Hydrogelated Virus Nanoparticles in Tissue Engineering

Page: [258 - 269] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Hydrogels are an integrated three-dimensional network of water-absorbing hydrophilic polymers that can support tissue regeneration and release medication under controlled conditions. Hydrogel-based structures physically resemble the extracellular matrix besides being effective for biomedical applications and tissue engineering. Hydrogels must provide relevant biological signals to control the cell behavior to become an ideal bioactive scaffold for tissue regeneration. Incorporating virus nanoparticles (VNP) that can release essential peptides into the hydrogels is a promising option to formulate a bioactive scaffold that can facilitate cell proliferation, adhesion, migration, and differentiation. Over the recent period, virologists have discovered many viruses that lead to a great understanding of the diversity of viruses in nature. Viruses affecting the plants are called plant viruses, and they have a wide variety of shapes and sizes, yet each species produces monodisperse nucleoprotein particles. Plant viruses are not capable of infecting or reproducing in humans. Therefore, VNPs are engineered from plant viruses whose genetically programmed structures can be manipulated at the gene level, bioconjugated, or encapsulated. Plant VNPs can act as clinical diagnostic agents, immunomodulators, medicines, nanoreactors, and biosensors by displaying protein molecules or epitopes, constructing inorganic hybrid materials, or carrying molecular charges. The present review focuses on the plant virusmediated nanoparticles encapsulated in bioactive hydrogels to provide an ideal platform for tissue engineering.

Keywords: Hydrogels, plant viruses, virus nanoparticles, virus-like nanoparticles, tissue engineering, regenerative medicines.

Graphical Abstract

[1]
Spicer, C.D. Hydrogel scaffolds for tissue engineering: The importance of polymer choice. Polym. Chem., 2020, 11, 184-219.
[http://dx.doi.org/10.1039/C9PY01021A]
[2]
Deepika, R.; Girigoswami, K.; Murugesan, R.; Girigoswami, A. Influence of divalent cation on morphology and drug delivery efficiency of mixed polymer nanoparticles. Curr. Drug Deliv., 2018, 15(5), 652-657.
[http://dx.doi.org/10.2174/1567201814666170825160617 ] [PMID: 28847271]
[3]
Ueda, C.; Park, J.; Hirose, K.; Konishi, S.; Ikemoto, Y.; Osaki, M.; Yamaguchi, H.; Harada, A.; Tanaka, M.; Watanabe, G. Behavior of supramolecular cross-links formed by host-guest interactions in hydrogels responding to water contents. Supramol. Mater., 2022, 1, 100001.
[http://dx.doi.org/10.1016/j.supmat.2021.100001]
[4]
Benny, S.; Jose, J.; Thomas, S. Cross-Linking, Modular Design and Self-assembly in Hydrogels.In: Nano Hydrogels; Springer, 2021, pp. 151-163.
[http://dx.doi.org/10.1007/978-981-15-7138-1_8]]
[5]
Lee, K.Y.; Mooney, D.J. Hydrogels for tissue engineering. Chem. Rev., 2001, 101(7), 1869-1879.
[http://dx.doi.org/10.1021/cr000108x ] [PMID: 11710233]
[6]
Amsaveni, G.; Farook, A.S.; Haribabu, V.; Murugesan, R.; Girigoswami, A. Engineered multifunctional nanoparticles for DLA cancer cells targeting, sorting, MR imaging and drug delivery. Adv. Sci. Eng. Med., 2013, 5, 1340-1348.
[http://dx.doi.org/10.1166/asem.2013.1425]
[7]
Haribabu, V.; Girigoswami, K.; Sharmiladevi, P.; Girigoswami, A. Water-nanomaterial interaction to escalate twin-mode magnetic resonance imaging. ACS Biomater. Sci. Eng., 2020, 6(8), 4377-4389.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00409 ] [PMID: 33455176]
[8]
Sharmiladevi, P.; Akhtar, N.; Haribabu, V.; Girigoswami, K.; Chattopadhyay, S.; Girigoswami, A. Excitation wavelength independent carbon-decorated ferrite nanodots for multimodal diagnosis and stimuli responsive therapy. ACS Appl. Bio Mater., 2019, 2(4), 1634-1642.
[http://dx.doi.org/10.1021/acsabm.9b00039 ] [PMID: 35026897]
[9]
Sharmiladevi, P.; Haribabu, V.; Girigoswami, K.; Sulaiman Farook, A.; Girigoswami, A. Effect of mesoporous nano water reservoir on MR relaxivity. Sci. Rep., 2017, 7(1), 11179.
[http://dx.doi.org/10.1038/s41598-017-11710-2 ] [PMID: 28894269]
[10]
Girigoswami, A.; Yassine, W.; Sharmiladevi, P.; Haribabu, V.; Girigoswami, K. Camouflaged nanosilver with excitation wavelength dependent high quantum yield for targeted theranostic. Sci. Rep., 2018, 8(1), 16459.
