Exploring the Role of Self-Nanoemulsifying Systems in Drug Delivery: Challenges, Issues, Applications and Recent Advances

Page: [1241 - 1261] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Nanotechnology has attracted researchers around the globe owing to the small size and targeting properties of the drug delivery vectors. The interest in self-nanoemulsifying drug delivery systems (SNEDDS) has shown an exponential increase from the formulator's point of view. SNEDDS have shown wide applicability in terms of controlled and targeted delivery of various types of drugs. They chemically consist of oil, surfactants and co-surfactants that decrease the emulsion particle size to the range of <100 nm. However, stability issues such as drug precipitation during storage, incompatibility of ingredients in shell, decrease their application for the long run and these issues have been highlighted in this paper. The current review throws limelight on the biological aspects and process parameters. In addition, the process of absorption from GI is also discussed in detail. SNEDDS have been utilized as a treatment option for various diseases like cancer, diabetes, and ocular and pulmonary diseases. Along with this, the authors highlight the advances involving in vivo and in vitro lipolysis studies on SNEDDS, also highlighting recent innovations in this field, such as novel combinations of drug-free solid SNEDDS + solid dispersions, lipid-modified chitosan containing mucoadhesive SNEDDS, pHsensitive SNEDDS and several others.

Keywords: Herbal SNEDDS, pH-sensitive SNEDDS, in vitro lipolysis, optimization, nanoemulsion, recent innovations.

Graphical Abstract

[1]
Alghananim, A.; Özalp, Y.; Mesut, B.; Serakinci, N.; Özsoy, Y.; Güngör, S. A solid ultrafine self-nanoemulsifying drug delivery system (S-SNEDDS) of deferasirox for improved solubility: Optimization, characterization, and in vitro cytotoxicity studies. Pharmaceuticals (Basel), 2020, 13(8), 162.
[http://dx.doi.org/10.3390/ph13080162]
[2]
Razzaq, S.; Rauf, A.; Raza, A.; Akhtar, S.; Tabish, T.A.; Sandhu, M.A.; Zaman, M.; Ibrahim, I.M.; Shahnaz, G.; Rahdar, A.; Díez-Pascual, A.M. A multifunctional polymeric micelle for targeted delivery of paclitaxel by the inhibition of the P-glycoprotein transporters. Nanomaterials (Basel), 2021, 11(11), 2858.
[http://dx.doi.org/10.3390/nano11112858] [PMID: 34835622]
[3]
Rauf, A.; Tabish, T.A.; Ibrahim, I.M. Rauf ul Hassan, M.; Tahseen, S.; Abdullah Sandhu, M.; Shahnaz, G.; Rahdar, A.; Cucchiarini, M.; Pandey, S. Design of mannose-coated rifampicin nanoparticles modulating the immune response and rifampicin induced hepatotoxicity with improved oral drug delivery. Arab. J. Chem., 2021, 14(9), 8103321.
[http://dx.doi.org/10.1016/j.arabjc.2021.103321]
[4]
Rahdar, A.; Hasanein, P.; Bilal, M.; Beyzaei, H.; Kyzas, G.Z. Quercetin-loaded F127 nanomicelles: Antioxidant activity and protection against renal injury induced by gentamicin in rats. Life Sci., 2021, 276, 119420.
[http://dx.doi.org/10.1016/j.lfs.2021.119420] [PMID: 33785340]
[5]
Rahdar, A.; Taboada, P.; Hajinezhad, M.R.; Barani, M.; Beyzaei, H. Effect of tocopherol on the properties of Pluronic F127 microemulsions: Physico-chemical characterization and in vivo toxicity. J. Mol. Liq., 2019, 277, 624-630.
[http://dx.doi.org/10.1016/j.molliq.2018.12.074]
[6]
Rahdar, A.; Mohammad, R.H.; Mahmood, B.; Saman, S.; Maryam, Z.; Esraa, G.; Francesco, B.; Magali, C.; Muhammad, B.; Sadanand, P. Pluronic F127/Doxorubicin microemulsions: Preparation, characterization, and toxicity evaluations. J. Mol. Liq., 2022, 345, 117028.
[7]
Rahdar, A.; Hajinezhad, M.R.; Nasri, S.; Beyzaei, H.; Barani, M.; Trant, J.F. The synthesis of methotrexate-loaded F127 microemulsions and their in vivo toxicity in a rat model. J. Mol. Liq., 2020, 313, 113449.
[http://dx.doi.org/10.1016/j.molliq.2020.113449]
[8]
Rahdar, A.; Sargazi, S.; Barani, M.; Shahraki, S.; Sabir, F.; Aboudzadeh, M.A. Lignin-stabilized doxorubicin microemulsions: Synthesis, physical characterization, and in vitro assessments. Polymers (Basel), 2021, 13(4), 641.
[http://dx.doi.org/10.3390/polym13040641] [PMID: 33670009]
[9]
Sargazi, S.; Hajinezhad, M.R.; Barani, M.; Rahdar, A.; Shahraki, S.; Karimi, P.; Pandey, S. Synthesis, characterization, toxicity and morphology assessments of newly prepared microemulsion systems for delivery of valproic acid. J. Mol. Liq., 2021, 338, 116625.
[http://dx.doi.org/10.1016/j.molliq.2021.116625]
[10]
Arshad, R.; Tabish, T.A.; Kiani, M.H.; Ibrahim, I.M.; Shahnaz, G.; Rahdar, A.; Kang, M.; Pandey, S. A Hyaluronic acid functionalized Self-Nano-Emulsifying Drug Delivery System (SNEDDS) for enhancement in ciprofloxacin targeted delivery against intracellular infection. Nanomaterials (Basel), 2021, 11(5), 1086.
[http://dx.doi.org/10.3390/nano11051086] [PMID: 33922241]
[11]
Devi, S.; Kumar, M.; Tiwari, A.; Tiwari, V.; Kaushik, D.; Verma, R.; Bhatt, S.; Sahoo, B.M.; Bhattacharya, T.; Alshehri, S.; Ghoneim, M.M.; Babalghith, A.O.; Batiha, G.E-S. Quantum dots: An emerging approach for cancer therapy. Front. Mater., 2022, 8, 798440.
[http://dx.doi.org/10.3389/fmats.2021.798440]
[12]
Khade, S.; Pore, Y. Formulation and evaluation of neusilin US2 adsorbed amorphous solid self-micro emulsifying delivery system of atorvastatin calcium. Asian J. Pharm. Clin. Res., 2016, 9(4), 1-8.
[13]
Chen, L.; Liu, C.S.; Chen, Q.Z.; Wang, S.; Xiong, Y.A.; Jing, J.; Lv, J.J. Characterization, pharmacokinetics and tissue distribution of chlorogenic acid-loaded self-microemulsifying drug delivery system. Eur. J. Pharm. Sci., 2017, 100, 102-108.
