SARS-CoV-2 Kerala Isolate Spike Protein Induces Cancer Proliferating Markers for Lung and Breast Cancer: An In Silico Approach

Article ID: e180522204995 Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Coronavirus disease (COVID 19) has been emerging as a major threat to humans all over the world. Severe Acute Respiratory Syndrome CoronaVirus 2 (nSARS-CoV-2) is the causative agent for the disease resulting in severe acute respiratory illness. Earlier, it took several years to come up with a vaccine or other sorts of treatments for viral diseases. But now with the advent of biotechnology and development of bio-informatic tools, the process has been accelerated. The WHO reports 39,806,488 affected cases and 1,112,208 deaths till today all over the world (17 Oct 2020). nSARS-CoV-2 has a greater influence on people with comorbidities mainly cancer.

Objective: The study herein attempts to understand the binding affinity of the spike protein of the novel coronavirus with the lung and breast cancer marker proteins by docking and ClusPro analysis.

Methods: The analysis was conducted in reference to hACE2 (human Angiotensin Converting Enzyme 2), the receptor of nSARS-CoV-2. Total 22 different marker proteins were analyzed using ClusPro.

Results: BRCA1 (Breast Cancer type 1 susceptibility protein) and CXCR4 (a chemokine receptor belonging to the G protein coupled receptor family) were found to exhibit higher binding affinities.-73.82 kcal/mol and -66.45 kcal/mol were the global energies they showed upon binding to S protein respectively.

Conclusion: Therefore, novel SARS-CoV-2 has a higher chance of inducing cancer in non-cancerous individuals and aids in cancer acceleration in cancer patients . This poses a threat to cancer patients and immunocompromised individuals. The study can be exploited to identify the optimal drug delivery system for novel SARS CoV2.

Keywords: SARSCoV2, hACE2, Lung and Breast cancer, chemokine receptor, docking, immunocompromised.

