Anti-Cancer Role of Dendrosomal Nano Solanine in Chronic Myelogenous Leukemia Cell Line through Attenuation of PI3K/AKT/mTOR Signaling Pathway and Inhibition of hTERT Expression

Article ID: e160522204855 Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: Solanine was primarily known as a toxic compound. Nonetheless, recently the apoptotic role of solanine through suppression of PI3K/AKT/mTOR signaling pathway has been shown against many malignancies except chronic myelogenous leukemia (CML). Sustaining the aforementioned pro-survival pathway, BCR-ABL fused oncoprotein in CML activates NF-kB and c- MYC for apparent immortalizing factor hTERT. Since solanine is a poor water-soluble molecule, herein, a nanocarrier was employed to intensify its pernicious effect on cancerous cells.

Objective: The current research aimed at evaluating the effect of dendrosomal nano solanine (DNS) on leukemic and HUVEC cells.

Methods: DNS characterization was determined by NMR, DLS and TEM. The viability, apoptosis and cell cycle of DNS and imatinib-treated cells were determined. A quantitative real-time PCR was employed to measure the expression of PI3K, AKT, mTOR, S6K, NF-kB, c-MYC and hTERT mRNAs. The Protein levels were evaluated by western blot.

Results: Investigating the anticancer property of free and dendrosomal nano solanine (DNS) and the feasible interplaying between DNS and imatinib on leukemic cells, we figured out the potential inhibitory role of DNS and DNS+IM on cancerous cells in comparison with chemotherapy drugs. Moreover, results revealed that the encapsulated form of solanine was much more preventive on the expression of PI3KCA, mTOR, NF-kB, c-MYC and hTERT accompanied by the dephosphorelating AKT protein.

Conclusion: The results advocate the hypothesis that DNS, rather than solanine, probably due to impressive penetration, can restrain the principal pro-survival signaling pathway in erythroleukemia K562 and the HL60 cell lines and subsequently declined mRNA level of hTERT which causes drug resistance during long-term treatment. Additionally, combinational treatment of DNS and IM could also bestow an additive anti-leukemic effect. As further clinical studies are necessary to validate DNS efficacy on CML patients, DNS could have the potency to be considered as a new therapeutic agent even in combination with IM.

Keywords: DNS, CML, K562, hTERT, PI3K, mTOR.

Graphical Abstract

[1]
Amini, A.; Ghaffari, S.H.; Mortazavi, Y.; Daliri, K.; Taranejoo, S.; Alimoghadam, K.; Ghavamzadeh, A. Expression pattern of hTERT telomerase subunit gene in different stages of chronic myeloid leukemia. Mol. Biol. Rep., 2014, 41(9), 5557-5561.
[http://dx.doi.org/10.1007/s11033-014-3472-3] [PMID: 25015264]
[2]
Deville, L.; Hillion, J.; Pendino, F.; Samy, M.; Nguyen, E.; Ségal-Bendirdjian, E. hTERT promotes imatinib resistance in chronic myeloid leukemia cells: Therapeutic implications. Mol. Cancer Ther., 2011, 10(5), 711-719.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0979] [PMID: 21364010]
[3]
Mancini, M.; Petta, S.; Martinelli, G.; Barbieri, E.; Santucci, M.A. RAD 001 (everolimus) prevents mTOR and Akt late re-activation in response to imatinib in chronic myeloid leukemia. J. Cell. Biochem., 2010, 109(2), 320-328.
[PMID: 20014066]
[4]
Sawyers, C.L. Chronic myeloid leukemia. N. Engl. J. Med., 1999, 340(17), 1330-1340.
[http://dx.doi.org/10.1056/NEJM199904293401706] [PMID: 10219069]
[5]
Melo, J.V.; Hughes, T.P.; Apperley, J.F. Chronic myeloid leukemia. Hematology (Am. Soc. Hematol. Educ. Program), 2003, 2003(1), 132-152.
[http://dx.doi.org/10.1182/asheducation-2003.1.132] [PMID: 14633780]
[6]
Jilani, I.; Kantarjian, H.; Gorre, M.; Cortes, J.; Ottmann, O.; Bhalla, K.; Giles, F.J.; Albitar, M. Phosphorylation levels of BCR-ABL, CrkL, AKT and STAT5 in imatinib-resistant chronic myeloid leukemia cells implicate alternative pathway usage as a survival strategy. Leuk. Res., 2008, 32(4), 643-649.