[http://dx.doi.org/10.1016/j.ejps.2017.01.011] [PMID: 28089660]
[14]
Kontogiannidou, E.; Meikopoulos, T.; Gika, H.; Panteris, E.; Vizirianakis, I.S.; Müllertz, A.; Fatouros, D.G. In vitro evaluation of self-nano-emulsifying drug delivery systems (SNEDDS) containing Room Temperature Ionic Liquids (RTILs) for the oral delivery of amphotericin B. Pharmaceutics, 2020, 12(8), 699.
[http://dx.doi.org/10.3390/pharmaceutics12080699]
[15]
Gahlawat, N.; Verma, R.; Kaushik, D. Recent developments in self-microemulsifying drug delivery system: An overview. Asian J. Pharm., 2019, 13(2), 59-72.
[16]
Sunitha, R.M.; Sowjanya, N. Formulation and in vitro characterization of solid self nanoemulsifying drug delivery system (s-SNEDDS) of simvastatin. J. Pharm. Sci. Res, 2015, 7(1), 40-48.
[17]
Forgiarini, A.; Esquena, J.; Gonzalez, C.; Solans, C. Formation of nano-emulsions by low-energy emulsification methods at constant temperature. Langmuir, 2001, 17(7), 2076-2083.
[http://dx.doi.org/10.1021/la001362n]
[18]
Wang, L.; Dong, J.; Chen, J.; Eastoe, J.; Li, X. Design and optimization of a new self-nanoemulsifying drug delivery system. J. Colloid Interface Sci., 2009, 330(2), 443-448.
[http://dx.doi.org/10.1016/j.jcis.2008.10.077] [PMID: 19038395]
[19]
Kassem, A.A.; Marzouk, M.A.; Ammar, A.A.; Elosaily, G.H. Preparation and in vitro evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) containing clotrimazole. Drug Discov. Ther., 2010, 4(5), 373-379.
[PMID: 22491242]
[20]
Jeevana, J.B.; Sreelakshmi, K. Design and evaluation of self-nanoemulsifying drug delivery system of flutamide. J. Young Pharm., 2011, 3(1), 4-8.
[http://dx.doi.org/10.4103/0975-1483.76413] [PMID: 21607048]
[21]
Potphode, V.R.; Deshmukh, A.S.; Mahajan, V.R. Self-micro emulsifying drug delivery system: An approach for enhancement of bioavailability of poorly water-soluble drugs. Asian J. Pharm. Tech., 2016, 6(3), 159-168.
[http://dx.doi.org/10.5958/2231-5713.2016.00023.4]
[22]
Date, A.A.; Desai, N.; Dixit, R.; Nagarsenker, M. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine (Lond.), 2010, 5(10), 1595-1616.
[http://dx.doi.org/10.2217/nnm.10.126] [PMID: 21143036]
[23]
Dokania, S.; Joshi, A.K. Self-Microemulsifying Drug Delivery System (SMEDDS)-challenges and road ahead. Drug Deliv., 2015, 22(6), 675-690.
[http://dx.doi.org/10.3109/10717544.2014.896058] [PMID: 24670091]
[24]
Tang, J.L.; Sun, J.; Guihe, Z. Self-emulsifying drug delivery systems: Strategy for improving oral delivery of poorly soluble drug. Curr. Drug Ther., 2007, 2(1), 85-93.
[http://dx.doi.org/10.2174/157488507779422400]
[25]
Bowtle, W. Materials, process, and manufacturing considerations for lipid-based hard- capsule formats. In: Oral Lipid-Based Formulations Enhancing the Bioavailability of Poorly Water-Soluble Drugs;; Hauss, D.J., Ed.; Healthcare: New York, 2007; 170, pp. 79-106.
[26]
Kim, H.J.; Yoon, K.A.; Hahn, M.; Park, E.S.; Chi, S.C. Preparation and in vitro evaluation of self-microemulsifying drug delivery systems containing idebenone. Drug Dev. Ind. Pharm., 2000, 26(5), 523-529.
[http://dx.doi.org/10.1081/DDC-100101263] [PMID: 10789064]
[27]
Zupančič, O.; Leonaviciute, G.; Lam, H.T.; Partenhauser, A.; Podričnik, S.; Bernkop-Schnürch, A. Development and in vitro evaluation of an oral SEDDS for desmopressin. Drug Deliv., 2016, 23(6), 2074-2083.
[http://dx.doi.org/10.3109/10717544.2016.1143056] [PMID: 26923905]
[28]
Kuruvila, F.S.; Mathew, F.; Kuppuswamy, S. Solid Self Nanoemulsifying Drug Delivery System (SNEDDS) development, applications and future perspective: A review. Indo Am J Pharm Sci., 2017, 04(03), 651-669.
[http://dx.doi.org/10.5281/zenodo.495629]
[29]
Boyd, B.J.; Nguyen, T.H.; Mullertz, A. Lipids in oral controlled release drug delivery. In: Controlled release in oral drug delivery; Wilson, C.G.; Crowley, P.J., Eds.; Springer: New York, 2011; pp. 299-321.
[http://dx.doi.org/10.1007/978-1-4614-1004-1_15]
[30]
Girish, C.; Prajapati, S.K.; Chaudhri, N. Self nanoemulsion, advance form of drug delivery system. World J. Pharm. Pharm. Sci., 2014, 3(10), 410-436.
[31]
Rahman, M.A.; Harwansh, R.; Mirza, M.A.; Hussain, S.; Hussain, A. Oral Lipid Based Drug Delivery System (LBDDS): Formulation, characterization and application: A review. Curr. Drug Deliv., 2011, 8(4), 330-345.
[http://dx.doi.org/10.2174/156720111795767906] [PMID: 21453264]
[32]
Makadia, H.A.; Bhatt, A.Y.; Parmar, R.B.; Paun, J.S.; Tank, H.M. Self-Nanoemulsifying Drug Delivery System (SNEDDS): Future aspects. Asian J. Pharm. Res., 2013, 3(1), 20-26.
[33]
Khan, A.W.; Kotta, S.; Ansari, S.H.; Sharma, R.K.; Ali, J. Potentials and challenges in self-nanoemulsifying drug delivery systems. Expert Opin. Drug Deliv., 2012, 9(10), 1305-1317.
[http://dx.doi.org/10.1517/17425247.2012.719870] [PMID: 22954323]
[34]
Ahmed, O.A.A.; El-Bassossy, H.M.; El-Sayed, H.M.; El-Hay, S.S.A. Rp-HPLC determination of quercetin in a novel d-α-tocopherol polyethylene glycol 1000 succinate based SNEDDS formulation: Pharmacokinetics in rat plasma. Molecules, 2021, 26(5), 1435.
[http://dx.doi.org/10.3390/molecules26051435] [PMID: 33800848]
[35]
Bandivadeka, M.M.; Pancholi, S.S.; Kaul-Ghanekar, R.; Choudhari, A.; Koppikar, S. Self-microemulsifying smaller molecular volume oil (Capmul MCM) using non-ionic surfactants: A delivery system for poorly water-soluble drug. Drug Dev. Ind. Pharm., 2012, 38(7), 883-892.