[http://dx.doi.org/10.1038/s41598-018-34843-4 ] [PMID: 30405190]
[11]
Sharmiladevi, P.; Breghatha, M.; Dhanavardhini, K.; Priya, R.; Girigoswami, K.; Girigoswami, A. Efficient wormlike micelles for the controlled delivery of anticancer drugs. Nanosci. Nanotechnol. Asia, 2021, 11, 350-356.
[http://dx.doi.org/10.2174/2210681210999200728115601]
[12]
Haribabu, V.; Girigoswami, K.; Girigoswami, A. Magneto-silver core–shell nanohybrids for theragnosis. Nano-Struct. Nano-Objects, 2021, 25, 100636.
[http://dx.doi.org/10.1016/j.nanoso.2020.100636]
[13]
Haribabu, V.; Farook, A.S.; Goswami, N.; Murugesan, R.; Girigoswami, A. Optimized Mn-doped iron oxide nanoparticles entrapped in dendrimer for dual contrasting role in MRI. J. Biomed. Mater. Res. B Appl. Biomater., 2016, 104(4), 817-824.
[http://dx.doi.org/10.1002/jbm.b.33550 ] [PMID: 26460478]
[14]
Haribabu, V.; Sharmiladevi, P.; Akhtar, N.; Farook, A.S.; Girigoswami, K.; Girigoswami, A. Label free ultrasmall fluoromagnetic ferrite-clusters for targeted cancer imaging and drug delivery. Curr. Drug Deliv., 2019, 16(3), 233-241.
[http://dx.doi.org/10.2174/1567201816666181119112410 ] [PMID: 30451110]
[15]
Girigoswami, A.; Ramalakshmi, M.; Akhtar, N.; Metkar, S.K.; Girigoswami, K. ZnO Nanoflower petals mediated amyloid degradation - An in vitro electrokinetic potential approach. Mater. Sci. Eng. C, 2019, 101, 169-178.
[http://dx.doi.org/10.1016/j.msec.2019.03.086 ] [PMID: 31029310]
[16]
Dickmeis, C.; Kauth, L.; Commandeur, U. From infection to healing: The use of plant viruses in bioactive hydrogels. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2021, 13(1), e1662.
[http://dx.doi.org/10.1002/wnan.1662 ] [PMID: 32677315]
[17]
Chung, Y.H.; Cai, H.; Steinmetz, N.F. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv. Drug Deliv. Rev., 2020, 156, 214-235.
[http://dx.doi.org/10.1016/j.addr.2020.06.024 ] [PMID: 32603813]
[18]
Chen, Q.; Lai, H. Plant-derived virus-like particles as vaccines. Hum. Vaccin. Immunother., 2013, 9(1), 26-49.
[http://dx.doi.org/10.4161/hv.22218 ] [PMID: 22995837]
[19]
Schoberer, J.; Strasser, R. Plant glyco-biotechnology. Semin. Cell Dev. Biol., 2018, 80, 133-141.
[20]
Esfandiari, N.; Arzanani, M.K.; Soleimani, M.; Kohi-Habibi, M.; Svendsen, W.E. A new application of plant virus nanoparticles as drug delivery in breast cancer. Tumour Biol., 2016, 37(1), 1229-1236.
[http://dx.doi.org/10.1007/s13277-015-3867-3 ] [PMID: 26286831]
[21]
Beatty, P.H.; Lewis, J.D. Cowpea mosaic virus nanoparticles for cancer imaging and therapy. Adv. Drug Deliv. Rev., 2019, 145, 130-144.
[http://dx.doi.org/10.1016/j.addr.2019.04.005 ] [PMID: 31004625]
[22]
Chen, M.Y.; Butler, S.S.; Chen, W.; Suh, J. Physical, chemical, and synthetic virology: Reprogramming viruses as controllable nanodevices. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 11(3), e1545.
[http://dx.doi.org/10.1002/wnan.1545 ] [PMID: 30411529]
[23]
Le, D.H.; Lee, K.L.; Shukla, S.; Commandeur, U.; Steinmetz, N.F. Potato virus X, a filamentous plant viral nanoparticle for doxorubicin delivery in cancer therapy. Nanoscale, 2017, 9(6), 2348-2357.
[http://dx.doi.org/10.1039/C6NR09099K ] [PMID: 28144662]
[24]
Lin, R.D.; Steinmetz, N.F. Tobacco mosaic virus delivery of mitoxantrone for cancer therapy. Nanoscale, 2018, 10(34), 16307-16313.
[http://dx.doi.org/10.1039/C8NR04142C ] [PMID: 30129956]
[25]
Wu, H.; Zhong, D.; Zhang, Z.; Li, Y.; Zhang, X.; Li, Y.; Zhang, Z.; Xu, X.; Yang, J.; Gu, Z. Bioinspired artificial tobacco mosaic virus with combined oncolytic properties to completely destroy multidrug‐resistant cancer. Adv. Mater., 2020, 32, 1904958.
