[12]
Ho TK. Random decision forests Proceedings of 3rd international conference on document analysis and recognition. 278-82.
[13]
Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 1992; 46(3): 175-85.
[17]
Liao H, Luo J. A deep multi-task learning approach to skin lesion classification. arXiv 2018.
[18]
Codella NCF, Gutman D, Celebi ME, et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). IEEE Int Symp Biomed Imag 2018; 2018: 168-72.
[19]
Zhang J, Xie Y, Wu Q, et al. Skin lesion classification in dermoscopy images using synergic deep learning. Int Conf Med Image Comput Comput-Assist Interven 2018; 2018: 12-20.
[20]
Xie B, He X, Zhao S, et al. XiangyaDerm: A Clinical Image Dataset of Asian Race for Skin Disease Aided Diagnosis//Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for Medical Imaging and Computer Assisted Intervention. Cham: Springer 2019; pp. 22-31.
[21]
Pal A, Chaturvedi A, Garain U, et al. CapsDeMM: Capsule network for detection of munro’s microabscess in skin biopsy images. Int Conf Med Imag Comput Comput-Assist Interven 2018; 2018: 389-97.
[22]
Marghoob A, Braun R. An Atlas of Dermoscopy. USA: CRC Press 2012.
[43]
Rubin's pathology: Clinicopathologic foundations of medicine. Pennsylvania, USA: Lippincott Williams & Wilkins. 2008.
[46]
Poynton C. Digital video and HD: Algorithms and Interfaces. Elsevier 2012.
[48]
Ahmad T, Farou Z. Supervised learning methods for skin segmentation based on pixel color classification. Cent-Eur J New Technol Res Educ Pract 2021. [Epub ahead of print]
[50]
Hua Ng J, Goyal M, Hewitt B, et al. The effect of color constancy algorithms on semantic segmentation of skin lesions. Med Imag 2019; 10953: 10953.
[57]
Bisla D, Choromanska A, Stein JA, et al. Skin lesion segmentation and classification with deep learning system. arXiv 2019; 2019: 1-6.
[58]
Jafari MH, Karimi N, Nasr-Esfahani E, et al. Skin lesion segmentation in clinical images using deep learning. Int Conf Pattern Recogn (ICPR) 2016; 2016: 337-42.
[59]
Vala HJ, Baxi A. A review on Otsu image segmentation algorithm. Int J Adv Res Comput Eng Technol 2013; 2(2): 387-9. [IJARCET]
[61]
Khan HA, Iskandar DNF, Al-Asad JF, et al. Classification of skin lesion with hair and artifacts removal using black-hat morphology and total variation. Int J Comput Digital Sys 2020; 10: 2-8.
[62]
Zhao R, Ouyang W, Li H, et al. Saliency detection by multi-context deep learning. Proceedings of the IEEE conference on computer vision and pattern recognition. Boston, MA, USA. 7-12 June 2015.
[63]
Pereira S, Pinto A, Alves V, et al. Deep convolutional neural networks for the segmentation of gliomas in multi-sequence MRI//BrainLes 2015. Cham: Springer 2015; pp. 131-43.
[72]
Abbas Q, Celebi ME, Garcia IF. A novel perceptually-oriented approach for skin tumor segmentation. Int J Innov Comput, Inf Control 2012; 8(3): 1837-48.
[76]
Zheng L, Zhao Y, Wang S, et al. Good practice in CNN feature transfer. arXiv 2016; 2016: 1604.00133.
[80]
Nyíri T, Kiss A. Style transfer for dermatological data augmentation. Proc SAI Intell Sys Conf 2020 2020; 915-23.
[81]
Chengchuang L, Chun S, Gansen Z, et al. Review of image data augmentation in computer vision. Comput Sci Appl 2021; 11(2): 13.
[83]
Zhang H, Cisse M, Dauphin YN, et al. mi xup: Beyond empirical risk minimization. arXiv 2017; 2017: 1710.09412..
[84]
Inoue H. Data augmentation by pairing samples for images classification. arXiv 2018; 2018: 1801.02929.