[http://dx.doi.org/10.3109/03639045.2011.631548] [PMID: 22087760]
[36]
Verma, R.; Mittal, V.; Kaushik, D. Self-microemulsifying drug delivery system: A vital approach for bioavailability enhancement. Int. J. Chemtech Res., 2017, 10(7), 515-528.
[37]
Akiladevi, D.; Prakash, H.; Biju, G.B.; Madumitha, N. Nano-novel approach: Self-nanoemulsifying drug delivery system-review. Res. J. Pharm. Tech., 2020, 13(2), 983-990.
[http://dx.doi.org/10.5958/0974-360X.2020.00183.3]
[38]
Singh, B.; Sharma, T.; Saini, S.; Kaur, R.; Jain, A.; Raza, K.; Beg, S. Systematic development of drug nanocargos using formulation by design (FbD): An updated overview. Crit. Rev. Ther. Drug Carrier Syst., 2020, 37(3), 229-269.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2020032040] [PMID: 32749139]
[39]
Chowdary, K.P.; Prakasa, R.K. Formulation development of etoricoxib tablets employing HP β cyclodextrin-poloxamer 407-PVP K30: A factorial study. Asian J. Pharm. Clin. Res., 2012, 5, 161-174.
[40]
Sharma, M.; Sharma, G.; Singh, B.; Katare, O.P. Systematically optimized imiquimod-loaded novel hybrid vesicles by employing Design of Experiment (DoE) approach with improved biocompatibility, stability, and dermatokinetic profile. AAPS PharmSciTech, 2019, 20(4), 156.
[http://dx.doi.org/10.1208/s12249-019-1331-1] [PMID: 30927154]
[41]
Beg, S.; Sandhu, P.S.; Batra, R.S.; Khurana, R.K.; Singh, B. QbD-based systematic development of novel optimized solid self-nanoemulsifying drug delivery systems (SNEDDS) of lovastatin with enhanced biopharmaceutical performance. Drug Deliv., 2015, 22(6), 765-784.
[http://dx.doi.org/10.3109/10717544.2014.900154] [PMID: 24673611]
[42]
Parmar, K.; Patel, J.; Sheth, N. Self nano-emulsifying drug delivery system for embelin: Design, characterization and in vitro studies. Asian J. Pharm. Sci., 2015, 10(5), 396-404.
[http://dx.doi.org/10.1016/j.ajps.2015.04.006]
[43]
Villar, A.M.; Naveros, B.C.; Campmany, A.C.; Trenchs, M.A.; Rocabert, C.B.; Bellowa, L.H. Design and optimization of Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) for enhanced dissolution of gemfibrozil. Int. J. Pharm., 2012, 431(1-2), 161-175.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.001] [PMID: 22498011]
[44]
Garg, V.; Kaur, P.; Singh, S.K.; Kumar, B.; Bawa, P.; Gulati, M.; Yadav, A.K. Solid self-nanoemulsifying drug delivery systems for oral delivery of polypeptide-k: Formulation, optimization, in vitro and in vivo antidiabetic evaluation. Eur. J. Pharm. Sci., 2017, 109, 297-315.
[http://dx.doi.org/10.1016/j.ejps.2017.08.022] [PMID: 28842349]
[45]
Dash, R.N.; Mohammed, H.; Humaira, T.; Ramesh, D. Design, optimization and evaluation of glipizide solid self-nanoemulsifying drug delivery for enhanced solubility and dissolution. Saudi Pharm. J., 2015, 23(5), 528-540.
[http://dx.doi.org/10.1016/j.jsps.2015.01.024] [PMID: 26594119]
[46]
Singh, G.; Pai, R.S. Optimized self-nanoemulsifying drug delivery system of atazanavir with enhanced oral bioavailability: In vitro/in vivo characterization. Expert Opin. Drug Deliv., 2014, 11(7), 1023-1032.
[http://dx.doi.org/10.1517/17425247.2014.913566] [PMID: 24820316]
[47]
Bandyopadhyay, S.; Katare, O.P.; Singh, B. Optimized self nano-emulsifying systems of ezetimibe with enhanced bioavailability potential using long chain and medium chain triglycerides. Colloids Surf. B Biointerfaces, 2012, 100, 50-61.
[http://dx.doi.org/10.1016/j.colsurfb.2012.05.019] [PMID: 22766282]
[48]
Singh, B.; Khurana, L.; Bandyopadhyay, S.; Kapil, R.; Katare, O.O. Development of optimized Self-Nano-Emulsifying Drug Delivery Systems (SNEDDS) of carvedilol with enhanced bioavailability potential. Drug Deliv., 2011, 18(8), 599-612.
[http://dx.doi.org/10.3109/10717544.2011.604686] [PMID: 22008038]
[49]
Sharma, G.; Beg, S.; Thanki, K.; Katare, O.P.; Jain, S.; Kohli, K.; Singh, B. Systematic development of novel cationic self-nanoemulsifying drug delivery systems of candesartan cilexetil with enhanced biopharmaceutical performance. RSC Advances, 2015, 5(87), 71500-71513.
[http://dx.doi.org/10.1039/C5RA11687B]
[50]
Verma, R.; Kaushik, D. Design and optimization of candesartan loaded self-nanoemulsifying drug delivery system for improving its dissolution rate and pharmacodynamic potential. Drug Deliv., 2020, 27(1), 756-771.
[http://dx.doi.org/10.1080/10717544.2020.1760961] [PMID: 32397771]
[51]
Kamboj, S.; Rana, V. Quality-by-design based development of a self-microemulsifying drug delivery system to reduce the effect of food on Nelfinavir mesylate. Int. J. Pharm., 2016, 501(1-2), 311-325.
[http://dx.doi.org/10.1016/j.ijpharm.2016.02.008] [PMID: 26854426]
[52]
Beg, S.; Katare, O.P.; Singh, B. Formulation by design approach for development of ultrafine self-nanoemulsifying systems of rosuvastatin calcium containing long-chain lipophiles for hyperlipidemia management. Colloids Surf. B Biointerfaces, 2017, 159, 869-879.
[http://dx.doi.org/10.1016/j.colsurfb.2017.08.050] [PMID: 28892871]
[53]
Garg, B.; Katare, O.P.; Beg, S.; Lohan, S.; Singh, B. Systematic development of Solid Self-Nanoemulsifying Oily Formulations (S-SNEOFs) for enhancing the oral bioavailability and intestinal lymphatic uptake of lopinavir. Colloids Surf. B Biointerfaces, 2016, 141, 611-622.
[http://dx.doi.org/10.1016/j.colsurfb.2016.02.012] [PMID: 26916320]
[54]
Alhakamy, N.A.; Fahmy, U.A.; Ahmed, O.A.A.; Almohammadi, E.A.; Alotaibi, S.A.; Aljohani, R.A.; Alharbi, W.S.; Alfaleh, M.A.; Alfaifi, M.Y. Development of an optimized febuxostat self-nanoemulsified loaded transdermal film: In vitro, ex vivo and in vivo evaluation. Pharm. Dev. Technol., 2020, 25(3), 326-331.