[http://dx.doi.org/10.1002/adma.201904958]
[26]
Alemzadeh, E.; Dehshahri, A.; Izadpanah, K.; Ahmadi, F. Plant virus nanoparticles: Novel and robust nanocarriers for drug delivery and imaging. Colloids Surf. B Biointerfaces, 2018, 167, 20-27.
[http://dx.doi.org/10.1016/j.colsurfb.2018.03.026 ] [PMID: 29625419]
[27]
Aljabali, A.A.A.; Al Zoubi, M.S.; Al-Batayneh, K.M.; Pardhi, D.M.; Dua, K.; Pal, K.; Tambuwala, M.M. Innovative applications of plant viruses in drug targeting and molecular imaging- a review. Curr. Med. Imaging Rev., 2021, 17(4), 491-506.
[http://dx.doi.org/10.2174/1573405616666201007160243 ] [PMID: 33030133]
[28]
Lico, C.; Chen, Q.; Santi, L. Viral vectors for production of recombinant proteins in plants. J. Cell. Physiol., 2008, 216(2), 366-377.
[http://dx.doi.org/10.1002/jcp.21423 ] [PMID: 18330886]
[29]
Gill, J.J. The selection and optimization of phage hosts.In: Bacteriophages: Biology, Technology Therapy; Springer, 2021, pp. 689-698.
[30]
Regulski, K.; Champion-Arnaud, P.; Gabard, J. Bacteriophage manufacturing: From early twentieth-century processes to current GMP.In: Bacteriophages: Biology, Technology. Therapy; Springer, 2021, pp. 699-729.
[31]
Abdollahiyan, P.; Oroojalian, F.; Hejazi, M.; de la Guardia, M.; Mokhtarzadeh, A. Nanotechnology, and scaffold implantation for the effective repair of injured organs: An overview on hard tissue engineering. J. Control. Release, 2021, 333, 391-417.
[http://dx.doi.org/10.1016/j.jconrel.2021.04.003 ] [PMID: 33823222]
[32]
Grimaudo, M.; Krishnakumar, G.; Giusto, E.; Furlani, F.; Bassi, G.; Rossi, A.; Molinari, F.; Lista, F.; Montesi, M.; Panseri, S. Bioactive injectable hydrogels for on demand molecule/cell delivery and for tissue regeneration in the central nervous system. Acta Biomater., 2022, 140, 88-101.
[PMID: 34852302]
[33]
Frías-Sánchez, A.I.; Quevedo-Moreno, D.A.; Samandari, M.; Tavares-Negrete, J.A.; Sánchez-Rodríguez, V.H.; González-Gamboa, I.; Ponz, F.; Alvarez, M.M.; Trujillo-de Santiago, G. Biofabrication of muscle fibers enhanced with plant viral nanoparticles using surface chaotic flows. Biofabrication, 2021, 13(3), 035015.
[http://dx.doi.org/10.1088/1758-5090/abd9d7 ] [PMID: 33418551]
[34]
O’brien, F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today, 2011, 14, 88-95.
[http://dx.doi.org/10.1016/S1369-7021(11)70058-X]
[35]
Ambekar, R.S.; Kandasubramanian, B. Progress in the advancement of porous biopolymer scaffold: Tissue engineering application. Ind. Eng. Chem. Res., 2019, 58, 6163-6194.
[http://dx.doi.org/10.1021/acs.iecr.8b05334]
[36]
Morales, A.; Labidi, J.; Gullón, P.; Astray, G. Synthesis of advanced bio-based green materials from renewable biopolymers. Curr. Opin. Green Sustain. Chem., 2021, 2021, 100436.
[http://dx.doi.org/10.1016/j.cogsc.2020.100436]
[37]
Ma, P.; Chen, Y.; Lai, X.; Zheng, J.; Ye, E.; Loh, X.J.; Zhao, Y.; Parikh, B.H.; Su, X.; You, M.; Wu, Y.L.; Li, Z. The translational application of hydrogel for organoid technology: challenges and future perspectives. Macromol. Biosci., 2021, 21(10), e2100191.
[http://dx.doi.org/10.1002/mabi.202100191 ] [PMID: 34263547]
[38]
Xue, K.; Wang, X.; Yong, P.W.; Young, D.J.; Wu, Y.L.; Li, Z.; Loh, X.J. Hydrogels as emerging materials for translational biomedicine. Adv. Ther. (Weinh.), 2019, 2, 1800088.
[http://dx.doi.org/10.1002/adtp.201800088]
[39]
Chen, Y-P.; Zhang, J-L.; Zou, Y.; Wu, Y-L. Recent advances on polymeric beads or hydrogels as embolization agents for improved transcatheter arterial chemoembolization (TACE). Front Chem., 2019, 7, 408.
[http://dx.doi.org/10.3389/fchem.2019.00408 ] [PMID: 31231636]
[40]
Liu, X.; Li, Z.; Loh, X.J.; Chen, K.; Li, Z.; Wu, Y.L. Targeted and sustained corelease of chemotherapeutics and gene by injectable supramolecular hydrogel for drug-resistant cancer therapy. Macromol. Rapid Commun., 2019, 40(5), e1800117.
