling RNA nanostructures. Methods, 2016, 103, 128-137.
[http://dx.doi.org/10.1016/j.ymeth.2016.04.016] [PMID: 27090005]
[122]
Zadeh, J.N.; Steenberg, C.D.; Bois, J.S.; Wolfe, B.R.; Pierce, M.B.; Khan, A.R.; Dirks, R.M.; Pierce, N.A. NUPACK: Analysis and design of nucleic acid systems. J. Comput. Chem., 2011, 32(1), 170-173.
[http://dx.doi.org/10.1002/jcc.21596] [PMID: 20645303]
[123]
Martinez, H.M.; Maizel, J.V., Jr; Shapiro, B.A. RNA2D3D: A program for generating, viewing, and comparing 3-dimensional models of RNA. J. Biomol. Struct. Dyn., 2008, 25(6), 669-683.
[http://dx.doi.org/10.1080/07391102.2008.10531240] [PMID: 18399701]
[124]
Jossinet, F.; Ludwig, T.E.; Westhof, E. Assemble: An interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels. Bioinformatics, 2010, 26(16), 2057-2059.
[http://dx.doi.org/10.1093/bioinformatics/btq321] [PMID: 20562414]
[125]
Afonin, K.A.; Bindewald, E.; Yaghoubian, A.J.; Voss, N.; Jacovetty, E.; Shapiro, B.A.; Jaeger, L. In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat. Nanotechnol., 2010, 5(9), 676-682.
[http://dx.doi.org/10.1038/nnano.2010.160] [PMID: 20802494]