[http://dx.doi.org/10.1080/10837450.2019.1700520] [PMID: 31794286]
[55]
Arun, J.K.; Vodeti, R.; Shrivastava, B.; Bakshi, V. Integrated quality by design approach for developing nanolipidic drug delivery systems of olmesartan medoxomil with enhanced antihypertensive action. Adv. Pharm. Bull., 2020, 10(3), 379-388.
[http://dx.doi.org/10.34172/apb.2020.046] [PMID: 32665896]
[56]
Rasoanirina, B.N.V.; Lassoued, M.A.; Kamoun, A.; Bahloul, B.; Miladi, K.; Sfar, S. Voriconazole-loaded Self-Nanoemulsifying Drug Delivery System (SNEDDS) to improve transcorneal permeability. Pharm. Dev. Technol., 2020, 25(6), 694-703.
[http://dx.doi.org/10.1080/10837450.2020.1731532] [PMID: 32064993]
[57]
Reddy, K.; Dang, R.; Kunchithapatham, K. QbD based development of self micro emulsifying drug delivery system of darunavir. Proceedings of International Conference on Drug Discovery (ICDD) 2020., 2020. SSRN, Available at: https://ssrn.com/abstract=3532407
[58]
Hosny, K.M.; Aldawsari, H.M.; Bahmdan, R.H.; Sindi, A.M.; Kurakula, M.; Alrobaian, M.M.; Aldryhim, A.Y.; Alkhalidi, H.M.; Bahmdan, H.H.; Khallaf, R.A.; El Sisi, A.M. Preparation, optimization, and evaluation of hyaluronic acid-based hydrogel loaded with miconazole self-nanoemulsion for the treatment of oral thrush. AAPS PharmSciTech, 2019, 20(7), 297.
[http://dx.doi.org/10.1208/s12249-019-1496-7] [PMID: 31444661]
[59]
Kuncahyo, I.; Choiri, S.; Fudholi, A.; Martien, R.; Rohman, A. Assessment of fractional factorial design for the selection and screening of appropriate components of a self-nanoemulsifying drug delivery system formulation. Adv. Pharm. Bull., 2019, 9(4), 609-618.
[http://dx.doi.org/10.15171/apb.2019.070] [PMID: 31857965]
[60]
Hashem, F.M.; Al-Sawahli, M.M.; Nasr, M.; Ahmed, O.A. Custom fractional factorial designs to develop atorvastatin self-nanoemulsifying and nanosuspension delivery systems- enhancement of oral bioavailability. Drug Des. Dev. Ther., 2015, 9, 3141-3152.
[http://dx.doi.org/10.2147/DDDT.S86126]
[61]
Alshehri, S.; Imam, S.S.; Hussain, A.; Alyousef, A.M.; Altamimi, M.; Alsulays, B.; Shakeel, F. Flufenamic acid-loaded self-nanoemulsifying drug delivery system for oral delivery: From formulation statistical optimization to preclinical anti-inflammatory assessment. J. Oleo Sci., 2020, 69(10), 1257-1271.
[http://dx.doi.org/10.5650/jos.ess20070] [PMID: 32908093]
[62]
Jianxian, C.; Saleem, K.; Ijaz, M.; Ur-Rehman, M.; Murtaza, G.; Asim, M.H. Development and in vitro evaluation of gastro-protective aceclofenac-loaded self-emulsifying drug delivery system. Int. J. Nanomedicine, 2020, 15, 5217-5226.
[http://dx.doi.org/10.2147/IJN.S250242] [PMID: 32801687]
[63]
Dahan, A.; Hoffman, A. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. J. Control. Release, 2008, 129(1), 1-10.
[http://dx.doi.org/10.1016/j.jconrel.2008.03.021] [PMID: 18499294]
[64]
Patton, J.S.; Carey, M.C. Inhibition of human pancreatic lipase-colipase activity by mixed bile salt-phospholipid micelles. Am. J. Physiol., 1981, 241(4), G328-G336.
[http://dx.doi.org/10.1152/ajpgi.1981.241.4.G328] [PMID: 7315970]
[65]
Dahan, A.; Hoffman, A. Use of a dynamic in vitro lipolysis model to rationalize oral formulation development for poor water soluble drugs: Correlation with in vivo data and the relationship to intra-enterocyte processes in rats. Pharm. Res., 2006, 23(9), 2165-2174.
[http://dx.doi.org/10.1007/s11095-006-9054-x] [PMID: 16902814]
[66]
Li, Y.; McClements, D.J. New mathematical model for interpreting pH-stat digestion profiles: Impact of lipid droplet characteristics on in vitro digestibility. J. Agric. Food Chem., 2010, 58(13), 8085-8092.
[http://dx.doi.org/10.1021/jf101325m] [PMID: 20557040]
[67]
Zangenberg, N.H.; Müllertz, A.; Kristensen, H.G.; Hovgaard, L. A dynamic in vitro lipolysis model. I. Controlling the rate of lipolysis by continuous addition of calcium. Eur. J. Pharm. Sci., 2001, 14(2), 115-122.
[http://dx.doi.org/10.1016/S0928-0987(01)00169-5] [PMID: 11500257]
[68]
Cuiné, J.F.; McEvoy, C.L.; Charman, W.N.; Pouton, C.W.; Edwards, G.A.; Benameur, H.; Porter, C.J. Evaluation of the impact of surfactant digestion on the bioavailability of danazol after oral administration of lipidic self-emulsifying formulations to dogs. J. Pharm. Sci., 2008, 97(2), 995-1012.
[http://dx.doi.org/10.1002/jps.21246] [PMID: 18064698]
[69]
Ali, H.; Nazzal, M.; Zaghloul, A.A.; Nazzal, S. Comparison between lipolysis and compendial dissolution as alternative techniques for the in vitro characterization of alpha-tocopherol Self-Emulsified Drug Delivery Systems (SEDDS). Int. J. Pharm., 2008, 352(1-2), 104-114.
[http://dx.doi.org/10.1016/j.ijpharm.2007.10.023] [PMID: 18065173]
[70]
Han, S.F.; Yao, T.T.; Zhang, X.X.; Gan, L.; Zhu, C.; Yu, H.Z.; Gan, Y. Lipid-based formulations to enhance oral bioavailability of the poorly water-soluble drug anethol trithione: Effects of lipid composition and formulation. Int. J. Pharm., 2009, 379(1), 18-24.
[http://dx.doi.org/10.1016/j.ijpharm.2009.06.001] [PMID: 19508887]
[71]
Verma, R.; Mittal, V.; Kaushik, D. Quality based design approach for improving oral bioavailability of valsartan loaded SMEDDS and study of impact of lipolysis on the drug diffusion. Drug Deliv. Lett., 2018, 8(2), 130-139.
[http://dx.doi.org/10.2174/2210303108666180313141956]
[72]
Thomas, N.; Richter, K.; Pedersen, T.B.; Holm, R.; Müllertz, A.; Rades, T. In vitro lipolysis data does not adequately predict the in vivo performance of lipid-based drug delivery systems containing fenofibrate. AAPS J., 2014, 16(3), 539-549.