Graphical Abstract

[1]
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol 2020; 92(4): 418-23.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[2]
Jayawardena R, Sooriyaarachchi P, Chourdakis M, Jeewandara C, Ranasinghe P. Enhancing immunity in viral infections, with special em-phasis on COVID-19: A review. Diabetes Metab Syndr 2020; 14(4): 14.
[http://dx.doi.org/10.1016/j.dsx.2020.04.015]
[3]
Wang H, Zhang L. Risk of COVID-19 for patients with cancer. Lancet Oncol 2020; 21(4): e181.
[http://dx.doi.org/10.1016/S1470-2045(20)30149-2] [PMID: 32142621]
[4]
Liang W, Guan W, Chen R, et al. Cancer patients in SARS-CoV-2 infection: A nationwide analysis in China. Lancet Oncol 2020; 21(3): 335-7.
[http://dx.doi.org/10.1016/S1470-2045(20)30096-6] [PMID: 32066541]
[5]
Zur Hausen H. Viruses in human cancers. Science 1991; 254(5035): 1167-73.
[http://dx.doi.org/10.1126/science.1659743] [PMID: 1659743]
[6]
Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016; 3(1): 237-61.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[7]
Giatromanolaki A, Harris AL, Banham AH, Contrafouris CA, Koukourakis MI. Carbonic anhydrase 9 (CA9) expression in non-small-cell lung cancer: Correlation with regulatory FOXP3+T-cell tumour stroma infiltration. Br J Cancer 2020; 122(8): 1205-10.
[http://dx.doi.org/10.1038/s41416-020-0756-3] [PMID: 32066909]
[8]
Cohen AS, Khalil FK, Welsh EA, et al. Cell-surface marker discovery for lung cancer. Oncotarget 2017; 8(69): 113373-402.
[http://dx.doi.org/10.18632/oncotarget.23009] [PMID: 29371917]
[9]
Zhang X, Liu J, Liang X, et al. History and progression of Fat cadherins in health and disease. OncoTargets Ther 2016; 9: 7337-43.
[http://dx.doi.org/10.2147/OTT.S111176] [PMID: 27942226]
[10]
Cai F, Zhu Q, Miao Y, Shen S, Su X, Shi Y. Desmoglein-2 is overexpressed in non-small cell lung cancer tissues and its knockdown sup-presses NSCLC growth by regulation of p27 and CDK2. J Cancer Res Clin Oncol 2017; 143(1): 59-69.
[http://dx.doi.org/10.1007/s00432-016-2250-0] [PMID: 27629878]
[11]
Hu P, Huang Y, Gao Y, et al. Elevated expression of LYPD3 is associated with lung adenocarcinoma carcinogenesis and poor prognosis. DNA Cell Biol 2020; 39(4): 522-32.
[http://dx.doi.org/10.1089/dna.2019.5116] [PMID: 32040344]
[12]
Nii K, Tokunaga Y, Liu D, et al. Overexpression of G protein-coupled receptor 87 correlates with poorer tumor differentiation and higher tumor proliferation in non-small-cell lung cancer. Mol Clin Oncol 2014; 2(4): 539-44.
[http://dx.doi.org/10.3892/mco.2014.292] [PMID: 24940491]
[13]
Paret C, Simon P, Vormbrock K, et al. CXorf61 is a target for T cell based immunotherapy of triple-negative breast cancer. Oncotarget 2015; 6(28): 25356-67.
[http://dx.doi.org/10.18632/oncotarget.4516] [PMID: 26327325]
[14]
Exposito F, Villalba M, Redrado M, et al. Targeting of TMPRSS4 sensitizes lung cancer cells to chemotherapy by impairing the prolifera-tion machinery. Cancer Lett 2019; 453: 21-33.
[http://dx.doi.org/10.1016/j.canlet.2019.03.013] [PMID: 30905815]
[15]
Ulasov IV, Borovjagin AV, Timashev P, Cristofanili M, Welch DR. KISS1 in breast cancer progression and autophagy. Cancer Metastasis Rev 2019; 38(3): 493-506.
[http://dx.doi.org/10.1007/s10555-019-09814-4] [PMID: 31705228]
[16]
Uda NR, Stenner F, Seibert V, et al. Humanized monoclonal antibody blocking carbonic anhydrase 12 enzymatic activity leads to reduced tumor growth in vitro. Anticancer Res 2019; 39(8): 4117-28.
[http://dx.doi.org/10.21873/anticanres.13570] [PMID: 31366496]
[17]
Koppula P, Zhang Y, Zhuang L, Gan B. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun 38(1): 018-0288.2018;
