Celastrol Loaded PEGylated Nanographene Oxide for Highly Efficient Synergistic Chemo/Photothermal Therapy

Page: [306 - 316] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Aim: The main aim of this study is to improve the solubility, reduce side effects and increase the therapeutic efficacy of CSL by using functionalized graphene oxide as a carrier, to fulfill chemo-photothermal therapy.

Background: Celastrol (CSL), which is extracted from the traditional Chinese medicinal plant Tripterygium wilfordii, has reported significant antitumor activity in vitro and in vivo cancer models. However, disadvantages with regard to solubility, short plasma half-life and toxicity hinder its use in pharmaceutical application. Nanocarrier delivery system could be employed to improve the biochemical and pharmacokinetic performance of CSL. Among numerous nanocarriers, graphene oxide is one of the most promising nanocarriers due to its intrinsic physical and chemical properties and good biocompatibility.

Objective: Here, we employed a PEGylated reduced nanographene oxide CSL complex (nrGO-PEG/CSL) as a new drug delivery system to achieve highly efficient synergistic chemo/photothermal therapy.

Methods: A functionalized nrGO-PEG was synthesized and the loading capacity of CSL, photothermal effect and release efficiency under different pH and NIR irradiation were measured in the first stage of work. In vitro and in vivo anticancer effects of prepared nrGO-PEG/CSL complex were evaluated on 4T1 cells and 4T1 tumor-bearing mice, respectively, with the association of NIR laser irradiation.

Results: The functionalized nrGO-PEG exhibited excellent drug loading capacity of CSL (20.76 mg/mg GO) and photothermal effect (~3.0 -fold increment over unreduced nGO-PEG). Loaded CSL could be efficiently released from nrGO-PEG/CSL complex by NIR irradiation in vitro. In vivo study performed on 4T1 tumor-bearing mice proved that nrGO-PEG/CSL with NIR laser irradiation shows superior anticancer effects.

Conclusion: The experimental data demonstrated that the nrGO-PEG/CSL-mediated chemo/photothermal combination therapy was more cytotoxic to cancer cells than only chemotherapy or photothermal treatment, reducing the occurrence of tumor metastasis. Therefore, nrGO-PEG/CSL-mediated chemo/photothermal is expected to be a promising treatment for synergistic cancer therapy.

Keywords: Celastrol, reduced nano-graphene oxide, chemotherapy, photothermal therapy, antitumor, nrGO-PEG.