[http://dx.doi.org/10.1208/s12248-014-9589-4] [PMID: 24687210]
[73]
Mohsin, K.; Long, M.A.; Pouton, C.W. Design of lipid-based formulations for oral administration of poorly water-soluble drugs: Precipitation of drug after dispersion of formulations in aqueous solution. J. Pharm. Sci., 2009, 98(10), 3582-3595.
[http://dx.doi.org/10.1002/jps.21659] [PMID: 19130605]
[74]
Patel, J.R.; Barve, K.H. Intestinal permeability of Lamivudine using single pass intestinal perfusion. Indian J. Pharm. Sci., 2012, 74(5), 478-481.
[http://dx.doi.org/10.4103/0250-474X.108441] [PMID: 23716881]
[75]
Verma, R.; Kaushik, A.; Almeer, R.; Rahman, M.H.; Abdel-Daim, M.M.; Kaushik, D. Improved pharmacodynamic potential of rosuvastatin by self-nanoemulsifying drug delivery system: An in vitro and in vivo evaluation. Int. J. Nanomedicine, 2021, 16, 905-924.
[http://dx.doi.org/10.2147/IJN.S287665] [PMID: 33603359]
[76]
Abdelmonem, R.; Azer, M.S.; Makky, A.; Zaghloul, A.; El-Nabarawi, M.; Nada, A. Development, characterization, and in vivo pharmacokinetic study of lamotrigine solid self-nanoemulsifying drug delivery system. Drug Des. Devel. Ther., 2020, 14, 4343-4362.
[http://dx.doi.org/10.2147/DDDT.S263898] [PMID: 33116420]
[77]
Kazi, M.; Alhajri, A.; Alshehri, S.M.; Elzayat, E.M.; Al Meanazel, O.T.; Shakeel, F.; Noman, O.; Altamimi, M.A.; Alanazi, F.K. Enhancing oral bioavailability of apigenin using a bioactive Self-Nanoemulsifying Drug Delivery System (Bio-SNEDDS): In vitro, in vivo and stability evaluations. Pharmaceutics, 2020, 12(8), 749.
[http://dx.doi.org/10.3390/pharmaceutics12080749] [PMID: 32785007]
[78]
Zech, J.; Gold, D.; Salaymeh, N.; Sasson, N.C.; Rabinowitch, I.; Golenser, J.; Mäder, K. Oral administration of artemisone for the treatment of schistosomiasis: Formulation challenges and in vivo efficacy. Pharmaceutics, 2020, 12(6), 509.
[http://dx.doi.org/10.3390/pharmaceutics12060509] [PMID: 32503130]
[79]
Shailendrakumar, A.M.; Ghate, V.M.; Kinra, M.; Lewis, S.A. Improved oral pharmacokinetics of pentoxifylline with palm oil and capmul® MCM containing self-nano-emulsifying drug delivery system. AAPS PharmSciTech, 2020, 21(4), 118.
[http://dx.doi.org/10.1208/s12249-020-01644-w] [PMID: 32318890]
[80]
Kim, Y.H.; Kim, Y.C.; Jang, D.J.; Min, K.A.; Karmacharya, J.; Nguyen, T.T.; Maeng, H.J.; Cho, K.H. Development of 20(S)-protopanaxadiol-loaded SNEDDS preconcentrate using comprehensive phase diagram for the enhanced dissolution and oral bioavailability. Pharmaceutics, 2020, 12(4), 362.
[http://dx.doi.org/10.3390/pharmaceutics12040362] [PMID: 32326560]
[81]
Bang, S.P.; Yeon, C.Y.; Adhikari, N.; Neupane, S.; Kim, H.; Lee, D.C.; Son, M.J.; Lee, H.G.; Kim, J.Y.; Jun, J.H. Cyclosporine A eyedrops with self-nanoemulsifying drug delivery systems have improved physicochemical properties and efficacy against dry eye disease in a murine dry eye model. PLoS One, 2019, 14(11), e0224805.
[http://dx.doi.org/10.1371/journal.pone.0224805] [PMID: 31738791]
[82]
Hosny, K.M. Development of saquinavir mesylate nanoemulsion-loaded transdermal films: Two-step optimization of permeation parameters, characterization, and ex vivo and in vivo evaluation. Int. J. Nanomedicine, 2019, 14, 8589-8601.
[http://dx.doi.org/10.2147/IJN.S230747] [PMID: 31802871]
[83]
Chen, X.L.; Liang, X.L.; Zhao, G.W.; Zeng, Q.Y.; Dong, W.; Ou, L.Q.; Zhang, H.N.; Jiang, Q.Y.; Liao, Z.G. Improvement of the bioavailability of curcumin by a supersaturatable self nanoemulsifying drug delivery system with incorporation of a hydrophilic polymer: In vitro and in vivo characterisation. J. Pharm. Pharmacol., 2021, 73(5), 641-652.
[http://dx.doi.org/10.1093/jpp/rgaa073] [PMID: 33772289]
[84]
Michaelsen, M.H.; Siqueira Jørgensen, S.D.; Abdi, I.M.; Wasan, K.M.; Rades, T.; Müllertz, A. Fenofibrate oral absorption from SNEDDS and super-SNEDDS is not significantly affected by lipase inhibition in rats. Eur. J. Pharm. Biopharm., 2019, 142, 258-264.
[http://dx.doi.org/10.1016/j.ejpb.2019.07.002] [PMID: 31276759]
[85]
Baloch, J.; Sohail, M.F.; Sarwar, H.S.; Kiani, M.H.; Khan, G.M.; Jahan, S.; Rafay, M.; Chaudhry, M.T.; Yasinzai, M.; Shahnaz, G. Self-Nanoemulsifying Drug Delivery System (SNEDDS) for improved oral bioavailability of chlorpromazine: In vitro and in vivo evaluation. Medicina (Kaunas), 2019, 55(5), 210.
[http://dx.doi.org/10.3390/medicina55050210] [PMID: 31137751]
[86]
Khalid, N.; Sarfraz, M.; Arafat, M.; Akhtar, M.; Löbenberg, R.; Ur Rehman, N. Nano-sized droplets of self-emulsifying system for enhancing oral bioavailability of chemotherapeutic agent VP-16 in rats: A nano lipid carrier for BCS class IV drugs. J. Pharm. Pharm. Sci., 2018, 21(1), 398-408.
[http://dx.doi.org/10.18433/jpps30097] [PMID: 30365396]
[87]
Elsheikh, M.A.; Elnaggar, Y.S.; Gohar, E.Y.; Abdallah, O.Y. Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: O ptimization and in vivo appraisal. Int. J. Nanomedicine, 2012, 7, 3787-3802.
[http://dx.doi.org/10.2147/IJN.S33186] [PMID: 22888234]
[88]
Tripathi, S.; Kushwah, V.; Thanki, K.; Jain, S. Triple antioxidant SNEDDS formulation with enhanced oral bioavailability: Implication of chemoprevention of breast cancer. Nanomedicine , 2016, 12(6), 1431-1443.
