Synthesis of Spiropyrazoles Under Organic and Nonorganic Catalysis

Page: [834 - 856] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Spiropyrazoles display many biological activities such as antitumor, vasodilation, analgesic, phosphodiesterase inhibitors, aldosterone antagonistic, anabolic, androgenic, antiinflammatory, progestational and salt-retaining activities, and they also exert neuroprotection in dopaminergic cell death. Many efforts have been made to obtain these derivatives with high yield and excellent regio-, diastereo- and enantioselectivities. Most of the spiroprazole synthesis methods were proceeded in good to excellent yield in the presence of organic catalysts, such as squaramide, NHC pre-catalyst, pyrrole derivatives, bis-oxazoline, etc. DMAP, DABCO, thiourea derivatives, DBU, acetic acid and quinoline catalysts. In addition, the inorganic and organometallic catalysts have been proven their efficiency in the synthesis of various types of spiro-pyrazoles in excellent yield. Thus, in this review, we have compiled all citations for the synthesis of spiropyrazoles in the presence of various types of catalysts such as organic, inorganic, and metalorganic catalysts in the range 2020 to 2012. This review article is a useful compilation for researchers interested in the synthesis of spiropyrazole derivatives and will assist them in selecting appropriate catalysts for the preparation of their spiropyrazoles.

Keywords: Spiropyrazoles, organic catalysts, inorganic catalysts, squarmide catalysts, DABCO, DBU.

Graphical Abstract

[1]
Fayed, E.A.; Eldin, R.R.E.; Mehany, A.B.M.; Bayoumi, A.H.; Ammar, Y.A. Isatin-Schiff’s base and chalcone hybrids as chemically apoptotic inducers and EGFR inhibi-tors; design, synthesis, anti-proliferative activities and in silico evaluation. J. Mol. Struct., 2021, 1234, 130159.
[http://dx.doi.org/10.1016/j.molstruc.2021.130159]
[2]
Nunes, R.C.; Ribeiro, C.J.A.; Monteiro, Â.; Rodrigues, C.M.P.; Amaral, J.D.; Santos, M.M.M. In vitro targeting of colon cancer cells using spiropyrazoline oxindoles. Eur. J. Med. Chem., 2017, 139, 168-179.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.057] [PMID: 28800455]
[3]
Wu, S.; Li, Y.; Xu, G.; Chen, S.; Zhang, Y.; Liu, N.; Dong, G.; Miao, C.; Su, H.; Zhang, W.; Sheng, C. Novel spiropyrazolone antitumor scaffold with potent activity: Design, synthesis and structure-activity relationship. Eur. J. Med. Chem., 2016, 115, 141-147.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.039] [PMID: 27016707]
[4]
Monteiro, Â.; Gonçalves, L.M.; Santos, M.M.M. Synthesis of novel spiropyrazoline oxindoles and evaluation of cytotoxicity in cancer cell lines. Eur. J. Med. Chem., 2014, 79, 266-272.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.023] [PMID: 24747063]
[5]
Girgis, A.S.; Ismail, N.S.M.; Farag, H.; el-Eraky, W.I.; Saleh, D.O.; Tala, S.R.; Katritzky, A.R. Regioselective synthesis and molecular modeling study of vasorelaxant active 7,9-dioxa-1,2-diaza-spiro[4.5]dec-2-ene-6,10-diones. Eur. J. Med. Chem., 2010, 45(9), 4229-4238.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.018] [PMID: 20615586]
[6]
Silaychev, P.S.; Filimonov, V.O.; Maslivets, A.N.; Makhmudov, R.R. Russ. Patent RU2577528, 2014.
[7]
Amata, E.; Bland, N.D.; Campbell, R.K.; Pollastri, M.P. Evaluation of pyrrolidine and pyrazolone derivatives as inhibitors of trypanosomal phosphodiesterase B1 (TbrPDEB1). Tetrahedron Lett., 2015, 56(21), 2832-2835.
[http://dx.doi.org/10.1016/j.tetlet.2015.04.061] [PMID: 25977593]
[8]
Tada, M.; Motoki, N.; Takahashi, N.; Miyata, T.; Takechi, T.; Uchida, T.; Takagi, Y.; Miyata, T. Synthesis and Structure-Activity Relationships of Miticidal 4,5-Dihydropyrazole-5-thiones. Pestic. Sci., 1996, 48(2), 165-173.
[http://dx.doi.org/10.1002/(SICI)1096-9063(199610)48:2<165:AID-PS455>3.0.CO;2-Z]
[9]
Colton, F.B. Spiro(steroidal-6,3′-1-pyrazolines) and process. U.S. Patent 3,261,829, 1966.
[10]
Zaiter, J.; Hibot, A.; Hafid, A.; Khouili, M.; Neves, C.M.B.; Simões, M.M.Q.; Neves, M.G.P.M.S.; Faustino, M.A.F.; Dagci, T.; Saso, L.; Armagan, G. Evaluation of the cellular protection by novel spiropyrazole compounds in dopaminergic cell death. Eur. J. Med. Chem., 2021, 213, 113140.