Graphical Abstract

[1]
Klaić, L.; Morimoto, R.I.; Silverman, R.B. Celastrol analogues as inducers of the heat shock response. Design and synthesis of affinity probes for the identification of protein targets. ACS Chem. Biol., 2012, 7(5), 928-937.
[http://dx.doi.org/10.1021/cb200539u] [PMID: 22380712]
[2]
Figueiredo, J.N.; Räz, B.; Séquin, U. Novel quinone methides from Salacia kraussii with in vitro antimalarial activity. J. Nat. Prod., 1998, 61(6), 718-723.
[http://dx.doi.org/10.1021/np9704157] [PMID: 9644053]
[3]
Luo, D.Q.; Wang, H.; Tian, X.; Shao, H.J.; Liu, J.K. Antifungal properties of pristimerin and celastrol isolated from Celastrus hypoleucus. Pest Manag. Sci., 2005, 61(1), 85-90.
[http://dx.doi.org/10.1002/ps.953] [PMID: 15593077]
[4]
Kannaiyan, R.; Shanmugam, M.K.; Sethi, G. Molecular targets of celastrol derived from Thunder of God vine: Potential role in the treatment of inflammatory disorders and cancer. Cancer Lett., 2011, 303(1), 9-20.
[http://dx.doi.org/10.1016/j.canlet.2010.10.025] [PMID: 21168266]
[5]
An, L.; Li, Z.; Shi, L.; Wang, L.; Wang, Y.; Jin, L.; Shuai, X.; Li, J. Inflammation-targeted celastrol nanodrug attenuates collagen-induced arthritis through NF-κb and notch1 pathways. Nano Lett., 2020, 20(10), 7728-7736.
[http://dx.doi.org/10.1021/acs.nanolett.0c03279] [PMID: 32965124]
[6]
Zhu, B.J.; Qian, Z.Q.; Yang, H.R.; Li, R.X. Tripterine: A potential anti-allergic compound. Curr. Pharm. Biotechnol., 2021, 22(1), 159-167.
[http://dx.doi.org/10.2174/1389201021666200327163322] [PMID: 32216736]
[7]
Chen, J.; Xuan, J.; Gu, Y.T.; Shi, K.S.; Xie, J.J.; Chen, J.X.; Zheng, Z.M.; Chen, Y.; Chen, X.B.; Wu, Y.S.; Zhang, X.L.; Wang, X.Y. Celastrol reduces IL-1β induced matrix catabolism, oxidative stress and inflammation in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration in vivo. Biomed. Pharmacother., 2017, 91, 208-219.
[http://dx.doi.org/10.1016/j.biopha.2017.04.093] [PMID: 28458159]
[8]
Nakayama, T.; Okimura, K.; Shen, J.; Guh, Y.J.; Tamai, T.K.; Shimada, A.; Minou, S.; Okushi, Y.; Shimmura, T.; Furukawa, Y.; Kadofusa, N.; Sato, A.; Nishimura, T.; Tanaka, M.; Nakayama, K.; Shiina, N.; Yamamoto, N.; Loudon, A.S.; Nishiwaki-Ohkawa, T.; Shinomiya, A.; Nabeshima, T.; Nakane, Y.; Yoshimura, T. Seasonal changes in NRF2 antioxidant pathway regulates winter depression-like behavior. Proc. Natl. Acad. Sci. USA, 2020, 117(17), 9594-9603.
[http://dx.doi.org/10.1073/pnas.2000278117] [PMID: 32277035]
[9]
Yadav, P.; Jaswal, V.; Sharma, A.; Kashyap, D.; Tuli, H.S.; Garg, V.K.; Das, S.K.; Srinivas, R. Celastrol as a pentacyclic triterpenoid with chemopreventive properties. Pharm. Pat. Anal., 2018, 7(4), 155-167.
[http://dx.doi.org/10.4155/ppa-2017-0035] [PMID: 29882724]
[10]
Zhu, B.; Wei, Y. Antitumor activity of celastrol by inhibition of proliferation, invasion, and migration in cholangiocarcinomavia PTEN/PI3K/Akt pathway. Cancer Med., 2020, 9(2), 783-796.
[http://dx.doi.org/10.1002/cam4.2719] [PMID: 31957323]
[11]
Yang, H.; Chen, D.; Cui, Q.C.; Yuan, X.; Dou, Q.P. Celastrol, a triterpene extracted from the Chinese “Thunder of God vine,” is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res., 2006, 66(9), 4758-4765.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4529] [PMID: 16651429]