[http://dx.doi.org/10.1002/marc.201800117 ] [PMID: 29992700]
[41]
Han, Y.; Jiang, L.; Shi, H.; Xu, C.; Liu, M.; Li, Q.; Zheng, L.; Chi, H.; Wang, M.; Liu, Z.; You, M.; Loh, X.J.; Wu, Y.L.; Li, Z.; Li, C. Effectiveness of an ocular adhesive polyhedral oligomeric silsesquioxane hybrid thermo-responsive FK506 hydrogel in a murine model of dry eye. Bioact. Mater., 2021, 9, 77-91.
[http://dx.doi.org/10.1016/j.bioactmat.2021.07.027 ] [PMID: 34820557]
[42]
Campos, Y.; Sola, F.J.; Fuentes, G.; Quintanilla, L.; Almirall, A.; Cruz, L.J.; Rodríguez-Cabello, J.C.; Tabata, Y. The effects of crosslinking on the rheology and cellular behavior of polymer-based 3D-multilayered scaffolds for restoring articular cartilage. Polymers (Basel), 2021, 13(6), 907.
[http://dx.doi.org/10.3390/polym13060907 ] [PMID: 33809430]
[43]
Decante, G.; Costa, J.B.; Silva-Correia, J.; Collins, M.N.; Reis, R.L.; Oliveira, J.M. Engineering bioinks for 3D bioprinting. Biofabrication, 2021, 13(3), 032001.
[http://dx.doi.org/10.1088/1758-5090/abec2c ] [PMID: 33662949]
[44]
Sahoo, D.R.; Biswal, T. Alginate and its application to tissue engineering. SN Appl. Sci., 2021, 3, 1-19.
[http://dx.doi.org/10.1007/s42452-020-04096-w]
[45]
Veiga, A.; Silva, I.V.; Duarte, M.M.; Oliveira, A.L. Current trends on protein driven bioinks for 3D printing. Pharmaceutics, 2021, 13(9), 1444.
[http://dx.doi.org/10.3390/pharmaceutics13091444 ] [PMID: 34575521]
[46]
Mantha, S.; Pillai, S.; Khayambashi, P.; Upadhyay, A.; Zhang, Y.; Tao, O.; Pham, H.M.; Tran, S.D. Smart hydrogels in tissue engineering and regenerative medicine. Materials (Basel), 2019, 12(20), 3323.
[http://dx.doi.org/10.3390/ma12203323 ] [PMID: 31614735]
[47]
Xu, W.; Dong, S.; Han, Y.; Li, S.; Liu, Y. Hydrogels as antibacterial biomaterials. Curr. Pharm. Des., 2018, 24(8), 843-854.
[http://dx.doi.org/10.2174/1381612824666180213122953 ] [PMID: 29436994]
[48]
John, A.; Zhong, W. Nanocellulose-based hydrogels for biomedical applications. Curr. Nanosci., 2019, 15, 371-381.
[http://dx.doi.org/10.2174/1573413714666180723145038]
[49]
Singh, R.; Goel, S.; Sharma, P.K.; Agarwal, A. Hydrogel as a Novel Drug Delivery System: Recent advancements and patents. Curr. Nanosci., 2021, 17, 14-25.
[http://dx.doi.org/10.2174/1573413716999200626211915]
[50]
Andersen, T.; Markussen, C.; Dornish, M.; Heier-Baardson, H.; Melvik, J.E.; Alsberg, E.; Christensen, B.E. In situ gelation for cell immobilization and culture in alginate foam scaffolds. Tissue Eng. Part A, 2014, 20(3-4), 600-610.
[PMID: 24125496]
[51]
Cheng, Y.; Zhang, X.; Qin, Y.; Dong, P.; Yao, W.; Matz, J.; Ajayan, P.M.; Shen, J.; Ye, M. Super-elasticity at 4 K of covalently crosslinked polyimide aerogels with negative Poisson’s ratio. Nat. Commun., 2021, 12(1), 4092.
[http://dx.doi.org/10.1038/s41467-021-24388-y ] [PMID: 34215741]
[52]
Zhang, Q.; Xu, H.; Wu, C.; Shang, Y.; Wu, Q.; Wei, Q.; Zhang, Q.; Sun, Y.; Wang, Q. Tissue fluid triggered enzyme polymerization for ultrafast gelation and cartilage repair. Angew. Chem. Int. Ed. Engl., 2021, 60(36), 19982-19987.
[http://dx.doi.org/10.1002/anie.202107789 ] [PMID: 34173310]
[53]
Van Hoorick, J.; Tytgat, L.; Dobos, A.; Ottevaere, H.; Van Erps, J.; Thienpont, H.; Ovsianikov, A.; Dubruel, P.; Van Vlierberghe, S. (Photo-)crosslinkable gelatin derivatives for biofabrication applications. Acta Biomater., 2019, 97, 46-73.