[85]
Yun S, Han D, Oh SJ, et al. Cutmix: Regularization strategy to train strong classifiers with localizable features. Proc IEEE/CVF Int Conf Comput Vision 2019; 2019: 6023-32.
[86]
Shah V, Autee P, Sonawane P. Detection of melanoma from skin lesion images using deep learning techniques. Int Conf Data Sci Eng [ICDSE] 2020; 2020: 1-8.
[87]
Perez F, Vasconcelos C, Avila S, et al. Data augmentation for skin lesion analysis//OR 20 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis. Cham: Springer 2018; pp. 303-11.
[88]
Pham TC, Luong CM, Visani M, et al. Deep CNN and data augmentation for skin lesion classification. Asian Conf Intell Inform Database Sys 2018; 2018: 573-82.
[90]
Cubuk ED, Zoph B, Mane D, et al. Autoaugment: Learning augmentation policies from data. arXiv 2018; 2018: 1805.09501..
[91]
Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Adv Neural Inf Process Syst 2014; 3: 2672-80.
[92]
Cubuk ED, Zoph B, Shlens J, et al. Randaugment: Practical automated data augmentation with a reduced search space. Proc IEEE/CVF Conf Comput Vision Pattern Recogn Workshops 2019; 2019: 702-3.
[93]
Li Y, Hu G, Wang Y, et al. Differentiable automatic data augmentation. Eur Conf Comput Vision 2020; 2020: 580-95.
[94]
Shen S, Xu M, Zhang F, et al. Low-cost and high-performance data augmentation for deep-learning-based skin lesion classification arXiv 2021; 2021: 2101.02353.
[95]
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. Adv Neural Inf Process Syst 2014; 2014: 27.
[97]
Wei J, Suriawinata A, Vaickus L, et al. Generative image translation for data augmentation in colorectal histopathology. Images. Machine Learn Health Workshop PMLR 2020; 2020: 10-24.
[98]
Bissoto A, Perez F, Valle E, et al. Skin lesion synthesis with generative adversarial networks//OR 20 context-aware operating theaters, computer assisted robotic endoscopy, clinical image-based procedures, and skin image analysis. Cham: Springer 2018; pp. 294-302.
[99]
Rashid H, Tanveer MA, Khan HA. Skin lesion classification using GAN based data augmentation. Annu Int Conf IEEE Eng Med Biol Soc (EMBC) 2019; 2019: 916-9.
[100]
Bisla D, Choromanska A, Berman RS, et al. Towards automated melanoma detection with deep learning: Data purification and augmentation. Proc IEEE/CVF Conf Comput Vision Pattern Recogn Workshops arXiv 2019; 2019: 1902.06061.
[103]
Goyal M, Hassanpour S, Yap MH. Region of interest detection in dermoscopy images for natural data-augmentation. arXiv 2018; 2018: 1807.10711..
[104]
Ghorbani A, Natarajan V, Coz D, et al. DermGAN: Synthetic generation of clinical skin disease images with pathology. PMLR 2020; 2020: 155-70.
[106]
Yang HY, Staib LH. Dual Adversarial Autoencoder for Dermoscopy image Generative Modeling. Int Sympos Biomed Imag 2019; 2019: 1247-50.
[108]
Afza F, Khan MA, Sharif M, et al. Skin lesion classification: An optimized framework of optimal color features selection. Int Conf Comput Inform Sci (ICCIS) 2020; 2020: 1-6.
[109]
Mporas I, Perikos I, Paraskevas M. Color models for skin lesion classification from dermoscopy images//Advances in Integrations of Intelligent Methods. Singapore: Springer 2020; pp. 85-98.
[112]
Yang J, Sun X, Liang J, et al. Clinical skin lesion diagnosis using representations inspired by dermatologist criteria. IEEE/CVF Conf Comput Vision Pattern Recogn (CVPR) 2018; 2018: 18311822.
[114]
Milton MAA. Automated skin lesion classification using ensemble of deep neural networks in ISIC 2018: Skin lesion analysis towards melanoma detection challenge. arXiv 2019; 2019: 1901.10802.