[http://dx.doi.org/10.1016/j.leukres.2007.08.009] [PMID: 17900686]
[7]
Vigneri, P.; Wang, J.Y. Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nat. Med., 2001, 7(2), 228-234.
[http://dx.doi.org/10.1038/84683] [PMID: 11175855]
[8]
Ren, R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat. Rev. Cancer, 2005, 5(3), 172-183.
[http://dx.doi.org/10.1038/nrc1567] [PMID: 15719031]
[9]
Kim, J.H.; Chu, S.C.; Gramlich, J.L.; Pride, Y.B.; Babendreier, E.; Chauhan, D.; Salgia, R.; Podar, K.; Griffin, J.D.; Sattler, M. Activation of the PI3K/mTOR pathway by BCR-ABL contributes to increased production of reactive oxygen species. Blood, 2005, 105(4), 1717-1723.
[http://dx.doi.org/10.1182/blood-2004-03-0849] [PMID: 15486067]
[10]
Tasian, S.K.; Teachey, D.T.; Rheingold, S.R. Targeting the PI3K/mTOR pathway in pediatric hematologic malignancies. Front. Oncol., 2014, 4, 108.
[http://dx.doi.org/10.3389/fonc.2014.00108] [PMID: 24904824]
[11]
Martelli, A.M.; Evangelisti, C.; Chappell, W.; Abrams, S.L.; Bäsecke, J.; Stivala, F.; Donia, M.; Fagone, P.; Nicoletti, F.; Libra, M.; Ruvolo, V.; Ruvolo, P.; Kempf, C.R.; Steelman, L.S.; McCubrey, J.A. Targeting the translational apparatus to improve leukemia therapy: Roles of the PI3K/PTEN/Akt/mTOR pathway. Leukemia, 2011, 25(7), 1064-1079.
[http://dx.doi.org/10.1038/leu.2011.46] [PMID: 21436840]
[12]
Bertacchini, J.; Heidari, N.; Mediani, L.; Capitani, S.; Shahjahani, M.; Ahmadzadeh, A.; Saki, N. Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell. Mol. Life Sci., 2015, 72(12), 2337-2347.
[http://dx.doi.org/10.1007/s00018-015-1867-5] [PMID: 25712020]
[13]
Park, S. Role of the PI3K/AKT and mTOR signaling pathways in acutemyeloid leukemia. haematologica. 2010, 955(5), 819-828.
[14]
Hemmings, B.A.; Restuccia, D.F. PI3K-PKB/Akt pathway. Cold Spring Harb. Perspect. Biol., 2012, 4(9)a011189
[http://dx.doi.org/10.1101/cshperspect.a011189] [PMID: 22952397]
[15]
Daniel, M.; Peek, G.W.; Tollefsbol, T.O. Regulation of the human catalytic subunit of telomerase (hTERT). Gene, 2012, 498(2), 135-146.
[http://dx.doi.org/10.1016/j.gene.2012.01.095] [PMID: 22381618]
[16]
Lamy, E.; Goetz, V.; Erlacher, M.; Herz, C.; Mersch-Sundermann, V. hTERT: Another brick in the wall of cancer cells. Mutat. Res. Rev. Mutat. Res., 2013, 752(2), 119-128.
[http://dx.doi.org/10.1016/j.mrrev.2012.12.005] [PMID: 23287739]
[17]
Kimura, A.; Ohmichi, M.; Kawagoe, J.; Kyo, S.; Mabuchi, S.; Takahashi, T.; Ohshima, C.; Arimoto-Ishida, E.; Nishio, Y.; Inoue, M.; Kurachi, H.; Tasaka, K.; Murata, Y. Induction of hTERT expression and phosphorylation by estrogen via Akt cascade in human ovarian cancer cell lines. Oncogene, 2004, 23(26), 4505-4515.
