Microwave-Accelerated Facile Synthesis of pyrano[2,3-d]pyrimidine Derivatives via one-pot Strategy Executed by Agro-Waste Extract as a Greener Solvent Media

Page: [78 - 89] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: A variety of methods have been reported for the synthesis of pyrano[2,3- d]pyrimidines in the literature with some limitations, and generally used expensive catalysts, harmful solvent and prolonged reaction time. This paper describes an efficient and rapid multicomponent synthesis of pyrano[2,3-d]pyrimidine through condensation of aromatic aldehyde, malononitrile and barbituric acid catalysed by agro-waste solvent catalyst under microwave irradiation. The present method provides several added advantages such as being environmentally friendly, simple work-up, inexpensive, and shorter reaction time affording excellent yields. The synthesized compounds were confirmed by various spectroscopic analyses such as FT-IR, 1H- &13C-NMR and mass spectrometry.

Objective: Develop an eco-friendly method for the synthesis of pyrano[2,3-d]pyrimidine derivatives.

Methods: We have selected Water Extract of Lemon Fruit Shell ash extract solvent as a greener homogenous organo catalysts, and reaction is accelerated by microwave irradiation for the inexpensive synthesis of pyrano[2,3-d]pyrimidine derivatives.

Results: The pyrano[2,3-d]pyrimidine derivatives are prepared using an agro-waste-based catalyst, which avoids the use of the external base, additives and solvent in multi-component reactions. Further, the rate of the reaction is accelerated by custom-made microwave irradiation. The use of microwave irradiation showed many advantages over conventional methods such as reaction required less time, more yield and fewer by-products. Further, the custom-made microwave oven has the advantage of no spillage of any organic reagent or solvent to the microwave oven walls, because the reaction vessel is connected to a reflux condenser and direct exposure is avoided.

Conclusion: In conclusion, we have developed a simple, efficient, agro-waste-based catalytic approach for the synthesis pyrano[2,3-d]pyrimidine derivatives employing WELFSA as an efficient agro-waste-based catalyst under microwave conditions. The method is found to added advantages of less hazardous, eco-friendly, metal-free, chemical-free, short reaction time, simple workup and isolated product in good to excellent yields.

Keywords: Pyrano [2, 3-d] pyrimidine, multicomponent reaction, barbituric acid, lemon fruit peel, microwave irradiation, agrowaste extract.

