Pattern Classification for Ovarian Tumors by Integration of Radiomics and Deep Learning Features

Article ID: e160522204837 Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: Ovarian tumor is a common female genital tumor, among which malignant tumors have a poor prognosis. The survival rate of 70% of patients with ovarian cancer is less than 5 years, while benign ovarian tumor is better, so the early diagnosis of ovarian cancer is important for the treatment and prognosis of patients.

Objectives: Our aim is to establish a classification model for ovarian tumors.

Methods: We extracted radiomics and deep learning features from patients’CT images. The four-step feature selection algorithm proposed in this paper was used to obtain the optimal combination of features, then, a classification model was developed by combining those selected features and support vector machine. The receiver operating characteristic curve and an area under the curve (AUC) analysis were used to evaluate the performance of the classification model in both the training and test cohort.

Results: The classification model, which combined radiomics features with deep learning features, demonstrated better classification performance with respect to the radiomics features model alone in training cohort (AUC 0.9289 vs. 0.8804, P < 0.0001, accuracy 0.8970 vs. 0.7993, P < 0.0001), and significantly improve the performance in the test cohort (AUC 0.9089 vs. 0.8446, P = 0.001, accuracy 0.8296 vs. 0.7259, P < 0.0001).

Conclusion: The experiments showed that deep learning features play an active role in the construction of classification model, and the proposed classification model achieved excellent classification performance, which can potentially become a new auxiliary diagnostic tool.

Keywords: Classification, machine learning, deep learning, ovarian tumor, radiomics, CT.