[http://dx.doi.org/10.1016/j.ejmech.2020.113140] [PMID: 33454549]
[11]
Gadow, H.S.; Farghaly, T.A.; Eldesoky, A.M. Experimental and theoretical investigations for some spiropyrazoles derivatives as corrosion inhibitors for copper in 2 M HNO3 solutions. J. Mol. Liq., 2019, 294, 111614.
[http://dx.doi.org/10.1016/j.molliq.2019.111614]
[12]
Eldesoky, A.M.; Hassan, H.M.; Subaihi, A.; El Shahawy, A.; Farghaly, T.A. Water Pipes Corrosion inhibitors for Q235 steel in Hydrochloric Acid Medium Using Spiro-pyrazoles Derivatives. Coatings, 2020, 10(2), 167.
[http://dx.doi.org/10.3390/coatings10020167]
[13]
Ghasemzadeh, M.A.; Azimi-Nasrabad, M.; Farhadi, S.; Mirhosseini-Eshkevari, B. A highly efficient synthesis of 2,4-diamino-6-arylpyrimidine-5-carbonitrile deriva-tives using NiCo2O4@Ni(BDC) metal-organic frameworks as a novel and bifunctional catalyst. J. Organomet. Chem., 2019, 900, 120935.
[http://dx.doi.org/10.1016/j.jorganchem.2019.120935]
[14]
Deyris, P.A.; Grison, C. Nature, ecology and chemistry: An unusual combination for a new green catalysis, ecocatalysis. Curr. Opin. Green Sustain. Chem., 2018, 10, 6-10.
[http://dx.doi.org/10.1016/j.cogsc.2018.02.002]
[15]
Häring, M.; Tautz, M.; Alegre-Requena, J.V.; Saldías, C.; Díaz, D.D. Non-enzyme entrapping biohydrogels in catalysis. Tetrahedron Lett., 2018, 59(35), 3293-3306.
[http://dx.doi.org/10.1016/j.tetlet.2018.07.029]
[16]
Mao, J.; Yin, J.; Pei, J.; Wang, D.; Li, Y. Single atom alloy: An emerging atomic site material for catalytic applications. Nano Today, 2020, 34, 100917.
[http://dx.doi.org/10.1016/j.nantod.2020.100917]
[17]
Allgeier, A.M. Catalysis of Organic Reactions. Top. Catal., 2010, 53(15-18), 977-978.
[http://dx.doi.org/10.1007/s11244-010-9575-8]
[18]
Polshettiwar, V.; Varma, R.S. Green chemistry by nano-catalysis. Green Chem., 2010, 12(5), 743-754.
[http://dx.doi.org/10.1039/b921171c]
[19]
Babu, S.G.; Karvembu, R. Copper based nanoparticles-catalyzed organic transformations. Catal. Surv. Asia, 2013, 17(3-4), 156-176.
[http://dx.doi.org/10.1007/s10563-013-9159-2]
[20]
Tandon, P.K.; Singh, S.B. Catalytic applications of copper species in organic transformations: A review. J. Cataly. Cataly., 2014, 1, 1-14.
[21]
Chica, A. Antonio ChicaZeolites: Promised Materials for the Sustainable Production of Hydrogen. Int. Sch. Res. Notices, 2013, 2013, 1-19.
[http://dx.doi.org/10.1155/2013/907425]
[22]
Liu, J.; Peng, X.; Sun, W.; Zhao, Y.; Xia, C. Magnetically separable Pd catalyst for carbonylative Sonogashira coupling reactions for the synthesis of α,β-alkynyl ketones. Org. Lett., 2008, 10(18), 3933-3936.
[http://dx.doi.org/10.1021/ol801478y] [PMID: 18722455]
[23]
Astruc, D.; Lu, F.; Aranzaes, J.R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed., 2005, 44(48), 7852-7872.
[http://dx.doi.org/10.1002/anie.200500766] [PMID: 16304662]
[24]
Singh, S.B.; Tandon, P.K. Catalysis: A Brief Review on Nano-Catalyst. J. Energ. Chem. Eng., 2014, 2, 106-115.
[25]
Dawood, D.H.; Abbas, E.M.H.; Farghaly, T.A.; Ali, M.M.; Ibrahim, M.F. ZnO Nanoparticles Catalyst in the Synthesis of Bioactive Fused Pyrimidines as Anti-breast Cancer Agents Targeting VEGFR-2. Med. Chem., 2019, 15(3), 277-286.
[http://dx.doi.org/10.2174/1573406414666180912113226] [PMID: 30207239]
[26]
Almazroi, L.; Shah, R.K.; El-Metwaly, N.M.; Farghaly, T.A. New catalytic approach for nano-sized V(IV), Cr(III), Mn(II) and Fe(III)-triazole complexes: Detailed spectral, electrochemical and analytical studies. Res. Chem. Intermed., 2019, 45(4), 1943-1971.