[http://dx.doi.org/10.1016/j.actbio.2019.07.035 ] [PMID: 31344513]
[54]
Jiang, Y.; Chen, J.; Deng, C.; Suuronen, E.J.; Zhong, Z. Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering. Biomaterials, 2014, 35(18), 4969-4985.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.001 ] [PMID: 24674460]
[55]
Spicer, C.D.; Jumeaux, C.; Gupta, B.; Stevens, M.M. Peptide and protein nanoparticle conjugates: Versatile platforms for biomedical applications. Chem. Soc. Rev., 2018, 47(10), 3574-3620.
[http://dx.doi.org/10.1039/C7CS00877E ] [PMID: 29479622]
[56]
Lima, D.S.; Tenório-Neto, E.T.; Lima-Tenório, M.K.; Guilherme, M.R.; Scariot, D.B.; Nakamura, C.V.; Muniz, E.C.; Rubira, A.F. pH-responsive alginate-based hydrogels for protein delivery. J. Mol. Liq., 2018, 262, 29-36.
[http://dx.doi.org/10.1016/j.molliq.2018.04.002]
[57]
Sun, J.; Tan, H. Alginate-based biomaterials for regenerative medicine applications. Materials (Basel), 2013, 6(4), 1285-1309.
[http://dx.doi.org/10.3390/ma6041285 ] [PMID: 28809210]
[58]
Kopeček, J. Hydrogel biomaterials: A smart future? Biomaterials, 2007, 28(34), 5185-5192.
[http://dx.doi.org/10.1016/j.biomaterials.2007.07.044 ] [PMID: 17697712]
[59]
Yang, N.; Wang, Y.; Zhang, Q.; Chen, L.; Zhao, Y. In situ formation of poly (thiolated chitosan-co-alkylated β-cyclodextrin) hydrogels using click cross-linking for sustained drug release. J. Mater. Sci., 2019, 54, 1677-1691.
[http://dx.doi.org/10.1007/s10853-018-2910-3]
[60]
Yu, J.; Du, K.T.; Fang, Q.; Gu, Y.; Mihardja, S.S.; Sievers, R.E.; Wu, J.C.; Lee, R.J. The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials, 2010, 31(27), 7012-7020.
[http://dx.doi.org/10.1016/j.biomaterials.2010.05.078 ] [PMID: 20566215]
[61]
Bozkurt, A.; Brook, G.A.; Moellers, S.; Lassner, F.; Sellhaus, B.; Weis, J.; Woeltje, M.; Tank, J.; Beckmann, C.; Fuchs, P.; Damink, L.O.; Schügner, F.; Heschel, I.; Pallua, N. In vitro assessment of axonal growth using dorsal root ganglia explants in a novel three-dimensional collagen matrix. Tissue Eng., 2007, 13(12), 2971-2979.
[http://dx.doi.org/10.1089/ten.2007.0116 ] [PMID: 17937537]
[62]
Spivey, E.C.; Khaing, Z.Z.; Shear, J.B.; Schmidt, C.E. The fundamental role of subcellular topography in peripheral nerve repair therapies. Biomaterials, 2012, 33(17), 4264-4276.
[http://dx.doi.org/10.1016/j.biomaterials.2012.02.043 ] [PMID: 22425024]
[63]
Yang, Q.; Adrus, N.; Tomicki, F.; Ulbricht, M. Composites of functional polymeric hydrogels and porous membranes. J. Mater. Chem., 2011, 21, 2783-2811.
[http://dx.doi.org/10.1039/C0JM02234A]
[64]
Santoni, M.; Zampieri, R.; Avesani, L. Plant virus nanoparticles for vaccine applications. Curr. Protein Pept. Sci., 2020, 21(4), 344-356.
[http://dx.doi.org/10.2174/1389203721666200212100255 ] [PMID: 32048964]
[65]
Hill, B.D.; Zak, A.; Khera, E.; Wen, F.B.; Zak, A.; Khera, E.; Wen, F. Engineering virus-like particles for antigen and drug delivery. Curr. Protein Pept. Sci., 2018, 19(1), 112-127.
[PMID: 27875963]
[66]
Zhang, Y.; Dong, Y.; Zhou, J.; Li, X.; Wang, F. Application of plant viruses as a biotemplate for nanomaterial fabrication. Molecules, 2018, 23(9), 2311.
[http://dx.doi.org/10.3390/molecules23092311 ] [PMID: 30208562]
[67]
Manchester, M.; Singh, P. Virus-based nanoparticles (VNPs): Platform technologies for diagnostic imaging. Adv. Drug Deliv. Rev., 2006, 58(14), 1505-1522.
[http://dx.doi.org/10.1016/j.addr.2006.09.014 ] [PMID: 17118484]
[68]
Randles, J.; Ogle, H.; Brown, J.; Ogle, H. Viruses and viroids as agents of plant disease. Plant Pathogens and Plant Diseases; Rockville Publication: Australia, 1997, pp. 104-126.