[119]
Deng J, Dong W, Socher R, et al. Imagenet: A large-scale hierarchical image database. IEEE Conf Comput Vision Pattern Recogn 2009; 2009: 248-55.
[124]
Muckatira S. Properties of winning tickets on skin lesion classification. arXiv 2020; 2020: 1901.10802..
[125]
Ratul M A R, Mozaffari MH, Lee WS, et al. Skin lesions classification using deep learning based on dilated convolution BioRxiv 2020; 860700.
[127]
Allegretti S, Bolelli F, Pollastri F, et al. Supporting skin lesion diagnosis with content-based image retrieval. Int Conf Pattern Recogn (ICPR) 2020; 2020: 20591924.
[130]
Aggarwal A, Das N, Sreedevi I. Attention-guided deep convolutional neural networks for skin cancer classification. Int Conf Image Proc Theory Tools Appl (IPTA) 2019; 2019: 1-6.
[132]
Zhang H, Wu C, Zhang Z, et al. Resnest: Split-attention networks. arXiv 2020; 2020: 2004.08955.
[136]
Perez F, Avila S, Valle E. Solo or ensemble? choosing a cnn architecture for melanoma classification. Proc IEEE/CVF Conf Comput Vision Pattern Recogn Workshops 2019; 2019: 1904.12724.
[143]
Sabbaghi S, Aldeen M, Garnavi R. A deep bag-of-features model for the classification of melanomas in dermoscopy images. Annu Int Conf IEEE Eng Med Biol Soc (EMBC) 2016; 2016: 1369-72.
[144]
Ahmad B, Usama M, Huang C M, et al. Discriminative feature learning for skin disease classification using deep convolutional neural network. IEEE Access 2020; PP(99): 1-1.
[145]
Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection. IEEE Trans Pattern Anal Machine Intell 2017; PP(99): 2999-3007.
[146]
Goceri E. Analysis of deep networks with residual blocks and different activation functions: Classification of skin diseases. Int Conf Image Proc Theory Tools Appl (IPTA) 2019; 2019: 1-6.
[147]
Shi X, Dou Q, Xue C, et al. An active learning approach for reducing annotation cost in skin lesion analysis. Int Workshop Machine Learn Medical Imag 2019; 2019: 628-36.
[148]
Bdair T, Navab N, Albarqouni S. Peer learning for skin lesion classification arXiv 2021; 2021: 2103.03703.
[150]
Combalia M, Hueto F, Puig S, et al. Uncertainty estimation in deep neural networks for dermoscopy image classification. Proc IEEE/CVF Conf Comput Vision Pattern Recogn Workshops. 2020: 744-5.
[152]
Khamparia A, Singh PK, Rani P, et al. An internet of health things‐driven deep learning framework for detection and classification of skin cancer using transfer learning. Trans Emerg Telecommun Technol 2020; 2020: e3963.
[153]
Hameed N, Shabut A, Hameed F, et al. An intelligent inflammatory skin lesions classification scheme for mobile devices. Int Conf Comput Electron Commun Eng (iCCECE) 2019; 2019: 83-8.
[156]
Ge Z, Demyanov S, Chakravorty R, et al. Skin disease recognition using deep saliency features and multimodal learning of dermoscopy and clinical images. Int Conf Med Image Comput Comput-Assist Interven 2017; 2017: 250-8.
[158]
Nunnari F, Bhuvaneshwara C, Ezema AO, et al. A study on the fusion of pixels and patient metadata in CNN-based classification of skin lesion images. Int Cross-Domain Conf Machine Learn Knowledge Extract 2020; 2020: 1-17.
[166]
Chang H. Skin cancer reorganization and classification with deep neural network. arXiv 2017; 2017: 1703.00534..
[167]
Rashid Sheykhahmad F, Razmjooy N, Ramezani M. A novel method for skin lesion segmentation. Int J Inform Secur Sys Manage 2015; 4(2): 458-66.