[http://dx.doi.org/10.1007/s11164-018-03714-y]
[27]
Khormi, A.Y.; Farghaly, T.A.; Shaaban, M.R. Pyrimidyl formamidine palladium(II) complex as a nanocatalyst for aqueous suzuki-miyaura coupling. Heliyon, 2019, 5(3), e01367.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01367] [PMID: 30957046]
[28]
Hemalatha, K.; Madhumitha, G.; Kajbafvala, A.; Anupama, N.; Sompalle, R.; Roopan, S.M. Function of nanocatalyst in chemistry of organic compounds revolution: An overview. Hindawi Publishing Corporation. J. Nanomater., 2013, 23, 1-23.
[http://dx.doi.org/10.1155/2013/341015]
[29]
Lee, S.; Yeom, S.; Kim, S.; Oh, D. Development of aldolase-based catalysts for the synthesis of organic chemicals. Trends Biotechnol., 2012, 27, S0167-S7799.
[http://dx.doi.org/10.1016/j.tibtech.2021.08.001] [PMID: 34462144]
[30]
Lelais, G.; MacMillan, D.W.C. Modern strategies in organic catalysis: The advent and development of iminium activation. Aldrichim Acta, 2006, 39(3), 79.
[31]
Erkkilä, A.; Majander, I.; Pihko, P.M. Iminium catalysis. Chem. Rev., 2007, 107(12), 5416-5470.
[http://dx.doi.org/10.1021/cr068388p] [PMID: 18072802]
[32]
Halland, N.; Hansen, T.; Jørgensen, K.A. Organocatalytic asymmetric Michael reaction of cyclic 1,3-dicarbonyl compounds and α ,β-unsaturated ketones--a highly atom-economic catalytic one-step formation of optically active warfarin anticoagulant. Angew. Chem. Int. Ed., 2003, 42(40), 4955-4957.
[http://dx.doi.org/10.1002/anie.200352136] [PMID: 14579449]
[33]
Lee, S.; MacMillan, D.W. Organocatalytic vinyl and Friedel-crafts alkylations with trifluoroborate salts. J. Am. Chem. Soc., 2007, 129(50), 15438-15439.
[http://dx.doi.org/10.1021/ja0767480] [PMID: 18031044]
[34]
Madarász, Á.; Dósa, Z.; Varga, S.; Soós, T.; Csámpai, A.; Pápai, I. Thiourea derivatives as brønsted acid organocatalysts” (PDF). ACS Catal., 2016, 6(7), 4379-4387.
[http://dx.doi.org/10.1021/acscatal.6b00618]
[35]
Cao, Y.; Ge, J. Hybrid enzyme catalysts synthesized by a de novo approach for expanding biocatalysis. Chin. J. Catal., 2021, 42(10), 1625-1633.
[http://dx.doi.org/10.1016/S1872-2067(21)63798-1]
[36]
Svedendahl, M.; Hult, K.; Berglund, P. Fast carbon-carbon bond formation by a promiscuous lipase. J. Am. Chem. Soc., 2005, 127(51), 17988-17989.
[http://dx.doi.org/10.1021/ja056660r] [PMID: 16366534]
[37]
Dunsmore, C.J.; Carr, R.; Fleming, T.; Turner, N.J. A chemo-enzymatic route to enantiomerically pure cyclic tertiary amines. J. Am. Chem. Soc., 2006, 128(7), 2224-2225.
[http://dx.doi.org/10.1021/ja058536d] [PMID: 16478171]
[38]
Nakano, Y.; Biegasiewicz, K.F.; Hyster, T.K. Biocatalytic hydrogen atom transfer: An invigorating approach to free-radical reactions. Curr. Opin. Chem. Biol., 2019, 49, 16-24.
[http://dx.doi.org/10.1016/j.cbpa.2018.09.001] [PMID: 30269010]
[39]
Li, Z.; Wang, Z.; Meng, G.; Lu, H.; Huang, Z.; Chen, F. Identification of an ene reductase from yeast kluyveromyces marxianus and application in the asymmetric synthe-sis of (R)-profen esters. Asian J. Org. Chem., 2018, 7(4), 763-769.
[http://dx.doi.org/10.1002/ajoc.201800059]
[40]
Zhou, J.; Li, X.; Ma, X.; Sheng, W.; Lang, X. Cooperative photocatalysis of dye-TiO2 nanotubes with TEMPO+BF4− for selective aerobic oxidation of amines driven by green light. Appl. Catal. B, 2021, 296, 120368.
[http://dx.doi.org/10.1016/j.apcatb.2021.120368]
[41]
Coronado, J.M.; Fresno, F.; Hernández-Alonso, M.D.; Portela, R. Green energy and technology. In: Design of Advanced Photocatalytic Materials for Energy and Envi-ronmental Applications; Springer: London, 2013, pp. 1-5.