[12]
Kashyap, D.; Sharma, A.; Tuli, H.S.; Sak, K.; Mukherjee, T.; Bishayee, A. Molecular targets of celastrol in cancer: Recent trends and advancements. Crit. Rev. Oncol. Hematol., 2018, 128, 70-81.
[http://dx.doi.org/10.1016/j.critrevonc.2018.05.019] [PMID: 29958633]
[13]
Ji, N.; Li, J.; Wei, Z.; Kong, F.; Jin, H.; Chen, X.; Li, Y.; Deng, Y. Effect of celastrol on growth inhibition of prostate cancer cells through the regulation of hERG channel in vitro. BioMed Res. Int., 2015, 2015, 308475.
[http://dx.doi.org/10.1155/2015/308475] [PMID: 25866772]
[14]
Tseng, C.K.; Hsu, S.P.; Lin, C.K.; Wu, Y.H.; Lee, J.C.; Young, K.C. Celastrol inhibits hepatitis C virus replication by upregulating heme oxygenase-1 via the JNK MAPK/Nrf2 pathway in human hepatoma cells. Antiviral Res., 2017, 146, 191-200.
[http://dx.doi.org/10.1016/j.antiviral.2017.09.010] [PMID: 28935193]
[15]
Du, S.; Song, X.; Li, Y.; Cao, Y.; Chu, F.; Durojaye, O.A.; Su, Z.; Shi, X.; Wang, J.; Cheng, J.; Wang, T.; Gao, X.; Chen, Y.; Zeng, W.; Wang, F.; Wang, D.; Liu, X.; Ding, X. Celastrol inhibits ezrin-mediated migration of hepatocellular carcinoma cells. Sci. Rep., 2020, 10(1), 11273.
[http://dx.doi.org/10.1038/s41598-020-68238-1] [PMID: 32647287]
[16]
Ding, B.; Wahid, M.A.; Wang, Z.; Xie, C.; Thakkar, A.; Prabhu, S.; Wang, J. Triptolide and celastrol loaded silk fibroin nanoparticles show synergistic effect against human pancreatic cancer cells. Nanoscale, 2017, 9(32), 11739-11753.
[http://dx.doi.org/10.1039/C7NR03016A] [PMID: 28782773]
[17]
Chen, X.; Zhao, Y.; Luo, W.; Chen, S.; Lin, F.; Zhang, X.; Fan, S.; Shen, X.; Wang, Y.; Liang, G. Celastrol induces ROS-mediated apoptosisvia directly targeting peroxiredoxin-2 in gastric cancer cells. Theranostics, 2020, 10(22), 10290-10308.
[http://dx.doi.org/10.7150/thno.46728] [PMID: 32929349]
[18]
Dai, C.H.; Zhu, L.R.; Wang, Y.; Tang, X.P.; Du, Y.J.; Chen, Y.C.; Li, J. Celastrol acts synergistically with afatinib to suppress non-small cell lung cancer cell proliferation by inducing paraptosis. J. Cell. Physiol., 2021, 236(6), 4538-4554.
[http://dx.doi.org/10.1002/jcp.30172] [PMID: 33230821]
[19]
Yan, F.; Wu, Z.; Li, Z.; Liu, L. Celastrol inhibits migration and invasion of triple-negative breast cancer cells by suppressing interleukin-6via downregulating nuclear factor-κB (NF-κB). Med. Sci. Monit., 2020, 26, e922814.
[http://dx.doi.org/10.12659/MSM.922814] [PMID: 32920591]
[20]
Wang, G.; Xiao, Q.; Wu, Y.; Wei, Y.J.; Jing, Y.; Cao, X.R.; Gong, Z.N. Design and synthesis of novel celastrol derivative and its antitumor activity in hepatoma cells and antiangiogenic activity in zebrafish. J. Cell. Physiol., 2019, 234(9), 16431-16446.
[http://dx.doi.org/10.1002/jcp.28312] [PMID: 30770566]
[21]
Hu, X.; Jia, M.; Fu, Y.; Zhang, P.; Zhang, Z.; Lin, Q. Novel low-toxic derivative of celastrol maintains protective effect against acute renal injury. ACS Omega, 2018, 3(3), 2652-2660.
[http://dx.doi.org/10.1021/acsomega.7b01890] [PMID: 30023844]
[22]
Lu, Y.; Liu, Y.; Zhou, J.; Li, D.; Gao, W. Biosynthesis, total synthesis, structural modifications, bioactivity, and mechanism of action of the quinone-methide triterpenoid celastrol. Med. Res. Rev., 2021, 41(2), 1022-1060.
[http://dx.doi.org/10.1002/med.21751] [PMID: 33174200]