[18]
Mehrgou A, Akouchekian M. The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Med J Islam Repub Iran 2016; 30: 369-9.
[PMID: 27493913]
[19]
Metcalfe K, Lynch HT, Foulkes WD, et al. Oestrogen receptor status and survival in women with BRCA2-associated breast cancer. Br J Cancer 2019; 120(4): 398-403.
[http://dx.doi.org/10.1038/s41416-019-0376-y] [PMID: 30723304]
[20]
Walens A, DiMarco AV, Lupo R, Kroger BR, Damrauer JS, Alvarez JV. CCL5 promotes breast cancer recurrence through macrophage recruitment in residual tumors. eLife 2019; 8(8): 43653.
[http://dx.doi.org/10.7554/eLife.43653] [PMID: 30990165]
[21]
Li X, Wang M, Gong T, et al. A S100A14-CCL2/CXCL5 signaling axis drives breast cancer metastasis. Theranostics 2020; 10(13): 5687-703.
[http://dx.doi.org/10.7150/thno.42087] [PMID: 32483412]
[22]
Chatterjee S, Behnam Azad B, Nimmagadda S. The intricate role of CXCR4 in cancer. Adv Cancer Res 2014; 124: 31-82.
[http://dx.doi.org/10.1016/B978-0-12-411638-2.00002-1] [PMID: 25287686]
[23]
Gadalla R, Hassan H, Ibrahim SA, et al. Tumor microenvironmental plasmacytoid dendritic cells contribute to breast cancer lymph node metastasis via CXCR4/SDF-1 axis. Breast Cancer Res Treat 2019; 174(3): 679-91.
[http://dx.doi.org/10.1007/s10549-019-05129-8] [PMID: 30632021]
[24]
Khalife E, Khodadadi A, Talaeizadeh A, Rahimian L, Nemati M, Jafarzadeh A. Overexpression of regulatory T cell-related markers (FOXP3, CTLA-4 and GITR) by peripheral blood mononuclear cells from patients with breast cancer. Asian Pac J Cancer Prev 2018; 19(11): 3019-25.
[http://dx.doi.org/10.31557/APJCP.2018.19.11.3019] [PMID: 30484986]
[25]
Yang S, Liu Y, Li MY, et al. FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer. Mol Cancer 2017; 16(1): 124-4.
[http://dx.doi.org/10.1186/s12943-017-0700-1] [PMID: 28716029]
[26]
Li Z, Li D, Tsun A, Li B. FOXP3+ regulatory T cells and their functional regulation. Cell Mol Immunol 2015; 12(5): 558-65.
[http://dx.doi.org/10.1038/cmi.2015.10] [PMID: 25683611]
[27]
Li L, Jiang G, Chen Q, Zheng J. Predic Ki67 is a promising molecular target in the diagnosis of cancer. Mol Med Rep 2014; 11: 1566-72.
[28]
Campos A, Salomón C, Bustos R, et al. Caveolin-1-containing extracellular vesicles transport adhesion proteins and promote malignancy in breast cancer cell lines. Nanomedicine (Lond) 2018; 13(20): 2597-609.
[http://dx.doi.org/10.2217/nnm-2018-0094] [PMID: 30338706]
[29]
Kabel AM. Tumor markers of breast cancer: New prospectives. J Onco Sci 2017; 3(1): 5-11.
[30]
Eidelman FJ, Fuks A, DeMarte L, Taheri M, Stanners CP. Human carcinoembryonic antigen, an intercellular adhesion molecule, blocks fusion and differentiation of rat myoblasts. J Cell Biol 1993; 123(2): 467-75.
[http://dx.doi.org/10.1083/jcb.123.2.467] [PMID: 8408226]
[31]
Li X, Dai D, Chen B, Tang H, Xie X, Wei W. Clinicopathological and prognostic significance of cancer antigen 15-3 and carcinoembryonic antigen in breast cancer: A meta-analysis including 12,993 patients. Dis Markers 2018; 2018: 9863092-2.
[http://dx.doi.org/10.1155/2018/9863092] [PMID: 29854028]
[32]
Pedraza-Fariña LG. Mechanisms of oncogenic cooperation in cancer initiation and metastasis. Yale J Biol Med 2006; 79(3-4): 95-103.
[PMID: 17940619]
[33]
Nowak A, Dziegiel P. Implications of nestin in breast cancer pathogenesis. (Review) Int J Oncol 2018; 53(2): 477-87.
[http://dx.doi.org/ 10.3892/ijo.2018.4441] [PMID: 29901100]
[34]
Iqbal N, Iqbal N. Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications. Mol Biol Int 2014; 2014: 852748-.