[http://dx.doi.org/10.1007/978-1-4471-5061-9]
[42]
Baly, E.C.C.; Helilbron, I.M.; Barker, W.F. Photocatalysis. Part I. The synthesis of formaldehyde and carbohydrates from carbon dioxide and water. J. Chem. Soc. Trans., 1921, 119(0), 1025-1035.
[http://dx.doi.org/10.1039/CT9211901025]
[43]
Kato, S.; Mashio, F. Titanium dioxide-photocatalyzed liquid phase oxidation of tetralin. J. Soc. Chem. Ind., 1964, 67(8), 1136-1140.
[http://dx.doi.org/10.1246/nikkashi1898.67.8_1136]
[44]
Liu, K.; Sharifzadeh, Z.; Rouhani, F.; Ghorbanloo, M.; Morsali, A. Metal-organic framework composites as green/sustainable catalysts. Coord. Chem. Rev., 2021, 436, 213827.
[http://dx.doi.org/10.1016/j.ccr.2021.213827]
[45]
Montoya-Bautista, C.V.; Avella, E.; Ramírez-Zamora, R-M.; Schouwenaars, R. Metallurgical wastes employed as catalysts and photocatalysts for water treatment: A review. Sustainability (Basel), 2019, 11(9), 2470.
[http://dx.doi.org/10.3390/su11092470]
[46]
Le Van Mao, R.; Saberi, M.A.; Lavigne, J.A.; Xiao, S.; Denes, G. Hybrid catalysts: Internal or external configuration for better catalytic performance? Proc. MRS, 1997, 497, 183-188.
[http://dx.doi.org/10.1557/PROC-497-183]
[47]
Sadiq, Z.; Naz, S.; Hussain, E.A.; Aslam, U. Spiropyrazolines: A worthy insight into the recent strategies and synthetic applications. Lett. Org. Chem., 2019, 16(5), 357-391.
[http://dx.doi.org/10.2174/1570178615666181022141147]
[48]
Xie, X.; Xiang, L.; Peng, C.; Han, B. Catalytic asymmetric synthesis of spiropyrazolones and their application in medicinal chemistry. Chem. Rec., 2019, 19(11), 2209-2235.
[http://dx.doi.org/10.1002/tcr.201800199] [PMID: 30821425]
[49]
Liu, S.; Bao, X.; Wang, B. Pyrazolone: A powerful synthon for asymmetric diverse derivatizations. Chem. Commun. (Camb.), 2018, 54(82), 11515-11529.
[http://dx.doi.org/10.1039/C8CC06196C] [PMID: 30225504]
[50]
Dadiboyena, S. Cycloadditions and condensations as essential tools in spiropyrazoline synthesis. Eur. J. Med. Chem., 2013, 63, 347-377.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.059] [PMID: 23517727]
[51]
Shawali, A.S.; Farghaly, T.A. Reactions of hydrazonoyl halides with heterocyclic thiones. Convenient methodology for heteroannulation, synthesis of spiroheterocycles and heterocyclic ring transformation. (Reivew). ARKIVOC, 2008, i(1), 18-64.
[http://dx.doi.org/10.3998/ark.5550190.0009.102]
[52]
Farghaly, T.A.; Dawood, K.M.; Shaaban, M.R. Chemistry and biological activity of pyridotriazolopyrimidines. Curr. Org. Synth., 2015, 12(3), 230-260. [Review
[http://dx.doi.org/10.2174/1570179412666150218202227]
[53]
Dawood, K.M.; Farghaly, T.A. Thiadiazole inhibitors: A patent review. Expert Opin. Ther. Pat., 2017, 27(4), 477-505.
[http://dx.doi.org/10.1080/13543776.2017.1272575] [PMID: 27976971]
[54]
Gaber, H.M.; Muhammad, Z.A.; Gomha, S.M.; Farghaly, T.A.; Bagley, M.C. Recent synthetic approaches to N, N-dimethyl-β-ketoenamines. Curr. Org. Chem., 2017, 21(21), 2168-2195.
[55]
Behbehani, H.; Dawood, K.M.; Farghaly, T.A. Biological evaluation of benzosuberones. Expert Opin. Ther. Pat., 2018, 28(1), 5-29.
[http://dx.doi.org/10.1080/13543776.2018.1389898] [PMID: 28994619]
[56]
Farghaly, T.A.; Al-Hussain, S.A.; Muhammad, Z.A.; Abdallah, M.A.; Zaki, M.E.A. Synthesis and reactions of perimidines and their fused systems. Curr. Org. Chem., 2020, 24(15), 1669-1716.
[http://dx.doi.org/10.2174/1385272824999200622113807]
[57]
Dawood, K.M.; Farghaly, T.A.; Raslan, M.A. Heteroannulation routes to bioactive pyrazolooxazines. Curr. Org. Chem., 2020, 24(17), 1943-1975.