[http://dx.doi.org/10.1016/j.nano.2016.03.003] [PMID: 27033463]
[89]
Okonogi, S.; Phumat, P.; Khongkhunthian, S.; Chaijareenont, P.; Rades, T.; Müllertz, A. Development of self-nanoemulsifying drug delivery systems containing 4-allylpyrocatechol for treatment of oral infections caused by Candida albicans. Pharmaceutics, 2021, 13(2), 167.
[http://dx.doi.org/10.3390/pharmaceutics13020167]
[90]
Thanki, K.; Date, T.; Jain, S. Enabling oral amphotericin B delivery by merging the benefits of prodrug approach and nanocarriermediated drug delivery ACS Biomater. Sci. Eng.,, 2021. acsbiomaterials.0c01505. [Online ahead of Print
[http://dx.doi.org/10.1021/acsbiomaterials.0c01505] [PMID: 33587853]
[91]
Kazi, M.; Al-Swairi, M.; Ahmad, A.; Raish, M.; Alanazi, F.K.; Badran, M.M.; Khan, A.A.; Alanazi, A.M.; Hussain, M.D. Evaluation of Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) for poorly water-soluble talinolol: Preparation, in vitro and in vivo assessment. Front. Pharmacol., 2019, 10, 459.
[http://dx.doi.org/10.3389/fphar.2019.00459]
[92]
Hosny, K.M.; Sindi, A.M.; Alkhalidi, H.M.; Kurakula, M.; Alruwaili, N.K.; Alhakamy, N.A.; Abualsunun, W.A.; Bakhaidar, R.B.; Bahmdan, R.H.; Rizg, W.Y.; Ali, S.A.; Abdulaal, W.H.; Nassar, M.S.; Alsuabeyl, M.S.; Alghaith, A.F.; Alshehri, S. Oral gel loaded with penciclovir-lavender oil nanoemulsion to enhance bioavailability and alleviate pain associated with herpes labialis. Drug Deliv., 2021, 28(1), 1043-1054.
[http://dx.doi.org/10.1080/10717544.2021.1931561] [PMID: 34060397]
[93]
Yanfei, M.; Guoguang, C.; Lili, R.; Pingkai, O. Controlled release of glaucocalyxin - a self-nanoemulsifying system from osmotic pump tablets with enhanced bioavailability. Pharm. Dev. Technol., 2017, 22(2), 148-155.
[http://dx.doi.org/10.3109/10837450.2015.1089901] [PMID: 26400477]
[94]
Patel, P.; Pailla, S.R.; Rangaraj, N.; Cheruvu, H.S.; Dodoala, S.; Sampathi, S. Quality by design approach for developing lipid-based nanoformulations of gliclazide to improve oral bioavailability and anti-diabetic activity. AAPS PharmSciTech, 2019, 20(2), 45.
[http://dx.doi.org/10.1208/s12249-018-1214-x]
[95]
Miao, Y.; Chen, G.; Ren, L.; Pingkai, O. Characterization and evaluation of self-nanoemulsifying sustained-release pellet formulation of ziprasidone with enhanced bioavailability and no food effect. Drug Deliv., 2016, 23(7), 2163-2172.
[http://dx.doi.org/10.3109/10717544.2014.950768] [PMID: 25148542]
[96]
Abbaspour, M.; Jalayer, N.; Sharif Makhmalzadeh, B. Development and evaluation of a solid self-nanoemulsifying drug delivery system for loratadin by extrusion-spheronization. Adv. Pharm. Bull., 2014, 4(2), 113-119.
[http://dx.doi.org/10.5681/apb.2014.018] [PMID: 24511474]
[97]
Desai, N.S.; Nagarsenker, M.S. Design and evaluation of self-nanoemulsifying pellets of repaglinide. AAPS PharmSciTech, 2013, 14(3), 994-1003.
[http://dx.doi.org/10.1208/s12249-013-9990-9] [PMID: 23775389]
[98]
Lei, Y.; Qi, J.; Nie, S.; Hu, F.; Pan, W.; Lu, Y.; Wu, W. Solid self-nanoemulsifying cyclosporine A pellets prepared by fluid-bed coating: Stability and bioavailability study. J. Biomed. Nanotechnol., 2012, 8(3), 515-521.
[http://dx.doi.org/10.1166/jbn.2012.1400] [PMID: 22764422]
[99]
Kong, M.; Chen, X.G.; Kweon, D.K.; Park, H.J. Investigations on skin permeation of hyaluronic acid based nanoemulsion as transdermal carrier. Carbohydr. Polym., 2011, 86(2), 837-843.
[http://dx.doi.org/10.1016/j.carbpol.2011.05.027]
[100]
Badran, M.M.; Taha, E.I.; Tayel, M.M.; Al-Suwayeh, S.A. Ultra-fine self nanoemulsifying drug delivery system for transdermal delivery of meloxicam, dependency on the type of surfactants. J. Mol. Liq., 2014, 190, 16-22.
[http://dx.doi.org/10.1016/j.molliq.2013.10.015]
[101]
Van Staden, D.; du Plessis, J.; Viljoen, J. Development of a self-emulsifying drug delivery system for optimized topical delivery of clofazimine. Pharmaceutics, 2020, 12(6), 523.
[102]
Khan, M.; Ali, M.; Shah, W.; Shah, A.; Yasinzai, M.M. Curcumin-loaded Self-Emulsifying Drug Delivery System (cu-SEDDS): A promising approach for the control of primary pathogen and secondary bacterial infections in cutaneous leishmaniasis. Appl. Microbiol. Biotechnol., 2019, 103(18), 7481-7490.
[http://dx.doi.org/10.1007/s00253-019-09990-x] [PMID: 31300853]
[103]
Ponto, T.; Latter, G.; Luna, G.; Leite-Silva, V.R.; Wright, A.; Benson, H.A.E. Novel self-nano-emulsifying drug delivery systems containing astaxanthin for topical skin delivery. Pharmaceutics, 2021, 13(5), 649.
[http://dx.doi.org/10.3390/pharmaceutics13050649] [PMID: 34063593]
[104]
Borhade, V.B.; Nair, H.A.; Hegde, D.D. Development and characterization of self-microemulsifying drug delivery system of tacrolimus for intravenous administration. Drug Dev. Ind. Pharm., 2009, 35(5), 619-630.
[http://dx.doi.org/10.1080/03639040802498856] [PMID: 18979309]
[105]
Kalhapure, R.S.; Akamanchi, K.G. Oleic acid based heterolipid synthesis, characterization and application in self-microemulsifying drug delivery system. Int. J. Pharm., 2012, 425(1-2), 9-18.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.004] [PMID: 22266534]
[106]
Arshad, R.; Tabish, T.A.; Kiani, M.H.; Ibrahim, I.M.; Shahnaz, G.; Rahdar, A.; Kang, M.; Pandey, S. A hyaluronic acid functionalized Self-Nano-Emulsifying Drug Delivery System (SNEDDS) for enhancement in ciprofloxacin targeted delivery against intracellular infection. Nanomaterials (Basel), 2021, 11(5), 1086.