[1]
Danala G, Thai T, Gunderson CC. e al. Applying quantitative CT image feature analysis to predict response of ovarian cancer patients to chemotherapy. Acad Radiol 2017; 24(10): 1233-9.
[http://dx.doi.org/10.1016/j.acra.2017.04.014] [PMID: 28554551]
[2]
Moufarrij S, Dandapani M, Arthofer E. e al. Epigenetic therapy for ovarian cancer: Promise and progress. Clin Epigenetics 2019; 11(1): 7.
[http://dx.doi.org/10.1186/s13148-018-0602-0] [PMID: 30646939]
[3]
Nougaret S, McCague C, Tibermacine H, Vargas HA, Rizzo S, Sala E. Radiomics and radiogenomics in ovarian cancer: A literature review. Abdom Radiol (NY) 2021; 46(6): 2308-22.
[http://dx.doi.org/10.1007/s00261-020-02820-z] [PMID: 33174120]
[4]
Lambin P, Rios-Velazquez E, Leijenaar R. e al. Radiomics: Extracting more information from medical images using advanced feature analysis Eur J Cancer 2012; 48(4): 441-6.
[http://dx.doi.org/10.1016/j.ejca.2011.11.036] [PMID: 22257792]
[5]
Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they are data. Radiology 2016; 278(2): 563-77.
[http://dx.doi.org/10.1148/radiol.2015151169] [PMID: 26579733]
[6]
Peng H, Dong D, Fang MJ. e al. Prognostic value of deep learning PET/CT-based radiomics: Potential role for future individual induction chemotherapy in advanced nasopharyngeal carcinoma. Clin Cancer Res 2019; 25(14): 4271-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3065] [PMID: 30975664]
[7]
Wu M, Tan H, Gao F. e al. Predicting the grade of hepatocellular carcinoma based on non-contrast-enhanced MRI radiomics signature Eur Radiol 2019; 29(6): 2802-11.
[http://dx.doi.org/10.1007/s00330-018-5787-2] [PMID: 30406313]
[8]
Nie P, Wang N, Pang J. e al. CT-based radiomics nomogram: A potential tool for differentiating hepatocellular adenoma from hepatocellular carcinoma in the noncirrhotic liver Acad Radiol 2021; 28(6): 799-807.
[http://dx.doi.org/10.1016/j.acra.2020.04.027] [PMID: 32386828]
[9]
Du D, Gu J, Chen X. e al. Integration of PET/CT radiomics and semantic features for differentiation between active pulmonary tuberculosis and lung cancer Mol Imaging Biol 2021; 23(2): 287-98.
[http://dx.doi.org/10.1007/s11307-020-01550-4] [PMID: 33030709]
[10]
Dong Y, Feng Q, Yang W. e al. Preoperative prediction of sentinel lymph node metastasis in breast cancer based on radiomics of T2- weighted fat-suppression and diffusion-weighted MRI Eur Radiol 2018; 28(2): 582-91.
[http://dx.doi.org/10.1007/s00330-017-5005-7] [PMID: 28828635]
[11]
Du D, Feng H, Lv W. e al. Machine learning methods for optimal radiomics-based differentiation between recurrence and inflammation: Application to nasopharyngeal carcinoma post-therapy PET/CT images Mol Imaging Biol 2020; 22(3): 730-8.
[http://dx.doi.org/10.1007/s11307-019-01411-9] [PMID: 31338709]
[12]
Liu Z, Li Z, Qu J. e al. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: A sulticenter Study Clin Cancer Res 2019; 25(12): 3538-47.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3190] [PMID: 30842125]
[13]
Lao J, Chen Y, Li ZC. e al. A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme Sci Rep 2017; 7(1): 10353.
[http://dx.doi.org/10.1038/s41598-017-10649-8] [PMID: 28871110]
[14]
Tian Q, Wu Y, Ren X, Razmjooy N. A new optimized sequential method for lung tumor diagnosis based on deep learning and converged search and rescue algorithm. Biomed Signal Process Control 2021; 68: 102761.
[http://dx.doi.org/10.1016/j.bspc.2021.102761]
[15]
Ning Z, Pan W, Chen Y. e al. Integrative analysis of cross-modal features for the prognosis prediction of clear cell renal cell carcinoma Bioinformatics 2020; 36(9): 2888-95.
[http://dx.doi.org/10.1093/bioinformatics/btaa056] [PMID: 31985775]
[16]
Lin X, Jiao H, Pang Z. e al. Lung cancer and granuloma identification using a deep learning model to extract 3-dimensional radiomics features in CT imaging Clin Lung Cancer 2021; 22(5): e756-66.
[http://dx.doi.org/10.1016/j.cllc.2021.02.004] [PMID: 33678583]
[17]
Guo Z, Xu L, Si Y, Razmjooy N. Novel computer-aided lung cancer detection based on convolutional neural network-based and feature-based classifiers using metaheuristics. Int J Imaging Syst Technol 2021; 31(4): 1954-69.
[http://dx.doi.org/10.1002/ima.22608]
[18]
Vallières M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 2015; 60(14): 5471-96.
[http://dx.doi.org/10.1088/0031-9155/60/14/5471] [PMID: 26119045]
[19]
Lloyd S. Least squares quantization in PCM. IEEE Trans Inf Theory 1982; 28: 129-37.
[http://dx.doi.org/10.1109/TIT.1982.1056489]
[20]
Singh A, Armstrong R, Regenauer-Lieb K, Mostaghimi P. Rock characterization using gray-level co-occurrence matrix: An objective perspective of digital rock statistics. Water Resour Res 2018.
[http://dx.doi.org/10.1029/2018WR023342]
[21]
Cai X, Li X, Razmjooy N, Ghadimi N. Breast cancer diagnosis by convolutional neural network and advanced thermal exchange optimization algorithm. Comput Math Methods Med 2021; 2021: 5595180.