[http://dx.doi.org/10.2174/1570179417999200628035124]
[58]
Farghaly, T.A.; Al-Hasani, W.A.; Abdulwahab, H.G. An updated patent review of VEGFR-2 inhibitors (2017-present). Expert Opin. Ther. Pat., 2021, 31(11), 989-1007.
[http://dx.doi.org/10.1080/13543776.2021.1935872] [PMID: 34043477]
[59]
Shaaban, M.R.; Farghaly, T.A.; Khormi, A.Y.; Farag, A.M. Recent advances in synthesis and uses of heterocycles-based palladium(II) complexes as robust, stable, and low-cost catalysts for suzuki- miyaura crosscouplings. Curr. Org. Chem., 2019, 23(15), 1601-1662.
[http://dx.doi.org/10.2174/1385272823666190620121845]
[60]
Tan, C.Y.; Lu, H.; Zhang, J.L.; Liu, J.Y.; Xu, P.F. Asymmetric organocatalytic [4 + 1] annulations involving a polarity reversal process: A tandem catalytic approach to highly functionalized spiropyrazolone derivatives. J. Org. Chem., 2020, 85(2), 594-602.
[http://dx.doi.org/10.1021/acs.joc.9b02684] [PMID: 31790224]
[61]
Amireddy, M.; Chen, K. Organocatalytic one-pot asymmetric synthesis of functionalized spiropyrazolones via a Michael-aldol sequential reaction. RSC Advances, 2016, 6(81), 77474-77480.
[http://dx.doi.org/10.1039/C6RA13923J]
[62]
Lin, Y.; Zhao, B.L.; Du, D.M. Bifunctional squaramide-catalyzed asymmetric [3 + 2] cyclization of 2-(1-methyl-2-oxoindolin-3-yl)malononitriles with unsaturated pyrazolones to construct spirooxindole-fused spiropyrazolones. J. Org. Chem., 2019, 84(16), 10209-10220.
[http://dx.doi.org/10.1021/acs.joc.9b01268] [PMID: 31318546]
[63]
Li, J.H.; Du, D.M. Organocatalyzed cascade aza-Michael/Michael addition for the asymmetric construction of highly functionalized spiropyrazolone tetrahydroquino-lines. Chem. Asian J., 2014, 9(11), 3278-3286.
[http://dx.doi.org/10.1002/asia.201402706] [PMID: 25204540]
[64]
Lu, H.; Zhang, H.X.; Tan, C.Y.; Liu, J.Y.; Wei, H.; Xu, P.F. One-pot asymmetric synthesis of spiropyrazolone-linked cyclopropanes and benzofurans through a general michael addition/chlorination/nucleophilic substitution sequence. J. Org. Chem., 2019, 84(16), 10292-10305.
[http://dx.doi.org/10.1021/acs.joc.9b01454] [PMID: 31321983]
[65]
Mondal, B.; Maity, R.; Pan, S.C. Highly diastereo- and enantioselective synthesis of spiro-tetrahydrofuran-pyrazolones via organocatalytic cascade reaction between γ-hydroxyenones and unsaturated pyrazolones. J. Org. Chem., 2018, 83(15), 8645-8654.
[http://dx.doi.org/10.1021/acs.joc.8b00781] [PMID: 29812940]
[66]
Zhou, J.; Huang, W.J.; Jiang, G.F. Synthesis of chiral pyrazolone and spiropyrazolone derivatives through squaramide-catalyzed reaction of pyrazolin-5-ones with o-quinone methides. Org. Lett., 2018, 20(4), 1158-1161.
[http://dx.doi.org/10.1021/acs.orglett.8b00025] [PMID: 29420039]
[67]
Zhang, X-L.; Tang, C-K.; Xia, A-B.; Feng, K-X.; Du, X-H.; Xu, D-Q. One-Pot organocatalytic Michael addition/i2-mediated cyclization sequence: metal-free synthesis of spiropyrazolones from 1,3-diketones and unsaturated pyrazolones. Eur. J. Org. Chem., 2017, 2017(22), 3152-3160.
[http://dx.doi.org/10.1002/ejoc.201700474]
[68]
Chauhan, P.; Mahajan, S.; Loh, C.C.J.; Raabe, G.; Enders, D. Streocontrolled construction of six vicinal stereogenic centers on spiropyrazolones via organocascade Mi-chael/Michael/1,2-addition reactions. Org. Lett., 2014, 16(11), 2954-2957.
[http://dx.doi.org/10.1021/ol501093v] [PMID: 24840166]
[69]
Lia, S.; Wang, L.; Chauhan, P.; Peuronen, A.; Rissanen, K.; Enders, D. asymmetric synthesis of five-membered spiropyrazolones via n-heterocyclic carbene (NHC)-Catalyzed [3+2] annulations. Synthesis, 2017, 49, 1808-1815.
[70]
Wang, L.; Li, S.; Chauhan, P.; Hack, D.; Philipps, A.R.; Puttreddy, R.; Rissanen, K.; Raabe, G.; Enders, D. Asymmetric, three-component, one-pot synthesis of spiropyra-zolones and 2,5-chromenediones from aldol condensation/NHC-catalyzed annulation reactions. Chemistry, 2016, 22(15), 5123-5127.