[69]
Witherell, G.W.; Gott, J.M.; Uhlenbeck, O.C. Specific interaction between RNA phage coat proteins and RNA. Prog. Nucleic Acid Res. Mol. Biol., 1991, 40, 185-220.
[http://dx.doi.org/10.1016/S0079-6603(08)60842-9 ] [PMID: 2031083]
[70]
Adams, M.J.; Adkins, S.; Bragard, C.; Gilmer, D.; Li, D.; MacFarlane, S.A.; Wong, S-M.; Melcher, U.; Ratti, C.; Ryu, K.H. ICTV virus taxonomy profile. Virgaviridae. J. Gen. Virol., 2017, 98(8), 1999-2000.
[http://dx.doi.org/10.1099/jgv.0.000884 ] [PMID: 28786782]
[71]
Padmanabhan, M.S. Molecular characterization of interactions between TMV replicase protein and auxin responsive proteins: Implications in* disease development; University of Maryland: College Park, 2006.
[72]
Pitek, A.S.; Hu, H.; Shukla, S.; Steinmetz, N.F. Cancer theranostic applications of albumin-coated tobacco mosaic virus nanoparticles. ACS Appl. Mater. Interfaces, 2018, 10(46), 39468-39477.
[http://dx.doi.org/10.1021/acsami.8b12499 ] [PMID: 30403330]
[73]
Heddle, J.G.; Chakraborti, S.; Iwasaki, K. Natural and artificial protein cages: Design, structure and therapeutic applications. Curr. Opin. Struct. Biol., 2017, 43, 148-155.
[http://dx.doi.org/10.1016/j.sbi.2017.03.007 ] [PMID: 28359961]
[74]
Caspar, D.L.; Klug, A. Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol., 1962, 27, 1-24.
[http://dx.doi.org/10.1101/SQB.1962.027.001.005]
[75]
Narayanan, K.B.; Han, S.S. Icosahedral plant viral nanoparticles - bioinspired synthesis of nanomaterials/nanostructures. Adv. Colloid Interface Sci., 2017, 248, 1-19.
[http://dx.doi.org/10.1016/j.cis.2017.08.005 ] [PMID: 28916111]
[76]
Solovyev, A.G.; Makarov, V.V. Helical capsids of plant viruses: Architecture with structural lability. J. Gen. Virol., 2016, 97(8), 1739-1754.
[http://dx.doi.org/10.1099/jgv.0.000524 ] [PMID: 27312096]
[77]
Park, M.-R.; Seo, J.-K.; Kim, K.-H. Viral and nonviral elements in potexvirus replication and movement and in antiviral responses. Adv. Virus Res., 2013, 87, 75-112.
[http://dx.doi.org/10.1016/B978-0-12-407698-3.00003-X ] [PMID: 23809921]
[78]
Walper, S.A.; Turner, K.B.; Medintz, I.L. Enzymatic bioconjugation of nanoparticles: Developing specificity and control. Curr. Opin. Biotechnol., 2015, 34, 232-241.
[http://dx.doi.org/10.1016/j.copbio.2015.04.003 ] [PMID: 25955793]
[79]
Wen, A.M.; Lee, K.L.; Cao, P.; Pangilinan, K.; Carpenter, B.L.; Lam, P.; Veliz, F.A.; Ghiladi, R.A.; Advincula, R.C.; Steinmetz, N.F. Utilizing viral nanoparticle/dendron hybrid conjugates in photodynamic therapy for dual delivery to macrophages and cancer cells. Bioconjug. Chem., 2016, 27(5), 1227-1235.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00075 ] [PMID: 27077475]
[80]
Yao, S.; Jin, B.; Liu, Z.; Shao, C.; Zhao, R.; Wang, X.; Tang, R. Biomineralization: From material tactics to biological strategy. Adv. Mater., 2017, 29(14), 1605903.
[http://dx.doi.org/10.1002/adma.201605903 ] [PMID: 28229486]
[81]
Comas-Garcia, M.; Colunga-Saucedo, M.; Rosales-Mendoza, S. The role of virus-like particles in medical biotechnology. Mol. Pharm., 2020, 17(12), 4407-4420.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00828 ] [PMID: 33147978]
[82]
Venkataraman, S.; Hefferon, K. Application of plant viruses in biotechnology, medicine, and human health. Viruses, 2021, 13(9), 1697.
[http://dx.doi.org/10.3390/v13091697 ] [PMID: 34578279]
[83]
Senthil-Kumar, M.; Mysore, K.S. Tobacco rattle virus-based virus-induced gene silencing in Nicotiana benthamiana. Nat. Protoc., 2014, 9(7), 1549-1562.
[http://dx.doi.org/10.1038/nprot.2014.092 ] [PMID: 24901739]
[84]
Rybicki, E.P. Plant molecular farming of virus-like nanoparticles as vaccines and reagents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2020, 12(2), e1587.
[http://dx.doi.org/10.1002/wnan.1587 ] [PMID: 31486296]
[85]
Kushnir, N.; Streatfield, S.J.; Yusibov, V. Virus-like particles as a highly efficient vaccine platform: Diversity of targets and production systems and advances in clinical development. Vaccine, 2012, 31(1), 58-83.