[http://dx.doi.org/10.1038/sj.onc.1207582] [PMID: 15048073]
[18]
Liu, H.; Liu, Q.; Ge, Y.; Zhao, Q.; Zheng, X.; Zhao, Y. hTERT promotes cell adhesion and migration independent of telomerase activity. Sci. Rep., 2016, 6(1), 22886.
[http://dx.doi.org/10.1038/srep22886] [PMID: 26971878]
[19]
Lipinska, N.; Romaniuk, A.; Paszel-Jaworska, A.; Toton, E.; Kopczynski, P.; Rubis, B. Telomerase and drug resistance in cancer. Cell. Mol. Life Sci., 2017, 74(22), 4121-4132.
[http://dx.doi.org/10.1007/s00018-017-2573-2] [PMID: 28623509]
[20]
Zhang, Y.; Chen, X.; Xu, X.; Wang, X.; Wang, X.; Yuan, G.; Sun, D.; Ka, W.; He, D.; Wen, Z.; Yao, W. Knockdown of hTERT alters biophysical properties of K562 cells resulting in decreased migration rate in vitro. Cell Biochem. Biophys., 2011, 61(3), 595-603.
[http://dx.doi.org/10.1007/s12013-011-9242-0] [PMID: 21833675]
[21]
Varma, N.; Anand, M.S.; Varma, S.; Juneja, S.S. Role of hTERT and WT1 gene expression in disease progression and imatinib responsiveness of patients with BCR-ABL positive chronic myeloid leukemia. Leuk. Lymphoma, 2011, 52(4), 687-693.
[http://dx.doi.org/10.3109/10428194.2010.550978] [PMID: 21314483]
[22]
Poole, J.C.; Andrews, L.G.; Tollefsbol, T.O. Activity, function, and gene regulation of the catalytic subunit of telomerase (hTERT). Gene, 2001, 269(1-2), 1-12.
[http://dx.doi.org/10.1016/S0378-1119(01)00440-1] [PMID: 11376932]
[23]
Grandjenette, C.; Schnekenburger, M.; Gaigneaux, A.; Gérard, D.; Christov, C.; Mazumder, A.; Dicato, M.; Diederich, M. Human telomerase reverse transcriptase depletion potentiates the growth-inhibitory activity of imatinib in chronic myeloid leukemia stem cells. Cancer Lett., 2020, 469, 468-480.
[http://dx.doi.org/10.1016/j.canlet.2019.11.017] [PMID: 31734352]
[24]
Han, S-S.; Chung, S.T.; Robertson, D.A.; Ranjan, D.; Bondada, S. Curcumin causes the growth arrest and apoptosis of B cell lymphoma by downregulation of egr-1, c-myc, bcl-XL, NF-κ B, and p53. Clin. Immunol., 1999, 93(2), 152-161.
[http://dx.doi.org/10.1006/clim.1999.4769] [PMID: 10527691]
[25]
Ciarcia, R.; Vitiello, M.T.; Galdiero, M.; Pacilio, C.; Iovane, V.; d’Angelo, D.; Pagnini, D.; Caparrotti, G.; Conti, D.; Tomei, V.; Florio, S.; Giordano, A. Imatinib treatment inhibit IL-6, IL-8, NF-KB and AP-1 production and modulate intracellular calcium in CML patients. J. Cell. Physiol., 2012, 227(6), 2798-2803.
[http://dx.doi.org/10.1002/jcp.23029] [PMID: 21938724]
[26]
Moon, D-O.; Kim, M.O.; Lee, J.D.; Choi, Y.H.; Kim, G.Y. Butein suppresses c-Myc-dependent transcription and Akt-dependent phosphorylation of hTERT in human leukemia cells. Cancer Lett., 2009, 286(2), 172-179.
[http://dx.doi.org/10.1016/j.canlet.2009.05.028] [PMID: 19560862]
[27]
Pelengaris, S.; Khan, M.; Evan, G. c-MYC: More than just a matter of life and death. Nat. Rev. Cancer, 2002, 2(10), 764-776.
[http://dx.doi.org/10.1038/nrc904] [PMID: 12360279]
[28]
Deininger, M.W.; Goldman, J.M.; Melo, J.V. The molecular biology of chronic myeloid leukemia. Blood, 2000, 96(10), 3343-3356.