[http://dx.doi.org/10.1155/2014/852748] [PMID: 25276427]
[35]
Banin Hirata BK, Oda JMM, Losi Guembarovski R, Ariza CB, de Oliveira CEC, Watanabe MAE. Molecular markers for breast cancer: Prediction on tumor behavior. Dis Markers 2014; 2014: 513158-8.
[http://dx.doi.org/10.1155/2014/513158] [PMID: 24591761]
[36]
Chen X, Low K, Alexander A, et al. Cyclin E overexpression sensitizes triple-negative breast cancer to wee1 kinase inhibition. Clin Cancer Res 2018; 24(24): 6594-610.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1446]
[37]
Ma Y, Nolte RJ, Cornelissen JJ. Virus-based nanocarriers for drug delivery. Adv Drug Deliv Rev 2012; 64(9): 811-25.
[http://dx.doi.org/10.1016/j.addr.2012.01.005] [PMID: 22285585]
[38]
UniProt Consortium. UniProt: A hub for protein information. Nucleic Acids Res 2015; 43(Database issue): D204-12.
[PMID: 25348405]
[39]
Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Res 2005; 33(Web Server issue): W363-7.
[http://dx.doi.org/10.1093/nar/gki481] [PMID: 15980490]
[40]
Kozakov D, Hall DR, Xia B, et al. The ClusPro web server for protein-protein docking. Nat Protoc 2017; 12(2): 255-78.
[http://dx.doi.org/10.1038/nprot.2016.169] [PMID: 28079879]
[41]
Guendel I, Meltzer BW, Baer A, et al. BRCA1 functions as a novel transcriptional cofactor in HIV-1 infection. Virol J 2015; 12(1): 40.
[http://dx.doi.org/10.1186/s12985-015-0266-8] [PMID: 25879655]
[42]
Hung CM, Hsu YC, Chen TY, Chang CC, Mon-Juan L. Cyclophosphamide promotes breast cancer cell migration through CXCR4 and matrix metalloproteinases: Cyclophosphamide regulate CXCR4 and MMPs. Cell Biol Int 2016; 41(3): 345-52.
[43]
Witsch E, Sela M, Yarden Y. Roles for growth factors in cancer progression. Physiology (Bethesda) 2010; 25(2): 85-101.
[http://dx.doi.org/10.1152/physiol.00045.2009] [PMID: 20430953]
[44]
Douglas JL, Gustin JK, Moses AV, Dezube BJ, Pantanowitz L. Kaposi sarcoma pathogenesis: A triad of viral infection, oncogenesis and chronic inflammation. Transl Biomed 2010; 1(2): 172.
[PMID: 23082307]
[45]
Ji X, Qian J, Rahman SMJ, et al. xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression. Oncogene 2018; 37(36): 5007-19.
[http://dx.doi.org/10.1038/s41388-018-0307-z] [PMID: 29789716]
[46]
Wang L, Zhou W, Zhong Y, et al. Overexpression of G protein-coupled receptor GPR87 promotes pancreatic cancer aggressiveness and activates NF-κB signaling pathway. Mol Cancer 2017; 16(1): 61.
[http://dx.doi.org/10.1186/s12943-017-0627-6] [PMID: 28288630]
[47]
Zhang Y, Qian Y, Lu W, Chen X. The G protein-coupled receptor 87 is necessary for p53-dependent cell survival in response to genotox-ic stress. Cancer Res 2009; 69(15): 6049-56.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0621] [PMID: 19602589]
[48]
Katoh M. Function and cancer genomics of FAT family genes. (review). Int J Oncol 2012; 41(6): 1913-8.
[http://dx.doi.org/10.3892/ijo.2012.1669] [PMID: 23076869]
[49]
Sadeqzadeh E, de Bock CE, Thorne RF. Sleeping giants: Emerging roles for the fat cadherins in health and disease. Med Res Rev 2014; 34(1): 190-221.
[http://dx.doi.org/10.1002/med.21286] [PMID: 23720094]
[50]
Guzman S, Brackstone M, Radovick S, Babwah AV, Bhattacharya MM. KISS1/KISS1R in cancer: Friend or foe? Front Endocrinol (Lausanne) 2018; 9: 437.
[http://dx.doi.org/10.3389/fendo.2018.00437] [PMID: 30123188]
[51]
D’Amico F, Fiorito G, Skarmoutsou E, et al. FOXP3, ICOS and ICOSL gene polymorphisms in systemic sclerosis: FOXP3 rs2294020 is associated with disease progression in a female Italian population. Immunobiology 2018; 223(1): 112-7.
[http://dx.doi.org/10.1016/j.imbio.2017.10.004] [PMID: 29030005]