Graphical Abstract

[1]
Pragi, A.; Varun, A.; Lamba, H.; Deepak, W. Importance of heterocyclic chemistry: A review. IJPSR, 2012, 3, 2947-2954.
[2]
Jampilek, J. Heterocycles in medicinal chemistry. Molecules, 2019, 24(21), 3839-3842. [http://dx.doi.org/10.3390/molecules24213839]. [PMID: 31731387].
[3]
Paprocki, D.; Madej, A.; Koszelewski, D.; Brodzka, A.; Ostaszewski, R. Multicomponent reactions accelerated by aqueous micelles. Front Chem., 2018, 6, 502. [http://dx.doi.org/10.3389/fchem.2018.00502]. [PMID: 30406083].
[4]
Gnanasambandam, V.; Kandhasamy, K. Rapid four-component reactions in water: Synthesis of pyranopyrazoles. Tetrahedron Lett., 2008, 39(49), 5636-5638.
[5]
Brown, D.J.; Evans, R.F.; Cowden, W.B. Comprehensive Heterocyclic Chemistry; Pergamon Press Oxford: UK, 1984.
[6]
Elderfield, R.C. Heterocyclic Compounds; John Wiley & Sons New York: USA, 1957.
[7]
Gavilan, M.D.; Gomez-Vidal, J.A.; Serrano, F.R. Pyrimidine as anticancer agent. Bioorg. Med. Chem. Lett., 2008, 18(4), 1457-1460. [PMID: 18194866].
[8]
Ali, M.; Azad, M.; Siddiquia, H.L.; Nasim, F.H. Synthesis and antimicrobial studies of some quinolinylpyrimidine derivatives. J. Chin. Chem. Soc. (Taipei), 2008, 55(2), 394-400. [http://dx.doi.org/10.1002/jccs.200800058].
[9]
Dileep, K.Y.; Quraishi, M.A. Choline chloride.ZnCl2: Green, effective and reusable ionic liquid for synthesis of 7-amino-2, 4-dioxo-5-phenyl-2, 3, 4, 5-tetrahydro-1H-pyrano [2, 3-d] pyrimidine-6-carbonitrile derivative. J. Mater. Environ. Sci., 2014, 59(4), 1075-1078.
[10]
Shahi, M.; Foroughifar, N.; Moradi, S. Synthesis and ab initio study of pyrano[2,3-d]pyrimidine derivatives. Iran J. Chem. Chem. Eng., 2014, 33(1)
[11]
Ghodsi, M.Z.; Sakineh, F.; Shima, A.; Alireza, B.; Roya, B.; Massoud, A. Three-component synthesis of pyrano[2,3-d]-pyrimidine dione derivatives facilitated by sulfonic acid nanoporous silica (SBA-Pr-SO3H) and their docking and urease inhibitory activity. Daru, 2013, 2(3), 321.
[12]
Tayebeh, S.; Mokhtaria Mohammad, A.; Amrollahia; Enayatollah, S.; Hassan, S.; Shahla, S. N. Poly(4-vinylpyridine) catalyzed synthesis and characterization of pyrano[2,3-d]pyrimidine derivatives as potent antibacterial agents. Curr. Bioact. Compd., 2018, 14(1), 54-59. [http://dx.doi.org/10.2174/1573407213666170104153128].
[13]
Prajapati, D.; Gohain, M. An efficient synthesis of novel pyrano[2,3-d]- and furopyrano[2,3-d]pyrimidines via indium-catalyzed multi-component domino reaction. Beilstein J. Org. Chem., 2006, 2(11), 11. [http://dx.doi.org/10.1186/1860-5397-2-11]. [PMID: 16768808].
[14]
Maleki, M.A.; Niksefat, J.; Rahimi, R.; Taheri-Ledari, A.; Maleki, M.; Niksefat, J.; Rahimi, R. Multicomponent synthesis of pyrano[2,3-d]pyrimidine derivatives via a direct one-pot strategy executed by novel designed copperated Fe3O4@polyvinyl alcohol magnetic nanoparticles. Mater. Today Chem., 2019, 13, 110-120. [http://dx.doi.org/10.1016/j.mtchem.2019.05.001].
[15]
Rawda, M.O.; Fawzia, F.A.; Tarek, H.A.; Ahmed, M.F.; Al-Anood, M. Structural characterization and antimicrobial activities of 7h benzo[h]chromeno[2,3-d]pyrimidine and 14H-benzo[H]chromeno[3,2-e][1,2,4]triazolo[1,5-c] pyrimidine derivatives. Molecules, 2016, 21(11), 1450. [http://dx.doi.org/10.3390/molecules21111450].
[16]
Hoda, P.; Sahar, S.; Naser, F.; Mehran, D.; Fereshteh, M. Synthesis and characterization of nickel (ii) complexes derived from pyrano [2, 3-d] pyrimidines. Int. J. Sci. Res., 2018, 7(9), 208-210.
[17]
Nariman, M.; Zahra, S.; Saeid, J.; Maryam, N. Clean synthesis of pyrano[2,3-d]pyrimidines using ZnO nano-powders. Acta Chem. Iasi., 2016, 24(1), 20-28. [http://dx.doi.org/10.1515/achi-2016-0002].
[18]
Samvel, N.S.; Athina, G.; Domenico, S.; Anush, A.; Hovakimyan.; Azat, S. N. Synthesis and structure of condensed triazolo an tetrazolopyrimidines. Tetrahedron, 2013, 69(49), 10637-10643. [http://dx.doi.org/10.1016/j.tet.2013.10.015].
[19]
Zhang, G.; Zhang, H.; Wang, X.; Li, C.; Huang, H.; Yin, D. Synthesis of new riminophenazines with pyrimidine and pyrazine substitution at the 2-N position. Molecules, 2011, 16(8), 6985-6991. [http://dx.doi.org/10.3390/molecules16086985]. [PMID: 21847070].
[20]
Broom, A.D.; Shim, J.L.; Anderson, G.L. Pyrido(2,3-d)pyrimidines. IV. Synthetic studies leading to various oxopyrido(2,3-d)pyrimidines. J. Org. Chem., 1976, 41(7), 1095-1099. [http://dx.doi.org/10.1021/jo00869a003]. [PMID: 1255289].
[21]
Ajmal, R.B.; Aabid, H.S.; Rajendra, S.D. Synthesis of new annulated pyrano[2,3-d]pyrimidine derivatives using organo catalyst (DABCO) in aqueous media. J. Saudi Chem. Soc., 2014, 21(1), S305-S310.
[22]