[http://dx.doi.org/10.1002/chem.201600515] [PMID: 26864437]
[71]
Meazza, M.; Kamlar, M.; Jašíková, L.; Formánek, B.; Mazzanti, A.; Roithová, J.; Veselý, J.; Rios, R. Synergistic formal ring contraction for the enantioselective synthesis of spiropyrazolones. Chem. Sci. (Camb.), 2018, 9(30), 6368-6373.
[http://dx.doi.org/10.1039/C8SC00913A] [PMID: 30310564]
[72]
Leng, H-J.; Li, Q-Z.; Zeng, R.; Dai, Q-S.; Zhu, H-P.; Liu, Y.; Huang, W.; Han, B.; Li, J-L. Asymmetric construction of spiropyrazolone skeletons via amine-catalyzed [3+3] annulation. Adv. Synth. Catal., 2018, 360(2), 229-234.
[http://dx.doi.org/10.1002/adsc.201701035]
[73]
Ceban, V.; Olomola, T.O.; Meazza, M.; Rios, R. Highly diastereoselective synthesis of spiropyrazolones. Molecules, 2015, 20(5), 8574-8582.
[http://dx.doi.org/10.3390/molecules20058574] [PMID: 25985358]
[74]
Liu, L.; Zhong, Y.; Zhang, P.; Jiang, X.; Wang, R. Core scaffold-inspired stereoselective synthesis of spiropyrazolones via an organocatalytic Michael/cyclization se-quence. J. Org. Chem., 2012, 77(22), 10228-10234.
[http://dx.doi.org/10.1021/jo301851a] [PMID: 23072426]
[75]
Wang, G.; Liu, X.; Huang, T.; Kuang, Y.; Lin, L.; Feng, X. Asymmetric catalytic 1,3-dipolar cycloaddition reaction of nitrile imines for the synthesis of chiral spiro-pyrazoline-oxindoles. Org. Lett., 2013, 15(1), 76-79.
[http://dx.doi.org/10.1021/ol303097j] [PMID: 23228061]
[76]
Gerten, A.L.; Slade, M.C.; Pugh, K.M.; Stanley, L.M. Catalytic, enantioselective 1,3-dipolar cycloadditions of nitrile imines with methyleneindolinones. Org. Biomol. Chem., 2013, 11(45), 7834-7837.
[http://dx.doi.org/10.1039/c3ob41815d] [PMID: 24132663]
[77]
Ren, Y.; Meng, L-G.; Peng, T.; Zhua, L.; Wang, L. 4-Dimethylaminopyridine-catalyzed regioselective [3+2] cycloaddition of isatin-derived morita–baylis–hillman ad-ducts with azo esters: A simple protocol to access 3-spiropyrazole-2-oxindoles. Adv. Synth. Catal., 2018, 360(16), 3176-3180.
[http://dx.doi.org/10.1002/adsc.201800552]
[78]
Quan, B-X.; Zhuo, J-R.; Zhao, J-Q.; Zhang, M-L.; Zhou, M-Q.; Zhang, X.M.; Yuan, W.C. [4 + 1] annulation reaction of cyclic pyridinium ylides with in situ generated azoalkenes for the construction of spirocyclic skeletons. Org. Biomol. Chem., 2020, 18(10), 1886-1891.
[http://dx.doi.org/10.1039/C9OB02733E] [PMID: 32104832]
[79]
Liu, D.; Sun, J.; Zhang, Y.; Yan, C-G. Diastereoselective synthesis of spirocyclic isoxazolo[5,4-c]pyrrolo[2,1-a]isoquinolines via cascade double [3 + 2]cycloadditions. Org. Biomol. Chem., 2019, 17(34), 8008-8013.
[http://dx.doi.org/10.1039/C9OB01474H] [PMID: 31414109]
[80]
Meninno, S.; Roselli, A.; Capobianco, A.; Overgaard, J.; Lattanzi, A. Diastereodivergent and enantioselective access to spiroepoxides via organocatalytic epoxidation of unsaturated pyrazolones. Org. Lett., 2017, 19(19), 5030-5033.
[http://dx.doi.org/10.1021/acs.orglett.7b02189] [PMID: 28906120]
[81]
Sun, P.; Meng, C-Y.; Zhou, F.; Li, X-S.; Xie, J-W. Organocatalytic asymmetric one-pot sequential reaction: Hynthesis of highly substituted spirocyclohexanepyra-zolones with six contiguous stereogenic carbons. Tetrahedron, 2014, 70(49), 9330-9336.
[http://dx.doi.org/10.1016/j.tet.2014.10.038]
[82]
Jiang, S.; Guo, H-M.; Yao, S.; Shi, D-Q.; Xiao, W-J. Synthesis of spiro[pyrazolin-3,3′-oxindoles] and 3-arylcarbonylmethyl substituted ylideneoxindoles by 1,3-dipolar cycloadditions of 3-ylideneoxindoles and in-situ-generated α-diazoketones. J. Org. Chem., 2017, 82(19), 10433-10443.