[168]
Ali AR, Li J, O’Shea SJ, et al. A deep learning based approach to skin lesion border extraction with a novel edge detector in dermoscopy images. Int Joint Conf Neural Networks (IJCNN) 2019; 2019: 1-7.
[169]
Jayalakshmi D, Dheeba J. Border detection in skin lesion images using an improved clustering algorithm. Int J e-Collaborat (IJeC) 2020; 16(4): 15-29.
[171]
Abbas AA, Abu-Almash FS. Skin lesion border detection based on optimal statistical model using optimized colour channel. J Autonom Intell 2020; 3(1): 18-26.
[173]
Abeysinghe D, Sotheeswaran S. Novel computational approaches for border irregularity prediction to detect melanoma in skin lesions. Int Res Conf Smart Comput Sys Eng (SCSE) 2020; 2020: 216-22.
[176]
Ali AR, Li J, Kanwal S, et al. A novel fuzzy multilayer perceptron (F-MLP) for the detection of irregularity in skin lesion border using dermoscopy images. Front Med 2020; 2020: 7.
[178]
Bozkurt A, Kose K, Alessi-Fox C, et al. A multiresolution convolutional neural network with partial label training for annotating reflectance confocal microscopy images of skin. Int Conf Med Image Comput Comput-Assist Int 2018; 2018: 1802.02213. .
[179]
Goyal M, Yap MH, Hassanpour S. Multi-class semantic segmentation of skin lesions via fully convolutional networks arXiv 2017; 2017: 1711.10449.
[180]
Liu Z, Pan H, Gong C, et al. Multi-class skin lesion segmentation for cutaneous T-cell lymphomas on high-resolution clinical images. Int Conf Med Image Comput Comput-Assist Interven 2020; 2020: 351-61.
[185]
Garnavi R, Aldeen M, Celebi ME, et al. Automatic segmentation of dermoscopy images using histogram thresholding on optimal color channels. Int J Med Med Sci 2010; 1(2): 126-34.
[189]
Patiño D, Avendaño J, Branch JW. Automatic skin lesion segmentation on dermoscopy images by the means of superpixel merging. Int Conf Med Image Comput Comput-Assist Interven 2018; 2018: 728-36.
[191]
Devi SS, Singh NH, Laskar RH. Fuzzy C-means clustering with histogram based cluster selection for skin lesion segmentation using non-dermoscopy images. Int J Interact Multimedia Artif Intell 2020; 6(1): 26-31.
[195]
Hasan MJ, Uddin J, Pinku SN. A novel modified SFTA approach for feature extraction. Int Conf Electrical Eng Inf Commun Technol (ICEEICT) 2016; 2016: 1-5.
[202]
Mishra R, Daescu O. Deep learning for skin lesion segmentation. IEEE Int Conf Bioinform Biomed (BIBM) 2017; 2017: 1189-94.
[207]
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. Proc IEEE Conf Comput Vision Pattern Recogn 2016. 2016: 770-8.
[208]
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks. Proc IEEE Conf Comput Vision Pattern Recogn 2017 2017; 2017: 4700-8.
[211]
Jiang F, Zhou F, Qin J, et al. Decision-augmented generative adversarial network for skin lesion segmentation. Int Sympos Biomed Imag 2019; 2019: 447-50.
[212]
Bi L, Feng D, Fulham M, et al. Improving skin lesion segmentation via stacked adversarial learning. Int Sympos Biomed Imag 2019; 2019: 1100-3.
[213]
Tu W, Liu X, Hu W, et al. Segmentation of lesion in dermoscopy images using dense-residual network with adversarial learning. IEEE Int Conf Image Proc (ICIP) 2019; 2019: 1430-4.
[216]
Chaurasia A, Culurciello E. Linknet: Exploiting encoder representations for efficient semantic segmentation. IEEE Visual Commun Image Proc (VCIP) 2017; 2017: 1-4.
[220]
Canalini L, Pollastri F, Bolelli F, et al. Skin lesion segmentation ensemble with diverse training strategies. Int Conf Comput Anal Images Patterns 2019; 2019: 89-101.