[http://dx.doi.org/10.1182/blood.V96.10.3343] [PMID: 11071626]
[29]
Jiang, Q.W.; Chen, M.W.; Cheng, K.J.; Yu, P.Z.; Wei, X.; Shi, Z. Therapeutic potential of steroidal alkaloids in cancer and other diseases. Med. Res. Rev., 2016, 36(1), 119-143.
[http://dx.doi.org/10.1002/med.21346] [PMID: 25820039]
[30]
Lu, M-K.; Shih, Y.W.; Chang, C. T.T.; Fang, L.H.; Huang, H.C.; Chen, P.S. α-Solanine inhibits human melanoma cell migration and invasion by reducing matrix metalloproteinase-2/9 activities. Biol. Pharm. Bull., 2010, 33(10), 1685-1691.
[http://dx.doi.org/10.1248/bpb.33.1685] [PMID: 20930376]
[31]
Zhang, F.; Yang, R.; Zhang, G.; Cheng, R.; Bai, Y.; Zhao, H.; Lu, X.; Li, H.; Chen, S.; Li, J.; Wu, S.; Li, P.; Chen, X.; Sun, Q.; Zhao, G. Anticancer function of α-solanine in lung adenocarcinoma cells by inducing microRNA-138 expression. Tumour Biol., 2016, 37(5), 6437-6446.
[http://dx.doi.org/10.1007/s13277-015-4528-2] [PMID: 26631041]
[32]
Mohsenikia, M.; Alizadeh, A.M.; Khodayari, S.; Khodayari, H.; Kouhpayeh, S.A.; Karimi, A.; Zamani, M.; Azizian, S.; Mohagheghi, M.A. The protective and therapeutic effects of alpha-solanine on mice breast cancer. Eur. J. Pharmacol., 2013, 718(1-3), 1-9.
[http://dx.doi.org/10.1016/j.ejphar.2013.09.015] [PMID: 24051269]
[33]
Ji, Y.B.; Gao, S.Y.; Ji, C.F.; Zou, X. Induction of apoptosis in HepG2 cells by solanine and Bcl-2 protein. J. Ethnopharmacol., 2008, 115(2), 194-202.
[http://dx.doi.org/10.1016/j.jep.2007.09.023] [PMID: 18022776]
[34]
Sun, H. Solanine induces mitochondria-mediated apoptosis in human pancreatic cancer cells; Bio. Med. Res. Inter 2014, 2014.
[http://dx.doi.org/10.1155/2014/805926]
[35]
Gao, S-Y.; Wang, Q-J.; Ji, Y-B. Effect of solanine on the membrane potential of mitochondria in HepG2 cells and [Ca2+]i in the cells. World J. Gastroenterol., 2006, 12(21), 3359-3367.
[http://dx.doi.org/10.3748/wjg.v12.i21.3359] [PMID: 16733852]
[36]
Hassan, S.H. Alpha Solanine: A novel natural bioactive molecule with anticancer effects in multiple human malignancies. Nutr. Cancer, 2020, 1-12.
[PMID: 32762370]
[37]
Hasanain, M. Bhattacharjee, A.; Pandey, P.; Ashraf, R.; Singh, N.; Sharma, S.; Vishwakarma, A.L.; Datta, D.; Mitra, K.; Sarkar, J. α-Solanine induces ROS-mediated autophagy through activation of endoplasmic reticulum stress and inhibition of Akt/mTOR pathway. Cell Death Dis., 2015, 6(8), e1860-e1860.
[http://dx.doi.org/10.1038/cddis.2015.219] [PMID: 26313911]
[38]
Mohsenikia, M.; Farhangi, B.; Alizadeh, A.M.; Khodayari, H.; Khodayari, S.; Khori, V.; Arjmand Abbassi, Y.; Vesovic, M.; Soleymani, A.; Najafi, F. Therapeutic effects of dendrosomal solanine on a metastatic breast tumor. Life Sci., 2016, 148, 260-267.
[http://dx.doi.org/10.1016/j.lfs.2016.02.008] [PMID: 26854999]
[39]
Erfani-Moghadam, V.; Nomani, A.; Zamani, M.; Yazdani, Y.; Najafi, F.; Sadeghizadeh, M. A novel diblock of copolymer of (monomethoxy poly [ethylene glycol]-oleate) with a small hydrophobic fraction to make stable micelles/polymersomes for curcumin delivery to cancer cells. Int. J. Nanomedicine, 2014, 9, 5541-5554.