[http://dx.doi.org/10.1155/2021/5595180] [PMID: 34790252]
[22]
Xu D, Kurani AS, Furst JD, Raicu DS. Run-length encoding for volumetric texture. Heart 2004; 27(25): 452-8.
[23]
Thibault G, Angulo J, Meyer F. Advanced statistical matrices for texture characterization: Application to cell classification. IEEE Trans Biomed Eng 2014; 61(3): 630-7.
[http://dx.doi.org/10.1109/TBME.2013.2284600] [PMID: 24108747]
[24]
Singh A, Regenauer-Lieb K, Walsh SDC, Armstrong RT, Griethuysen JJMV, Mostaghimi P. On representative elementary volumes of grayscale micro-CT images of porous media. Geophys Res Lett 2020; 47(15)
[http://dx.doi.org/10.1029/2020GL088594]
[25]
Amadasun M, King R. Textural features corresponding to textural properties. IEEE Trans Cybern 1989; 19(5): 1264-74.
[http://dx.doi.org/10.1109/21.44046]
[26]
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation, medical image computing and computer-assisted intervention – MICCAI. Munich, Germany; October 5-9; 2015.
[27]
He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition, The IEEE conference on Computer Vision and Pattern Recognition. Las Vegas, USA. 2016. June 26-July 1;
[28]
Hu J, Shen L, Albanie S, Sun G, Wu E. Squeeze-and-Excitation Networks. IEEE Trans Pattern Anal Mach Intell 2020; 42(8): 2011-23.
[http://dx.doi.org/10.1109/TPAMI.2019.2913372] [PMID: 31034408]
[29]
Hu A, Razmjooy N. Brain tumor diagnosis based on metaheuristics and deep learning. Int J Imaging Syst Technol 2020; 31(2): 657-69.
[http://dx.doi.org/10.1002/ima.22495]
[30]
Wang Q, Li Q, Mi R. e al. Radiomics nomogram building from multiparametric MRI to predict grade in patients with glioma: A cohort study J Magn Reson Imaging 2019; 49(3): 825-33.
[http://dx.doi.org/10.1002/jmri.26265] [PMID: 30260592]
[31]
Park H, Lim Y, Ko ES. e al. Radiomics signature on magnetic resonance imaging: Association with disease-free survival in patients with invasive breast cancer Clin Cancer Res 2018; 24(19): 4705-14.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3783] [PMID: 29914892]
[32]
Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn 2002; 46(1-3): 389-422.
[http://dx.doi.org/10.1023/A:1012487302797]
[33]
Fan Y, Chai Y, Li K. e al. Non-invasive and real-time proliferative activity estimation based on a quantitative radiomics approach for patients with acromegaly: A multicenter study J Endocrinol Invest 2020; 43(6): 755-65.
[http://dx.doi.org/10.1007/s40618-019-01159-7] [PMID: 31849000]
[34]
Jian J, Li Y, Pickhardt PJ. e al. MR image-based radiomics to differentiate type Ι and type ΙΙ epithelial ovarian cancers Eur Radiol 2021; 31(1): 403-10.
[http://dx.doi.org/10.1007/s00330-020-07091-2] [PMID: 32743768]
[35]
Zhang B, Tian J, Dong D. e al. Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma Clin Cancer Res 2017; 23(15): 4259-69.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2910] [PMID: 28280088]
[36]
Liang X, Alshemmary EN, Ma M, Liao S, Zhou W, Lu Z. Automatic diabetic foot prediction through fundus images by radiomics features IEEE Access 2021; 9: 92776-87.
[http://dx.doi.org/10.1109/ACCESS.2021.3093358]
[37]
Sahiner B, Chan HP, Hadjiiski L. Classifier performance prediction for computer-aided diagnosis using a limited dataset. Med Phys 2008; 35(4): 1559-70.
[http://dx.doi.org/10.1118/1.2868757] [PMID: 18491550]
[38]
Valluru D, Jeya IJS. IoT with cloud based lung cancer diagnosis model using optimal support vector machine. Health Care Manage Sci 2020; 23(4): 670-9.
[http://dx.doi.org/10.1007/s10729-019-09489-x] [PMID: 31327114]
[39]
Chang CC, Lin CJ. Libsvm: A library for support vector machines. ACM Trans Intell Syst Technol 2011; 2: 1-27.
[http://dx.doi.org/10.1145/1961189.1961199]
[40]
Robnik-Šikonja M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn 2003; 53: 23-69.
[http://dx.doi.org/10.1023/A:1025667309714]
[41]
Hosny A, Parmar C, Coroller TP. e al. Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study. PLoS edimcine 2018; 15(11): e1002711.
[http://dx.doi.org/10.1371/journal.pmed.1002711]
[42]
Sung H, Ferlay J, Siegel RL. e al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[43]
Morice P, Gouy S, Leary A. Mucinous ovarian carcinoma. N Engl J Med 2019; 380(13): 1256-66.
[http://dx.doi.org/10.1056/NEJMra1813254] [PMID: 30917260]
[44]
Chiofalo B, Bruni S, Certelli C, Sperduti I, Baiocco E, Vizza E. Primary debulking surgery vs. interval debulking surgery for advanced ovarian cancer: Review of the literature and meta-analysis. Minerva Med 2019; 110(4): 330-40.
[http://dx.doi.org/10.23736/S0026-4806.19.06078-6] [PMID: 31081304]
[45]
Li S, Liu J, Xiong Y. e al. A radiomics approach for automated diagnosis of ovarian neoplasm malignancy in computed tomography Sci Rep 2021; 11(1): 8730.
[http://dx.doi.org/10.1038/s41598-021-87775-x] [PMID: 33888749]