[http://dx.doi.org/10.1016/j.vaccine.2012.10.083 ] [PMID: 23142589]
[86]
Steele, J.F.C.; Peyret, H.; Saunders, K.; Castells-Graells, R.; Marsian, J.; Meshcheriakova, Y.; Lomonossoff, G.P. Synthetic plant virology for nanobiotechnology and nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(4), e1447.
[http://dx.doi.org/10.1002/wnan.1447 ] [PMID: 28078770]
[87]
Stanley, M. Tumour virus vaccines: Hepatitis B virus and human papillomavirus. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2017, 372(1732), 20160268.
[http://dx.doi.org/10.1098/rstb.2016.0268] [PMID: 28893935]
[88]
Culver, J.N.; Brown, A.D.; Zang, F.; Gnerlich, M.; Gerasopoulos, K.; Ghodssi, R. Plant virus directed fabrication of nanoscale materials and devices. Virology, 2015, 479-480, 200-212.
[http://dx.doi.org/10.1016/j.virol.2015.03.008 ] [PMID: 25816763]
[89]
Luckanagul, J.A.; Lee, L.A.; You, S.; Yang, X.; Wang, Q. Plant virus incorporated hydrogels as scaffolds for tissue engineering possess low immunogenicity in vivo. J. Biomed. Mater. Res. A, 2015, 103(3), 887-895.
[http://dx.doi.org/10.1002/jbm.a.35227 ] [PMID: 24829052]
[90]
Kaur, G.; Wang, C.; Sun, J.; Wang, Q. The synergistic effects of multivalent ligand display and nanotopography on osteogenic differentiation of rat bone marrow stem cells. Biomaterials, 2010, 31(22), 5813-5824.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.017 ] [PMID: 20452665]
[91]
Luckanagul, J.; Lee, L.A.; Nguyen, Q.L.; Sitasuwan, P.; Yang, X.; Shazly, T.; Wang, Q. Porous alginate hydrogel functionalized with virus as three-dimensional scaffolds for bone differentiation. Biomacromolecules, 2012, 13(12), 3949-3958.
[http://dx.doi.org/10.1021/bm301180c ] [PMID: 23148483]
[92]
Rahman, H.S.; Othman, H.H.; Hammadi, N.I.; Yeap, S.K.; Amin, K.M.; Abdul Samad, N.; Alitheen, N.B. Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. Int. J. Nanomedicine, 2020, 15, 2439-2483.
[http://dx.doi.org/10.2147/IJN.S227805 ] [PMID: 32346289]
[93]
Karimi, M.; Ghasemi, A.; Sahandi Zangabad, P.; Rahighi, R.; Moosavi Basri, S.M.; Mirshekari, H.; Amiri, M.; Shafaei Pishabad, Z.; Aslani, A.; Bozorgomid, M.; Ghosh, D.; Beyzavi, A.; Vaseghi, A.; Aref, A.R.; Haghani, L.; Bahrami, S.; Hamblin, M.R. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev., 2016, 45(5), 1457-1501.
[http://dx.doi.org/10.1039/C5CS00798D ] [PMID: 26776487]
[94]
Grasso, S.; Lico, C.; Imperatori, F.; Santi, L. A plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus. Transgenic Res., 2013, 22(3), 519-535.
[http://dx.doi.org/10.1007/s11248-012-9663-6 ] [PMID: 23108557]
[95]
Madden, L.R.; Mortisen, D.J.; Sussman, E.M.; Dupras, S.K.; Fugate, J.A.; Cuy, J.L.; Hauch, K.D.; Laflamme, M.A.; Murry, C.E.; Ratner, B.D. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Natl. Acad. Sci. USA, 2010, 107(34), 15211-15216.
[http://dx.doi.org/10.1073/pnas.1006442107 ] [PMID: 20696917]
[96]
Li, J.; Mo, L.; Lu, C-H.; Fu, T.; Yang, H-H.; Tan, W. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chem. Soc. Rev., 2016, 45(5), 1410-1431.
[http://dx.doi.org/10.1039/C5CS00586H ] [PMID: 26758955]
[97]
Lee, C.-C.; Ho, Y.-N.; Hu, R.-H.; Yen, Y.-T.; Wang, Z.-C.; Lee, Y.-C.; Hsu, Y.-H.; Meng, M. The interaction between bamboo mosaic virus replication protein and coat protein is critical for virus movement in plant hosts. J. Virol., 2011, 85(22), 12022-12031.
[http://dx.doi.org/10.1128/JVI.05595-11 ] [PMID: 21917973]
[98]
Yi, H.; Nisar, S.; Lee, S.-Y.; Powers, M.A.; Bentley, W.E.; Payne, G.F.; Ghodssi, R.; Rubloff, G.W.; Harris, M.T.; Culver, J.N. Patterned assembly of genetically modified viral nanotemplates via nucleic acid hybridization. Nano Lett., 2005, 5(10), 1931-1936.