[http://dx.doi.org/10.3390/nano11051086]
[107]
Okonogi, S.; Phumat, P.; Khongkhunthian, S.; Chaijareenont, P.; Rades, T.; Müllertz, A. Development of self-nanoemulsifying drug delivery systems containing 4-allylpyrocatechol for treatment of oral infections caused by Candida albicans. Pharmaceutics, 2021, 13(2), 167.
[http://dx.doi.org/10.3390/pharmaceutics13020167] [PMID: 33513803]
[108]
Akhtartavan, S.; Karimi, M.; Karimian, K.; Azarpira, N.; Khatami, M.; Heli, H. Evaluation of a self-nanoemulsifying docetaxel delivery system. Biomed. Pharmacother., 2019, 109, 2427-2433.
[http://dx.doi.org/10.1016/j.biopha.2018.11.110] [PMID: 30551502]
[109]
Bhagwat, D.A.; Swami, P.A.; Nadaf, S.J.; Choudhari, P.B.; Kumbar, V.M.; More, H.N.; Killedar, S.G.; Kawtikwar, P.S. Capsaicin loaded solid SNEDDS for enhanced bioavailability and anticancer activity: In vitro, in silico, and in vivo characterization. J. Pharm. Sci., 2021, 110(1), 280-291.
[http://dx.doi.org/10.1016/j.xphs.2020.10.020] [PMID: 33069713]
[110]
Nottingham, E.; Sekar, V.; Mondal, A.; Safe, S.; Rishi, A.K.; Singh, M. The role of self-nanoemulsifying drug delivery systems of CDODA-me in sensitizing erlotinib-resistant non-small cell lung cancer. J. Pharm. Sci., 2020, 109(6), 1867-1882.
[http://dx.doi.org/10.1016/j.xphs.2020.01.010] [PMID: 31954111]
[111]
Tokuokas, Y.; Uchiyama, H.; Abe, M.; Christian, S.D. Solubilization of some synthetic perfumes by anionic-nonionic mixed surfactant systems. Langmuir, 1995, 11, 725.
[http://dx.doi.org/10.1021/la00003a010]
[112]
Sezer, A.D. Application of Nanotechnology in Drug Delivery IntechOpen London, 2014. Available from https://www.intechopen. com/books/3828
[113]
Buya, A.B.; Beloqui, A.; Memvanga, P.B.; Préat, V. Self-nano-emulsifying drug-delivery systems: From the development to the current applications and challenges in oral drug delivery. Pharmaceutics, 2020, 12(12), 1194.
[http://dx.doi.org/10.3390/pharmaceutics12121194] [PMID: 33317067]
[114]
Chouhan, N.; Mittal, V.; Kaushik, D.; Khatkar, A.; Raina, M. Self Emulsifying Drug Delivery System (SEDDS) for phytoconstituents: A review. Curr. Drug Deliv., 2015, 12(2), 244-253.
[http://dx.doi.org/10.2174/1567201811666141021142606] [PMID: 25335929]
[115]
Yin, H.F.; Yin, C.M.; Ouyang, T.; Sun, S.D.; Chen, W.G.; Yang, X.L.; He, X.; Zhang, C.F. Self-nanoemulsifying drug delivery system of genkwanin: A novel approach for anti-colitis-associated colorectal cancer. Drug Des. Devel. Ther., 2021, 15, 557-576.
[http://dx.doi.org/10.2147/DDDT.S292417] [PMID: 33603345]
[116]
Ke, Z.; Hou, X.; Jia, X.B. Design and optimization of self-nanoemulsifying drug delivery systems for improved bioavailability of cyclovirobuxine D. Drug Des. Devel. Ther., 2016, 10, 2049-2060.
[http://dx.doi.org/10.2147/DDDT.S106356] [PMID: 27418807]
[117]
Xi, J.; Chang, Q.; Chan, C.K.; Meng, Z.Y.; Wang, G.N.; Sun, J.B.; Wang, Y.T.; Tong, H.H.; Zheng, Y. Formulation development and bioavailability evaluation of a self-nanoemulsified drug delivery system of oleanolic acid. AAPS PharmSciTech, 2009, 10(1), 172-182.
[http://dx.doi.org/10.1208/s12249-009-9190-9] [PMID: 19224372]
[118]
Almehmady, A.M.; Ali, S.A. Transdermal film loaded with garlic oil-acyclovir nanoemulsion to overcome barriers for its use in alleviating cold sore conditions. Pharmaceutics, 2021, 13(5), 669.
[http://dx.doi.org/10.3390/pharmaceutics13050669] [PMID: 34066923]
[119]
Radwan, M.F.; El-Moselhy, M.A.; Alarif, W.M.; Orif, M.; Alruwaili, N.K.; Alhakamy, N.A. Optimization of thymoquinone-loaded self-nanoemulsion for management of indomethacin-induced ulcer. Dose Response, 2021, 19(2), 15593258211013655.
[http://dx.doi.org/10.1177/15593258211013655] [PMID: 33994890]
[120]
Khumpirapang, N.; von Gersdorff Jørgensen, L.; Müllertz, A.; Rades, T.; Okonogi, S. Formulation optimization, anesthetic activity, skin permeation, and transportation pathway of Alpinia galanga oil SNEDDS in zebrafish (Danio rerio). Eur. J. Pharm. Biopharm., 2021, 165, 193-202.
[http://dx.doi.org/10.1016/j.ejpb.2021.04.022] [PMID: 33979660]
[121]
Singh, A.V.; Chandrasekar, V.; Janapareddy, P.; Mathews, D.E.; Laux, P.; Luch, A.; Yang, Y.; Garcia-Canibano, B.; Balakrishnan, S.; Abinahed, J.; Al Ansari, A.; Dakua, S.P. Emerging application of nanorobotics and artificial intelligence to cross the BBB: Advances in design, controlled maneuvering, and targeting of the barriers. ACS Chem. Neurosci., 2021, 12(11), 1835-1853.
[http://dx.doi.org/10.1021/acschemneuro.1c00087] [PMID: 34008957]
[122]
Badr-Eldin, S.M.; Fahmy, U.A.; Aldawsari, H.M.; Ahmed, O.A.A.; Alhakamy, N.A.; Okbazghi, S.Z.; El-Moselhy, M.A.; Alghaith, A.F.; Anter, A.; Matouk, A.I.; Mahdi, W.A.; Alshehri, S.; Bakhaidar, R. Optimized self-nanoemulsifying delivery system based on plant-derived oil augments alpha-lipoic acid protective effects against experimentally induced gastric lesions. Dose Response, 2021, 19(1), 15593258211001259.
[http://dx.doi.org/10.1177/15593258211001259] [PMID: 33867893]
[123]
Eid, B.G.; Abdel-Naim, A.B. Piceatannol attenuates testosterone-induced benign prostatic hyperplasia in rats by modulation of Nrf2/HO-1/NFκB axis. Front. Pharmacol., 2020, 11, 614897.