[http://dx.doi.org/10.2147/IJN.S63762] [PMID: 25489242]
[40]
Alexiou, C.; Schmid, R.J.; Jurgons, R.; Kremer, M.; Wanner, G.; Bergemann, C.; Huenges, E.; Nawroth, T.; Arnold, W.; Parak, F.G. Targeting cancer cells: Magnetic nanoparticles as drug carriers. Eur. Biophys. J., 2006, 35(5), 446-450.
[http://dx.doi.org/10.1007/s00249-006-0042-1] [PMID: 16447039]
[41]
Massimino, M.; Stella, S.; Tirrò, E.; Romano, C.; Pennisi, M.S.; Puma, A.; Manzella, L.; Zanghì, A.; Stagno, F.; Di Raimondo, F.; Vigneri, P. Non ABL-directed inhibitors as alternative treatment strategies for chronic myeloid leukemia. Mol. Cancer, 2018, 17(1), 56.
[http://dx.doi.org/10.1186/s12943-018-0805-1] [PMID: 29455672]
[42]
Misra, R.; Sahoo, S.K. Coformulation of doxorubicin and curcumin in poly(D,L-lactide-co-glycolide) nanoparticles suppresses the development of multidrug resistance in K562 cells. Mol. Pharm., 2011, 8(3), 852-866.
[http://dx.doi.org/10.1021/mp100455h] [PMID: 21480667]
[43]
Jakubowska, J.; Stasiak, M.; Szulawska, A.; Bednarek, A.; Czyz, M. Combined effects of doxorubicin and STI571 on growth, differentiation and apoptosis of CML cell line K562. Acta Biochim. Pol., 2007, 54(4), 839-846.
[http://dx.doi.org/10.18388/abp.2007_3181] [PMID: 17957275]
[44]
Jabbour, E.; Kantarjian, H. Chronic myeloid leukemia: 2018 update on diagnosis, therapy and monitoring. Am. J. Hematol., 2018, 93(3), 442-459.
[http://dx.doi.org/10.1002/ajh.25011] [PMID: 29411417]
[45]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[46]
Walters, D.K.; Muff, R.; Langsam, B.; Born, W.; Fuchs, B. Cytotoxic effects of curcumin on osteosarcoma cell lines. Invest. New Drugs, 2008, 26(4), 289-297.
[http://dx.doi.org/10.1007/s10637-007-9099-7] [PMID: 18071634]
[47]
Berridge, M.V. The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica (Indianap., Ind.), 1996, 4(1), 14-19.
[48]
Deininger, M.W.; Shah, N.P.; Altman, J.K.; Berman, E.; Bhatia, R.; Bhatnagar, B.; DeAngelo, D.J.; Gotlib, J.; Hobbs, G.; Maness, L.; Mead, M.; Metheny, L.; Mohan, S.; Moore, J.O.; Naqvi, K.; Oehler, V.; Pallera, A.M.; Patnaik, M.; Pratz, K.; Pusic, I.; Rose, M.G.; Smith, B.D.; Snyder, D.S.; Sweet, K.L.; Talpaz, M.; Thompson, J.; Yang, D.T.; Gregory, K.M.; Sundar, H. Chronic myeloid leukemia, version 2.2021, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw., 2020, 18(10), 1385-1415.
[http://dx.doi.org/10.6004/jnccn.2020.0047] [PMID: 33022644]
[49]
Breccia, M.; Foà, R. Current information and recommendations on the discontinuation of TKI inhibitors in chronic myeloid leukemia. Curr. Oncol. Rep., 2018, 20(3), 23.
[http://dx.doi.org/10.1007/s11912-018-0669-y] [PMID: 29511948]
[50]
Hochhaus, A.; Breccia, M.; Saglio, G.; García-Gutiérrez, V.; Réa, D.; Janssen, J.; Apperley, J. Expert opinion-management of chronic myeloid leukemia after resistance to second-generation tyrosine kinase inhibitors. Leukemia, 2020, 34(6), 1495-1502.