[http://dx.doi.org/10.1021/nl051254r ] [PMID: 16218712]
[99]
Chirila, T.V.; Suzuki, S.; Papolla, C. A comparative investigation of Bombyx mori silk fibroin hydrogels generated by chemical and enzymatic cross-linking. Biotechnol. Appl. Biochem., 2017, 64(6), 771-781.
[http://dx.doi.org/10.1002/bab.1552 ] [PMID: 28220960]
[100]
Chen, L.; Zhao, X.; Lin, Y.; Su, Z.; Wang, Q. Dual stimuli-responsive supramolecular hydrogel of bionanoparticles and hyaluronan. Polym. Chem., 2014, 5, 6754-6760.
[http://dx.doi.org/10.1039/C4PY00819G]
[101]
Xu, W.; Li, X.; Wang, L.; Li, S.; Chu, S.; Wang, J.; Li, Y.; Hou, J.; Luo, Q.; Liu, J. Design of cyclodextrin-based functional systems for biomedical applications. Front Chem., 2021, 9, 635507.
[http://dx.doi.org/10.3389/fchem.2021.635507 ] [PMID: 33681149]
[102]
Xu, X.; Jha, A.K.; Harrington, D.A.; Farach-Carson, M.C.; Jia, X. Hyaluronic acid-based hydrogels: From a natural polysaccharide to complex networks. Soft Matter, 2012, 8(12), 3280-3294.
[http://dx.doi.org/10.1039/c2sm06463d ] [PMID: 22419946]
[103]
Eiben, S.; Koch, C.; Altintoprak, K.; Southan, A.; Tovar, G.; Laschat, S.; Weiss, I.M.; Wege, C. Plant virus-based materials for biomedical applications: Trends and prospects. Adv. Drug Deliv. Rev., 2019, 145, 96-118.
[http://dx.doi.org/10.1016/j.addr.2018.08.011 ] [PMID: 30176280]
[104]
Wu, L.; Zang, J.; Lee, L.A.; Niu, Z.; Horvatha, G.C.; Braxtona, V.; Wibowo, A.C.; Bruckman, M.A.; Ghoshroy, S.; zur Loye, H-C. Electrospinning fabrication, structural and mechanical characterization of rod-like virus-based composite nanofibers. J. Mater. Chem., 2011, 21, 8550-8557.
[http://dx.doi.org/10.1039/c1jm00078k]
[105]
Kolla, D.S.; Kowtharapu, B.S. Biomaterials for Specialized Tissue Engineering: Concepts, Methods, and Applications.In: Biomaterials in Tissue Engineering and Regenerative Medicine; Springer, 2021, pp. 423-468.
[http://dx.doi.org/10.1007/978-981-16-0002-9_12]]
[106]
Wu, Y.; Jiang, Z.; Zan, X.; Lin, Y.; Wang, Q. Shear flow induced long-range ordering of rod-like viral nanoparticles within hydrogel. Colloids Surf. B Biointerfaces, 2017, 158, 620-626.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.039 ] [PMID: 28755559]
[107]
Zhong, H.; Huang, J.; Wu, J.; Du, J. Electrospinning nanofibers to 1D, 2D, and 3D scaffolds and their biomedical applications. Nano Res., 2021, 2021, 1-18.
[108]
Shin, M.D.; Hochberg, J.D.; Pokorski, J.K.; Steinmetz, N.F. Bioconjugation of active ingredients to plant viral nanoparticles is enhanced by Preincubation with a Pluronic F127 Polymer Scaffold. ACS Appl. Mater. Interfaces, 2021, 13(50), 59618-59632.
[http://dx.doi.org/10.1021/acsami.1c13183 ] [PMID: 34890195]
[109]
Wu, Y.; Feng, S.; Zan, X.; Lin, Y.; Wang, Q. Aligned electroactive TMV nanofibers as enabling scaffold for neural tissue engineering. Biomacromolecules, 2015, 16(11), 3466-3472.
[http://dx.doi.org/10.1021/acs.biomac.5b00884 ] [PMID: 26390383]
[110]
Jablonski, M.; Poghossian, A.; Severins, R.; Keusgen, M.; Wege, C.; Schöning, M.J. Capacitive field-effect biosensor studying adsorption of tobacco mosaic virus particles. Micromachines (Basel), 2021, 12(1), 57.
[http://dx.doi.org/10.3390/mi12010057 ] [PMID: 33418949]
[111]
Adigun, O.O. Mechanisms of metal mineralization on virus templates for nanorod synthesis; Purdue University: IN, USA, 2016.
[112]
Yuan, J.; Maturavongsadit, P.; Zhou, Z.; Lv, B.; Lin, Y.; Yang, J.; Luckanagul, J.A. Hyaluronic acid-based hydrogels with tobacco mosaic virus containing cell adhesive peptide induce bone repair in normal and osteoporotic rats. Biomater. Trans., 2020, 1, 89.