[http://dx.doi.org/10.3389/fphar.2020.614897] [PMID: 33519479]
[124]
Koshak, A.E.; Algandaby, M.M.; Mujallid, M.I.; Abdel-Naim, A.B.; Alhakamy, N.A.; Fahmy, U.A.; Alfarsi, A.; Badr-Eldin, S.M.; Neamatallah, T.; Nasrullah, M.Z.M.; Abdallah, H.; Esmat, A. Wound healing activity of Opuntia ficus-indica fixed oil formulated in a self-nanoemulsifying formulation. Int. J. Nanomedicine, 2021, 16, 3889-3905.
[http://dx.doi.org/10.2147/IJN.S299696] [PMID: 34135583]
[125]
Annisa, R.; Yuwono, M.; Hendradi, E. Formulation and characterization of Eleutherine palmifolia extract-loaded Self-Nanoemulsifying Drug Delivery System (SNEDDS). J. Basic Clin. Physiol. Pharmacol., 2021, 32(4), 859-865.
[http://dx.doi.org/10.1515/jbcpp-2020-0400] [PMID: 34214309]
[126]
Zhong, R.N.; Wang, X.H.; Wan, L.; Shen, C.Y.; Shen, B.D.; Wang, J.; Han, L.; Yuan, H.L. Study on preparation of volatile oil from Acorus tatarinowii self-nanoemulsion dropping pills and its protective effect on acute myocardial ischemia injury. Zhongguo Zhongyao Zazhi, 2019, 44(7), 1357-1362.
[http://dx.doi.org/10.19540/j.cnki.cjcmm.20181220.006] [PMID: 31090292]
[127]
Shahba, A.A.; Tashish, A.Y.; Alanazi, F.K.; Kazi, M. Combined self-nanoemulsifying and solid dispersion systems showed enhanced cinnarizine release in hypochlorhydria/achlorhydria dissolution model. Pharmaceutics, 2021, 13(5), 627.
[http://dx.doi.org/10.3390/pharmaceutics13050627] [PMID: 33924928]
[128]
Qiu, X.L.; Fan, Z.R.; Liu, Y.Y.; Wang, D.F.; Wang, S.X.; Li, C.X. Preparation and evaluation of a self-nanoemulsifying drug delivery system loaded with heparin phospholipid complex. Int. J. Mol. Sci., 2021, 22(8), 4077.
[http://dx.doi.org/10.3390/ijms22084077] [PMID: 33920853]
[129]
Okawa, S.; Sumimoto, Y.; Masuda, K.; Ogawara, K.I.; Maruyama, M.; Higaki, K. Improvement of lipid solubility and oral bioavailability of a poorly water- and poorly lipid-soluble drug, rebamipide, by utilizing its counter ion and SNEDDS preparation. Eur. J. Pharm. Sci., 2021, 159, 105721.
[http://dx.doi.org/10.1016/j.ejps.2021.105721] [PMID: 33482317]
[130]
Saifullah, S.; Kanwal, T.; Ullah, S.; Kawish, M.; Habib, S.M.; Ali, I.; Munir, A.; Imran, M.; Shah, M.R. Design and development of lipid modified chitosan containing muco-adhesive self-emulsifying drug delivery systems for cefixime oral delivery. Chem. Phys. Lipids, 2021, 235, 105052.
[http://dx.doi.org/10.1016/j.chemphyslip.2021.105052] [PMID: 33482099]
[131]
Zhao, T.; Maniglio, D.; Chen, J.; Chen, B.; Migliaresi, C. Development of pH-sensitive self-nanoemulsifying drug delivery systems for acid-labile lipophilic drugs. Chem. Phys. Lipids, 2016, 196, 81-88.
[http://dx.doi.org/10.1016/j.chemphyslip.2016.02.008] [PMID: 26923270]
[132]
Shahba, A.A.; Ahmed, A.R.; Alanazi, F.K.; Mohsin, K.; Abdel-Rahman, S.I. Multi-layer self-nanoemulsifying pellets: An innovative drug delivery system for the poorly water-soluble drug cinnarizine. AAPS PharmSciTech, 2018, 19(5), 2087-2102.
[http://dx.doi.org/10.1208/s12249-018-0990-7] [PMID: 29696614]
[133]
El-Say, K.M.; Ahmed, T.A.; Ahmed, O.A.A.; Hosny, K.M.; Abd-Allah, F.I. Self-nanoemulsifying lyophilized tablets for flash oral transmucosal delivery of vitamin K: Development and clinical evaluation. J. Pharm. Sci., 2017, 106(9), 2447-2456.
[http://dx.doi.org/10.1016/j.xphs.2017.01.001] [PMID: 28087316]
[134]
Bakandritsos, A.; Zboril, R.; Bouropoulos, N.; Kallinteri, P.; Favretto, M.E.; Parker, T.L.; Mullertz, A.; Fatouros, D.G. The preparation of magnetically guided lipid based nanoemulsions using self-emulsifying technology. Nanotechnology, 2010, 21(5), 055104.
[http://dx.doi.org/10.1088/0957-4484/21/5/055104] [PMID: 20032554]
[135]
Singh, A.V.; Maharjan, R.S.; Kromer, C.; Laux, P.; Luch, A.; Vats, T.; Chandrasekar, V.; Dakua, S.P.; Park, B.W. Advances in smoking related in vitro inhalation toxicology: a perspective case of challenges and opportunities from progresses in lung-on-chip technologies. Chem. Res. Toxicol., 2021, 34(9), 1984-2002.
[http://dx.doi.org/10.1021/acs.chemrestox.1c00219] [PMID: 34397218]
[136]
Singh, A.V.; Maharjan, R.S.; Kanase, A.; Siewert, K.; Rosenkranz, D.; Singh, R.; Laux, P.; Luch, A. Machine-learning-based approach to decode the influence of nanomaterial properties on their interaction with cells. ACS Appl. Mater. Interfaces, 2021, 13(1), 1943-1955.
[http://dx.doi.org/10.1021/acsami.0c18470] [PMID: 33373205]
[137]
Singh, A.V.; Ansari, M.H.D.; Rosenkranz, D.; Maharjan, R.S.; Kriegel, F.L.; Gandhi, K.; Kanase, A.; Singh, R.; Laux, P.; Luch, A. Artificial intelligence and machine learning in computational nanotoxicology: Unlocking and empowering nanomedicine. Adv. Healthc. Mater., 2020, 9(17), e1901862.
[http://dx.doi.org/10.1002/adhm.201901862] [PMID: 32627972]
[138]
Singh, A.V.; Maharjan, R.S.; Jungnickel, H.; Romanowski, H.; Hachenberger, Y.H.; Reichardt, P.; Bierkandt, F.; Siewert, K.; Gadicherla, A.; Laux, P.; Luch, P. Evaluating particle emissions and toxicity of 3D pen printed filaments with metal nanoparticles as additives: In vitro and in silico discriminant function analysis. ACS Sustain. Chem.& Eng., 2021, 9(35), 11724-11737.
[http://dx.doi.org/10.1021/acssuschemeng.1c02589]
[139]
Verma, R.; Kaushik, D. Development, optimization, characterization and impact of in vitro lipolysis on drug release of telmisartan loaded SMEDDS. Drug Deliv. Lett., 2019, 9(4), 330-340.
[http://dx.doi.org/10.2174/2210303109666190614120556]