[http://dx.doi.org/10.1038/s41375-020-0842-9] [PMID: 32366938]
[51]
Sarno, F.; Pepe, G.; Termolino, P.; Carafa, V.; Massaro, C.; Merciai, F.; Campiglia, P.; Nebbioso, A.; Altucci, L. Trifolium Repens blocks proliferation in chronic myelogenous leukemia via the BCR-ABL/STAT5 pathway. Cells, 2020, 9(2), 379.
[http://dx.doi.org/10.3390/cells9020379] [PMID: 32041350]
[52]
Yang, J.; Hao, T.; Sun, J.; Wei, P.; Zhang, H. Long noncoding RNA GAS5 modulates α-Solanine-induced radiosensitivity by negatively regulating miR-18a in human prostate cancer cells. Biomed. Pharmacother., 2019, 112108656
[http://dx.doi.org/10.1016/j.biopha.2019.108656] [PMID: 30970507]
[53]
Yan, X. Li, M.; Chen, L.; Peng, X.; Que, Z.J.; An, H.M.; Shen, K.P.; Hu, B. α Solanine inhibits growth and metastatic potential of human colorectal cancer cells. Oncol. Rep., 2020, 43(5), 1387-1396.
[http://dx.doi.org/10.3892/or.2020.7519] [PMID: 32323807]
[54]
Hassan, S.H.; Gul, S.; Zahra, H.S.; Maryam, A.; Shakir, H.A.; Khan, M.; Irfan, M. Alpha solanine: A novel natural bioactive molecule with anticancer effects in multiple human malignancies. Nutr. Cancer, 2021, 73(9), 1541-1552.
[http://dx.doi.org/10.1080/01635581.2020.1803932] [PMID: 32762370]
[55]
Gu, T. Yuan, W.; Li, C.; Chen, Z.; Wen, Y.; Zheng, Q.; Yang, Q.; Xiong, X.; Yuan, A. α-solanine inhibits proliferation, invasion, and migration, and induces apoptosis in human choriocarcinoma jeg-3 cells in vitro and in vivo. Toxins (Basel), 2021, 13(3), 210.
[http://dx.doi.org/10.3390/toxins13030210] [PMID: 33805658]
[56]
Kummar, S.; Gutierrez, M.; Doroshow, J.H.; Murgo, A.J. Drug development in oncology: Classical cytotoxics and molecularly targeted agents. Br. J. Clin. Pharmacol., 2006, 62(1), 15-26.
[http://dx.doi.org/10.1111/j.1365-2125.2006.02713.x] [PMID: 16842375]
[57]
Zamani, M.; Sadeghizadeh, M.; Behmanesh, M.; Najafi, F. Dendrosomal curcumin increases expression of the long non-coding RNA gene MEG3 via up-regulation of epi-miRs in hepatocellular cancer. Phytomedicine, 2015, 22(10), 961-967.
[http://dx.doi.org/10.1016/j.phymed.2015.05.071] [PMID: 26321746]
[58]
Montazeri, M.; Sadeghizadeh, M.; Pilehvar-Soltanahmadi, Y.; Zarghami, F.; Khodi, S.; Mohaghegh, M.; Sadeghzadeh, H.; Zarghami, N. Dendrosomal curcumin nanoformulation modulate apoptosis-related genes and protein expression in hepatocarcinoma cell lines. Int. J. Pharm., 2016, 509(1-2), 244-254.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.039] [PMID: 27234697]
[59]
Hui, R.C-Y.; Gomes, A.R.; Constantinidou, D.; Costa, J.R.; Karadedou, C.T.; Fernandez de Mattos, S.; Wymann, M.P.; Brosens, J.J.; Schulze, A.; Lam, E.W. The forkhead transcription factor FOXO3a increases phosphoinositide-3 kinase/Akt activity in drug-resistant leukemic cells through induction of PIK3CA expression. Mol. Cell. Biol., 2008, 28(19), 5886-5898.
[http://dx.doi.org/10.1128/MCB.01265-07] [PMID: 18644865]
[60]
Wang, T.S.; Kuo, C.F.; Jan, K.Y.; Huang, H. Arsenite induces apoptosis in Chinese hamster ovary cells by generation of reactive oxygen species. J. Cell. Physiol., 1996, 169(2), 256-268.