[23]
Tan, Y.; Zhu, Y.; Zhao, Y.; Wen, L.; Meng, T.; Liu, X.; Yang, X.; Dai, S.; Yuan, H.; Hu, F. Mitochondrial alkaline pH-responsive drug release mediated by Celastrol loaded glycolipid-like micelles for cancer therapy. Biomaterials, 2018, 154, 169-181.
[http://dx.doi.org/10.1016/j.biomaterials.2017.07.036] [PMID: 29128845]
[24]
Li, Z.; Guo, Z.; Chu, D.; Feng, H.; Zhang, J.; Zhu, L.; Li, J. Effectively suppressed angiogenesis-mediated retinoblastoma growth using celastrol nanomicelles. Drug Deliv., 2020, 27(1), 358-366.
[http://dx.doi.org/10.1080/10717544.2020.1730522] [PMID: 32091275]
[25]
Huang, Y.; Zhou, D.; Hang, T.; Wu, Z.; Liu, J.; Xu, Q.; Xie, X.; Zuo, J.; Wang, Z.; Zhou, Y. Preparation, characterization, and assessment of the antiglioma effects of liposomal celastrol. Anticancer Drugs, 2012, 23(5), 515-524.
[http://dx.doi.org/10.1097/CAD.0b013e3283514b68] [PMID: 22343423]
[26]
Aqil, F.; Kausar, H.; Agrawal, A.K.; Jeyabalan, J.; Kyakulaga, A.H.; Munagala, R.; Gupta, R. Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp. Mol. Pathol., 2016, 101(1), 12-21.
[http://dx.doi.org/10.1016/j.yexmp.2016.05.013] [PMID: 27235383]
[27]
Chen, X.; Hu, X.; Hu, J.; Qiu, Z.; Yuan, M.; Zheng, G. Celastrol-loaded galactosylated liposomes effectively inhibit AKT/c-Met-triggered rapid hepatocarcinogenesis in mice. Mol. Pharm., 2020, 17(3), 738-747.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00428] [PMID: 31904241]
[28]
Choi, J.Y.; Gupta, B.; Ramasamy, T.; Jeong, J.H.; Jin, S.G.; Choi, H.G.; Yong, C.S.; Kim, J.O. PEGylated polyaminoacid-capped mesoporous silica nanoparticles for mitochondria-targeted delivery of celastrol in solid tumors. Colloids Surf. B Biointerfaces, 2018, 165, 56-66.
[http://dx.doi.org/10.1016/j.colsurfb.2018.02.015] [PMID: 29453086]
[29]
Yin, J.; Wang, P.; Yin, Y.; Hou, Y.; Song, X. Optimization on biodistribution and antitumor activity of tripterine using polymeric nanoparticles through RES saturation. Drug Deliv., 2017, 24(1), 1891-1897.
[http://dx.doi.org/10.1080/10717544.2017.1410260] [PMID: 29191042]
[30]
Niemelä, E.; Desai, D.; Nkizinkiko, Y.; Eriksson, J.E.; Rosenholm, J.M. Sugar-decorated mesoporous silica nanoparticles as delivery vehicles for the poorly soluble drug celastrol enables targeted induction of apoptosis in cancer cells. Eur. J. Pharm. Biopharm., 2015, 96, 11-21.
[http://dx.doi.org/10.1016/j.ejpb.2015.07.009] [PMID: 26184689]
[31]
Li, W.; Zhang, T.; Ye, Y.; Zhang, X.; Wu, B. Enhanced bioavailability of tripterine through lipid nanoparticles using broccoli-derived lipids as a carrier material. Int. J. Pharm., 2015, 495(2), 948-955.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.011] [PMID: 26453780]
[32]
Law, S.; Leung, A.W.; Xu, C. Folic acid-modified celastrol nanoparticles: Synthesis, characterization, anticancer activity in 2D and 3D breast cancer models. Artif. Cells Nanomed. Biotechnol., 2020, 48(1), 542-559.
[http://dx.doi.org/10.1080/21691401.2020.1725025] [PMID: 32054336]
[33]
Zhao, Y.; Tan, Y.; Meng, T.; Liu, X.; Zhu, Y.; Hong, Y.; Yang, X.; Yuan, H.; Huang, X.; Hu, F. Simultaneous targeting therapy for lung metastasis and breast tumor by blocking the NF-κB signaling pathway using celastrol-loaded micelles. Drug Deliv., 2018, 25(1), 341-352.