Rina, D.; Dinesh, M.; Harsh, B. An overview on microwave mediated synthesis. Int. J. Res. Dev. Pharm. Life Sci., 2012, 1(2), 32-39.
[23]
Antonio, H.; Angel, D.; Pilar, P. Microwave-assisted green organic synthesis. In: Alternative Energy Sources for Green Chemistry; Stefanidis, G.; Stankiewicz, A., Eds.; Royal Society of Chemistry: Burlington, London, 2016; pp. 1-33.
[24]
Varma, R.S. Solvent-free organic syntheses using supported reagents and microwave irradiation. Green Chem., 1999, 1(1), 43-55. [http://dx.doi.org/10.1039/a808223e].
[25]
Varma, R.S. Clay and clay-supported reagents in organic synthesis. Tetrahedron, 2002, 5(7), 1235-1255. [http://dx.doi.org/10.1016/S0040-4020(01)01216-9].
[26]
Perreux, L.; Loupy, A. A tentative rationalization of microwave effects in organic synthesis according to the reaction medium and mechanistic considerations. Tetrahedron, 2001, 57(45), 9199-9223. [http://dx.doi.org/10.1016/S0040-4020(01)00905-X].
[27]
He, F.; Li, P.; Gu, Y.; Li, G. Glycerol as a promoting medium for electrophilic activation of aldehydes: Catalyst-free synthesis of Di(indolyl)methanes, xanthene-1,8(2H)-diones and 1- oxohexahydroxanthenes. Green Chem., 2009, 11(1), 1768-1773. [http://dx.doi.org/10.1039/b916015a].
[28]
Li, M.; Chen, C.; He, F.; Gu, Y. Multicomponent reactions of 1,3_cyclohexanediones and formaldehyde in glycerol: Stabilization of paraformaldehyde in glycerol resulted from using dimedone as substrate. Adv. Synth. Catal., 2010, 352(2), 519-530. [http://dx.doi.org/10.1002/adsc.200900770].
[29]
Alonso, D.M.; Bond, J.Q.; Dumesic, J.A. Catalytic conversion of biomass to biofuels. Green Chem., 2010, 12(11), 1493-1513. [http://dx.doi.org/10.1039/c004654j].
[30]
Zhou, B.; Yang, J.; Li, M.; Gu, Y. Gluconic acid aqueous solution as a sustainable and recyclable promoting medium for organic reactions. Green Chem., 2011, 13(8), 2204-2211. [http://dx.doi.org/10.1039/c1gc15411g].
[31]
Gu, Y.; Jérôme, F. Bio-based solvents: An emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem. Soc. Rev., 2013, 42(24), 9550-9570. [http://dx.doi.org/10.1039/c3cs60241a]. [PMID: 24056753].
[32]
Sun, S.; Bai, R.; Gu, Y. From waste biomass to solid support: Lignosulfonate as a cost-effective and renewable supporting material for catalysis. Chemistry, 2014, 20(2), 549-558. [http://dx.doi.org/10.1002/chem.201303364]. [PMID: 24307475].
[33]
Makkar, R.S.; Rockne, K.J. Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environ. Toxicol. Chem., 2003, 22(10), 2280-2292. [http://dx.doi.org/10.1897/02-472]. [PMID: 14551990].
[34]
Krishnappa, B.B.; Kantharaju, K. Knoevenagel condensation reaction catalysed by agro-waste extract as a greener solvent catalyst. Org. Commun, 2021, 14(1), 81-91. [http://dx.doi.org/10.25135/acg.oc.99.21.01.1948].
[35]
Kantharaju, K.; Hiremath, P.B. Application of novel, efficient and agro-waste sourced catalyst for Knoevenagel condensation reaction. Indian J. Chem., 2020, 59B(2), 258-270.
[36]
Hiremath, P.B.; Kantharaju, K. A microwave accelerated sustainable approach for the synthesis of 2-amino-4H-chromenes catalysed by WEPPA: A green strategy. Curr. Microw. Chem., 2019, 6(14), 30-43. [http://dx.doi.org/10.2174/2213335606666190820091029].
[37]
Hiremath, P.B.; Kantharaju, K. An efficient and facile synthesis of 2-amino-4h-pyrans & tetrahydrobenzo[b]pyrans catalysed by WEMFSA at room temperature. Chem. Sel., 2020, 5(6), 1896-1906.
[38]
Kantharaju, K.; Hiremath, P.B. A green catalytic system for the Knoevenagel condensation using WEPBA. IJETSR, 2017, 4(9), 807-813.
[39]
Hiremath, P.B.; Kantharaju, K.; Pattanashetty, S.H. Microwave assisted synthesis of 4-benzylidene-2-(2-fluorophenyl) oxazol5(4h)-one derivatives catalysed by egg shell powder and evaluation of their anti-microbial activity. In: Conference on Drug Design and Discovery Technologies; Murahari, M.; Sundar, L.; Chaki, S.; Poongavanam, V.; Bhat, P.; Nayak, S.Y., Eds.; Royal Society of Chemistry: Burlington, London, 2019.
[http://dx.doi.org/10.1039/9781839160783-00123]
[40]
Hiremath, P.B.; Kantharaju, K. Microwave-accelerated facile synthesis of 1h-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives catalyzed by WEMPA. Polycyc. Arom. Comp, 2020.
[41]
Leitner, W. Green solvents–progress in science and application. Green Chem., 2009, 11(5), 603. [http://dx.doi.org/10.1039/b907013n].
[42]
Kantharaju, K.; Santosh, Y.K. Microwave accelerated synthesis of 2-amino-4H-chromenes catalyzed by WELFSA: A green protocol. ChemistrySelect, 2018, 3(18), 5016-5024. [http://dx.doi.org/10.1002/slct.201800096].
[43]
Jing, Yu. Green synthesis of pyrano[2,3-d]- pyrimidine derivatives in ionic liquids. Synth. Commun., 2005, 35(24), 3133-3140. [http://dx.doi.org/10.1080/00397910500282661].