[http://dx.doi.org/10.1002/(SICI)1097-4652(199611)169:2<256::AID-JCP5>3.0.CO;2-N] [PMID: 8908193]
[61]
Pan, B.; Zhong, W.; Deng, Z.; Lai, C.; Chu, J.; Jiao, G.; Liu, J.; Zhou, Q. Inhibition of prostate cancer growth by solanine requires the suppression of cell cycle proteins and the activation of ROS/P38 signaling pathway. Cancer Med., 2016, 5(11), 3214-3222.
[http://dx.doi.org/10.1002/cam4.916] [PMID: 27726305]
[62]
Meng, X.Q.; Zhang, W.; Zhang, F.; Yin, S.Y.; Xie, H.Y.; Zhou, L.; Zheng, S.S. Solanine-induced reactive oxygen species inhibit the growth of human hepatocellular carcinoma HepG2 cells. Oncol. Lett., 2016, 11(3), 2145-2151.
[http://dx.doi.org/10.3892/ol.2016.4167] [PMID: 26998139]
[63]
Wang, L.; Sun, Q.Q.; Zhang, S.J.; Du, Y.W.; Wang, Y.Y.; Zang, W.Q.; Chen, X.N.; Zhao, G.Q. Inhibitory effect of α-solanine on esophageal carcinoma in vitro. Exp. Ther. Med., 2016, 12(3), 1525-1530.
[http://dx.doi.org/10.3892/etm.2016.3500] [PMID: 27588073]
[64]
Kajstura, M.; Halicka, H.D.; Pryjma, J.; Darzynkiewicz, Z. Discontinuous fragmentation of nuclear DNA during apoptosis revealed by discrete “sub-G1” peaks on DNA content histograms. Cytometry A, 2007, 71(3), 125-131.
[http://dx.doi.org/10.1002/cyto.a.20357] [PMID: 17252584]
[65]
Kayabasi, C.; Yelken, B.O.; Asik, A.; Okcanoglu, T.B.; Sogutlu, F.; Gasimli, R.; Susluer, S.Y.; Saydam, G.; Avci, C.B.; Gunduz, C. PI3K/mTOR dual-inhibition with VS-5584 enhances anti-leukemic efficacy of ponatinib in blasts and Ph-negative LSCs of chronic myeloid leukemia. Eur. J. Pharmacol., 2021, 910174446
[http://dx.doi.org/10.1016/j.ejphar.2021.174446] [PMID: 34461124]
[66]
Xu, X.; Sun, J.; Song, R.; Doscas, M.E.; Williamson, A.J.; Zhou, J.; Sun, J.; Jiao, X.; Liu, X.; Li, Y. Inhibition of p70 S6 kinase (S6K1) activity by A77 1726, the active metabolite of leflunomide, induces autophagy through TAK1-mediated AMPK and JNK activation. Oncotarget, 2017, 8(18), 30438-30454.
[http://dx.doi.org/10.18632/oncotarget.16737] [PMID: 28389629]
[67]
Singh, P.; Kumar, V.; Gupta, S.K.; Kumari, G.; Verma, M. Combating TKI resistance in CML by inhibiting the PI3K/Akt/mTOR pathway in combination with TKIs: A review. Med. Oncol., 2021, 38(1), 10.
[http://dx.doi.org/10.1007/s12032-021-01462-5] [PMID: 33452624]
[68]
DE., Holanda L.S.; Mesquita, F.P.; DE Moraes-Filho, M.O.; DE Moraes, M.E.A.; Montenegro, R.C.; DE Sousa Portilho, A.J.; Moreira-Nunes, C.A. Characterization of telomerase (HTERT) in solid and hematopoietic cancer cell lines reveals different expression patterns. Anticancer Res., 2019, 39(9), 4743-4748.
[http://dx.doi.org/10.21873/anticanres.13657] [PMID: 31519574]
[69]
Duyao, M. Binding of NF-KB-like factors to regulatory sequences of the c-myc gene. Mechanisms in B-Cell Neoplasia 1990; Springer, 1990, pp. 211-220.
[http://dx.doi.org/10.1007/978-3-642-75889-8_27]