[225]
Messadi M, Cherifi H, Bessaid A. Segmentation and ABCD rule extraction for skin tumors classification. arXiv 2021; 2021: 2106.04372..
[226]
Lin BS, Michael K, Kalra S, et al. Skin lesion segmentation: U-Nets versus clustering. IEEE Sympos Series Comput Intell (SSCI) 2017; 2017: 1-7.
[227]
Huang C, Yu Y. Skin lesion segmentation based on deep learning. Int Conf Commun Technol (ICCT) 2020; 2020: 1360-4.
[228]
Justin S, Pattnaik M. Skin lesion segmentation by pixel by pixel approach using deep learning. IJASIS 2020; 6(1): 12-20.
[232]
Dastane T, Rao V, Shenoy K, et al. An effective pixel-wise approach for skin colour segmentation using pixel neighbourhood technique. arXiv 2021; 2021: 2108.10971.
[234]
Adegun A, Viriri S. Deep convolutional network-based framework for melanoma lesion detection and segmentation. Int Conf Adv Concepts Intell Vision Sys 2020; 2020: 51-62.
[239]
Qiu Y, Cai J, Qin X, et al. Inferring skin lesion segmentation with fully connected CRFS based on multiple deep convolutional neural networks. IEEE Acces 2020; 8: 144246-58.
[242]
Jiang C, Zhang Y, Wang J, et al. Approximated masked global context network for skin lesion segmentation. Int Conf Artif Neural Networks 2021; 2021: 610-22.
[244]
Chen LC, Papandreou G, Schroff F, Adam H. Rethinking atrous convolution for semantic image segmentation arXiv 2017; 2017: 1706.05587.
[246]
Sarker M, Kamal M, Rashwan HA, et al. MobileGAN: Skin lesion segmentation using a lightweight generative adversarial network. arXiv 2019; 2019: 1907.00856.
[255]
Kaur P, Dana KJ, Cula GO, et al. Hybrid deep learning for reflectance confocal microscopy skin disease images. Int Conf Pattern Recogn (ICPR) 2016; 2016: 1466-71.
[257]
Abhishek K, Hamarneh G, Drew MS. Illumination-based transformations improve skin lesion segmentation in dermoscopy images. Proc IEEE/CVF Conf Comput Vision Pattern Recogn Workshops 2020; 2020: 728-9.
[258]
Attia M, Hossny M, Nahavandi S, et al. Skin melanoma segmentation using recurrent and convolutional neural networks. Int Sympos Biomed Imag 2017; 2017: 292-6.
[263]
Li H, He X, Yu Z, et al. Skin lesion segmentation via dense connected deconvolutional network. Int Conf Pattern Recogn (ICPR) 2018; 2018: 671-5.
[264]
Ji W, Cai L, Chen W, et al. Segmentation of lesions in skin image based on salient object detection with deeply supervised learning. Int Conf Comput Commun (ICCC) 2018; 2018: 1567-73.
[266]
Bozorgtabar B, Ge Z, Chakravorty R, et al. Investigating deep side layers for skin lesion segmentation. Int Sympos Biomed Imag 2017; 2017: 256-60.
[267]
Nathan S, Kansal P. Lesion net--skin lesion segmentation using coordinate convolution and deep residual units. arXiv 2020; 2020: 2012.14249.
[270]
Zhu L, Feng S, Zhu W, et al. ASNet: An adaptive scale network for skin lesion segmentation in dermoscopy images//Medical Imaging 2020. Biomedical Applications in Molecular, Structural, and Functional Imaging International Society for Optics and Photonics 2020; 11317: 113170W.
[271]
Bi L, Kim J, Ahn E, et al. Semi-automatic skin lesion segmentation via fully convolutional networks. Int Sympos Biomed Imag 2017; 2017: 561-4.
[272]
Mirikharaji Z, Hamarneh G. Star shape prior in fully convolutional networks for skin lesion segmentation. Int Conf Med Image Comput Comput-Assist Interven 2018; 2018: 737-45.