[http://dx.doi.org/10.1021/acs.joc.7b01907] [PMID: 28929763]
[83]
Shuklaa, K.; Shaha, S.; Ranab, N.K.; Singha, V.K. An efficient and highly diastereoselective synthesis of carbocyclic spiropyrazolones via one-pot sequential dual or-gano-silver catalyzed Michaelhydroalkylation reactions. Tetrahedron Lett., 2019, 60(1), 92-97.
[http://dx.doi.org/10.1016/j.tetlet.2018.11.064]
[84]
Singh, A.; Loomer, A.L.; Roth, G.P. Synthesis of oxindolyl pyrazolines and 3-amino oxindole building blocks via a nitrile imine [3 + 2] cycloaddition strategy. Org. Lett., 2012, 14(20), 5266-5269.
[http://dx.doi.org/10.1021/ol302425h] [PMID: 23050551]
[85]
Gazzeh, H.; Boudriga, S.; Askri, M.; Khatyr, A.; Knorr, M.; Strohmann, C.; Golz, C.; Rousselin, Y.; Kubickid, M.M. Stoichiometry-controlled cycloaddition of ni-trilimines with unsymmetrical exocyclic dienones: Hicrowave-assisted synthesis of novel mono- and dispiropyrazoline derivatives. RSC Advances, 2016, 6(55), 49868-49875.
[http://dx.doi.org/10.1039/C6RA09703K]
[86]
Ivonin, M.A.; Bychok, Yu.; Safarova, N.V.; Sorokin, V.V. Three-Component Synthesis of 5-Aryl-3-amino-1H-pyrazole-4-carbonitriles and 3-Amino-1,2-diazaspiro[4.5]dec-3-ene-4-carbonitriles. Russ. J. Gen. Chem., 2017, 87(10), 2477-2480.
[http://dx.doi.org/10.1134/S1070363217100322]
[87]
Wu, Q.; Ma, C.; Du, X-H.; Chen, Y.; Cai, P-J. Diversity-oriented synthesis of spiropyrazolone-based tetrahydropyrroles via three-component 1,3-dipolar cycloaddi-tions. Synthesis, 2015, 48(4), 47. [A–K.
[http://dx.doi.org/10.1055/s-0035-1560966]
[88]
Liang, J.; Chen, Q.; Liu, L.; Jiang, X.; Wang, R. An organocatalytic asymmetric double Michael cascade reaction of unsaturated ketones and unsaturated pyrazolones: Highly efficient synthesis of spiropyrazolone derivatives. Org. Biomol. Chem., 2013, 11(9), 1441-1445.
[http://dx.doi.org/10.1039/C2OB27095A] [PMID: 23262465]
[89]
Yang, W.; Sun, W.; Zhang, C.; Wang, Q.; Guo, Z.; Mao, B.; Liao, J.; Guo, H. Lewis base-catalyzed asymmetric [3 + 3] annulation reaction of morita− baylis−hillman carbonates: enantioselective synthesis of spirocyclohexenes. ACS Catal., 2017, 7(5), 3142-3146.
[http://dx.doi.org/10.1021/acscatal.7b00320]
[90]
Ji, Y-L.; Li, H-P.; Ai, Y-Y.; Li, G.; He, X.H.; Huang, W.; Huang, R.Z.; Han, B. Enantio- and diastereoselective synthesis of spiropyrazolones via an organocatalytic [1 + 2 + 3] multicomponent reaction. Org. Biomol. Chem., 2019, 17(41), 9217-9225.
[http://dx.doi.org/10.1039/C9OB01927H] [PMID: 31595928]
[91]
Yang, W.; Zhang, Y.; Qiu, S.; Zhao, C.; Zhang, L.; Liu, H.; Zhou, L.; Xiao, Y.; Guo, H. Phosphine-catalyzed [4 + 2] cycloaddition of unsaturated pyrazolones with alleno-ates: A concise approach toward spiropyrazolones. RSC Advances, 2015, 5(77), 62343-62347.
[http://dx.doi.org/10.1039/C5RA11595G]
[92]
Outahar, F.; Moumou, M.; Hannioui, A.; Rakib, E.; El Ammari, L.; Saadi, M.; Akssira, M. Synthesis of novel spiro-pyrazole and spiro-isoxazoline derivatives of 9a- and 9b-hydroxyparthenolide. Tetrahedron Lett., 2020, 61(42), 152409.
[http://dx.doi.org/10.1016/j.tetlet.2020.152409]
[93]
Chen, D-Z.; Xiaoa, W-J.; Chen, J-R. Synthesis of spiropyrazoline oxindoles by a formal [4+1] annulation reaction between 3-bromooxindoles and in situ derived 1,2‐diaza‐1,3‐dienes. Org. Chem. Front., 2017, 4(7), 1289-1293.