[http://dx.doi.org/10.1080/10717544.2018.1425778] [PMID: 29355035]
[34]
Doughty, A.C.V.; Hoover, A.R.; Layton, E.; Murray, C.K.; Howard, E.W.; Chen, W.R. Nanomaterial applications in photothermal therapy for cancer. Materials (Basel), 2019, 12(5), E779.
[http://dx.doi.org/10.3390/ma12050779] [PMID: 30866416]
[35]
Gao, H.; Bi, Y.; Wang, X.; Wang, M.; Zhou, M.; Lu, H.; Gao, J.; Chen, J.; Hu, Y. Near-infrared guided thermal-responsive nanomedicine against orthotopic superficial bladder cancer. ACS Biomater. Sci. Eng., 2017, 3(12), 3628-3634.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00405] [PMID: 33445397]
[36]
Jori, G.; Spikes, J.D. Photothermal sensitizers: Possible use in tumor therapy. J. Photochem. Photobiol. B, 1990, 6(1-2), 93-101.
[http://dx.doi.org/10.1016/1011-1344(90)85078-B] [PMID: 2121943]
[37]
Zhang, Z.; Wang, J.; Chen, C. Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv. Mater., 2013, 25(28), 3869-3880.
[http://dx.doi.org/10.1002/adma.201301890] [PMID: 24048973]
[38]
Chen, YW; Su, YL; Hu, SH; Chen, SY Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv Drug Deliv Rev, 2016, 105(Pt B), 190-204.
[http://dx.doi.org/10.1016/j.addr.2016.05.022]
[39]
Nejabat, M.; Charbgoo, F.; Ramezani, M. Graphene as multifunctional delivery platform in cancer therapy. J. Biomed. Mater. Res. A, 2017, 105(8), 2355-2367.
[http://dx.doi.org/10.1002/jbm.a.36080] [PMID: 28371194]
[40]
Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett., 2010, 10(9), 3318-3323.
[http://dx.doi.org/10.1021/nl100996u] [PMID: 20684528]
[41]
Karki, N.; Tiwari, H.; Pal, M.; Chaurasia, A.; Bal, R.; Joshi, P.; Sahoo, N.G. Functionalized graphene oxides for drug loading, release and delivery of poorly water soluble anticancer drug: A comparative study. Colloids Surf. B Biointerfaces, 2018, 169, 265-272.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.022] [PMID: 29783152]
[42]
Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 2010, 6(4), 537-544.
[http://dx.doi.org/10.1002/smll.200901680] [PMID: 20033930]
[43]
Yang, K.; Feng, L.; Hong, H.; Cai, W.; Liu, Z. Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat. Protoc., 2013, 8(12), 2392-2403.
[http://dx.doi.org/10.1038/nprot.2013.146] [PMID: 24202553]
[44]
Szabó, T.; Berkesi, O.; Dékány, I. DRIFT study of deuterium-exchanged graphite oxide. Carbon, 2005, 43(15), 3186-3189.
[http://dx.doi.org/10.1016/j.carbon.2005.07.013]
[45]
Stankovich, S.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 2006, 44(15), 3342-3347.
[http://dx.doi.org/10.1016/j.carbon.2006.06.004]
[46]
Guo, Y.; Sun, X.; Liu, Y.; Wang, W.; Qiu, H.; Gao, J. One pot preparation of reduced graphene oxide (RGO) or Au (Ag) nanoparticle-RGO hybrids using chitosan as a reducing and stabilizing agent and their use in methanol electrooxidation. Carbon, 2012, 50(7), 2513-2523.
[http://dx.doi.org/10.1016/j.carbon.2012.01.074]
[47]
Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxides. J. Phys. Chem. C, 2008, 112(45), 17554-17558.
[http://dx.doi.org/10.1021/jp806751k]
[48]
Liu, Y.; Liu, C-Y.; Liu, Y. Investigation on fluorescence quenching of dyes by graphite oxide and graphene. Appl. Surf. Sci., 2011, 257(13), 5513-5518.
[http://dx.doi.org/10.1016/j.apsusc.2010.12.136]