[http://dx.doi.org/10.1039/C7QO00163K]
[94]
Gupta, A.K.; Vaishanv, N.K.; Kant, R.; Mohanan, K. Rapid and selective synthesis of spiropyrazolines and pyrazolylphthalides employing Seyferth-Gilbert reagent. Org. Biomol. Chem., 2017, 15(30), 6411-6415.
[http://dx.doi.org/10.1039/C7OB01417A] [PMID: 28731093]
[95]
Zhao, T.; Zhang, H.; Cui, L.; Qu, J.; Wang, B. Zinc chloride catalyzed Stereoselective construction of spiropyrazolone tetrahydroquinolines via tandem [1,5]-hydride shift/cyclization sequence. RSC Advances, 2015, 5(105), 86056-86060.
[http://dx.doi.org/10.1039/C5RA18471A]
[96]
Mukherjee, P.; Das, A.R. Spirocyclopropanes from intramolecular cyclopropanation of pyranopyrazoles and pyranopyrimidine-diones and lewis acid mediated (3 + 2) cycloadditions of spirocyclopropylpyrazolones. J. Org. Chem., 2017, 82(5), 2794-2802.
[http://dx.doi.org/10.1021/acs.joc.7b00089] [PMID: 28182406]
[97]
Zhang, Z.; Li, J.; Huang, G.; Sun, K.; Zhang, G.; Ma, N.; Liu, Q.; Liu, T. Copper(I)-catalyzed intramolecular N-N coupling of cyclopropyl O-acyl ketoximes: Synthesis of spiro-fused pyrazolin-5-ones. Chin. J. Chem., 2016, 34(12), 1309-1320.
[http://dx.doi.org/10.1002/cjoc.201600479]
[98]
Masumoto, E.; Maruoka, H.; Okabe, F.; Fujioka, T.; Yamagata, K. A Divergent synthesis of spiropyrazole derivatives containing iminolactone and/or cyclic imide moie-ty. J. Heterocycl. Chem., 2015, 52(1), 48-53.
[http://dx.doi.org/10.1002/jhet.1946]
[99]
Gupta, A.K.; Ahamad, S.; Gupta, E.; Kant, R.; Mohanan, K. Substrate-controlled product-selectivity in the reaction of the Bestmann-Ohira reagent with N-unprotected isatin-derived olefins. Org. Biomol. Chem., 2015, 13(38), 9783-9788.
[http://dx.doi.org/10.1039/C5OB01382H] [PMID: 26269330]
[100]
Zheng, Y.; Qiu, L.; Hong, K.; Dong, S.; Xu, X. Copper- or thermally induced divergent outcomes: synthesis of 4-Methyl 2H-chromenes and spiro-4H-pyrazoles. Chemis-try, 2018, 24(26), 6705-6711.
[http://dx.doi.org/10.1002/chem.201704759] [PMID: 29110367]
[101]
Rana, N.; Nain, S.; Kumar, D.; Kumar, R. Facile Synthesis of polysubstituted cyclopropanes using a-tosyloxyketones. Asian J. Chem., 2018, 30(3), 505-507.
[http://dx.doi.org/10.14233/ajchem.2018.20926]
[102]
Baharfar, R.; Zareyee, D.; Allahgholipour, S.L. Synthesis and characterization of MgO nanoparticles supported on ionic liquid-based periodic mesoporous organosilica (MgO@PMO-IL) as a highly efficient and reusable nanocatalyst for the synthesis of novel spirooxindole-furan derivatives. Appl. Organomet. Chem., 2019, 33(4), e4805.
[http://dx.doi.org/10.1002/aoc.4805]
[103]
Chu, M-M.; Qi, S-S.; Wang, Y-F.; Wang, B.; Jiang, Z-H.; Xu, D-Q.; Xu, Z-Y. Organocatalytic asymmetric [4+1] annulation of in situ generated ortho-quinomethanes with 4-halo pyrazolones: Straightforward access to chiral spiro-benzofuran pyrazolones. Org. Chem. Front., 2019, 6(12), 1977-1982.
[http://dx.doi.org/10.1039/C9QO00332K]
[104]
Luo, W.; Shao, B.; Li, J.; Xiao, X.; Song, D.; Ling, F.; Zhong, W. Construction of spirooxindole-fused spiropyrazolones containing contiguous three stereogenic centres via [3+2] annulation utilizing ferrocene derived bifunctional phosphine-catalyst. Org. Chem. Front., 2020, 7(8), 1016-1021.
[http://dx.doi.org/10.1039/D0QO00140F]
[105]
Zheng, J.; Wang, S-B.; Zheng, C.; You, S-L. Asymmetric synthesis of spiropyrazolones by rhodium-catalyzed C(sp2)-H functionalization/annulation reactions. Angew. Chem. Int. Ed. Engl., 2017, 56(16), 4540-4544.
[http://dx.doi.org/10.1002/anie.201700021] [PMID: 28328101]