[274]
Zhang J, Petitjean C, Ainouz S. Kappa loss for skin lesion segmentation in fully convolutional network. Int Sympos Biomed Imag 2020; 2020: 2001-4.
[275]
Abhishek K, Hamarneh G. Matthews correlation coefficient loss for deep convolutional networks: Application to skin lesion segmentation. Int Sympos Biomed Imag 2021; 2021: 225-9.
[278]
Ribeiro V, Avila S, Valle E. Less is more: Sample selection and label conditioning improve skin lesion segmentation. Proc IEEE/CVF Conf Comput Vision Pattern Recogn Workshops 2020; 2020: 738-9.
[279]
Mirikharaji Z, Abhishek K, Izadi S, et al. D-LEMA: Deep learning ensembles from multiple annotations--application to skin lesion segmentation. arXiv 2020; 2020: 2012.07206..
[280]
Raj R, Londhe ND, Sonawane R. Automatic psoriasis lesion segmentation from raw color images using deep learning. Int Conf Bioinform Biomed (BIBM) 2020; 2020: 723-8.
[281]
Udrea A, Mitra GD. Generative adversarial neural networks for
pigmented and non-pigmented skin lesions detection in clinical
images. In: 2017 21st International Conference on Control Systems
and Computer Science (CSCS).; May 29-31; Bucharest,
Romania.. 2017; pp. 364-8.
[287]
Wibowo A, Purnama SR, Wirawan PW, et al. Lightweight encoder-decoder model for automatic skin lesion segmentation. Inform Med Unlocked 2021; 25: 100640.
[289]
Patiño D, Ceballos-Arroyo AM, Rodriguez-Rodriguez JA, et al. Melanoma detection on dermoscopy images using superpixels segmentation and shape-based features. In: Proc SPIE 11330, 15th International Symposium on Medical Information Processing and Analysis 2019. Nov 6-8; Medelin, Colombia. 1133018
[290]
Aishwarya U, Daniel IJ, Raghul R. Convolutional neural network based skin lesion classification and identification. 2020 International Conference on Inventive Computation Technologies (ICICT). 2020 Feb 26-28; Coimbatore, India. 264-70.
[291]
Sikkandar MY, Alrasheadi BA, Prakash NB, et al. Deep learning based an automated skin lesion segmentation and intelligent classification model. J Ambient Intell Humaniz Comput 2021; 12: 3245-55.
[293]
Al Nazi Z, Abir TA. Automatic skin lesion segmentation and melanoma detection: Transfer learning approach with U-Net and DCNN-SVM. In: Proceedings of International Joint Conference on Computational Intelligence 371-81.
[294]
Almaraz-Damian J-A, Ponomaryov V, Sadovnychiy S. Melanoma and nevus skin lesion classification using handcraft and deep learning feature fusion via mutual information measures. Entropy 2020; 22: 484.
[295]
Prathiba M, Jose D, Saranya R. Automated melanoma recognition in dermoscopy images via very deep residual networks. IOP Conf Ser: Mater Sci Eng 2019; 561(1): 12107.
[303]
Pal A, Chaturvedi A, Garain U, et al. Severity grading of psoriatic plaques using deep CNN based multi-task learning. 2016 23rd International Conference on Pattern Recognition (ICPR). Dec 4-8; Cancan, Mexico 2016; pp. 1478-83.
[304]
Vesal S, Patil SM, Ravikumar N, et al. A multi-task framework for skin lesion detection and segmentation. In: Stoyanov D, Taylor Z, Sarikaya D, Eds. Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin disease image Analysis. Cham: Springer 2018; pp. 285-93.
[305]
Yang X, Zeng Z, Yeo SY, et al. A novel multi-task deep learning model for skin lesion segmentation and classification. arXiv 2017.
[308]
Jin Q, Cui H, Sun C, et al. Cascade knowledge diffusion network for skin lesion diagnosis and segmentation. Appl Soft Comput 2021; 99: 106881.
[314]
Alzahrani S, Al-Nuaimy W, Al-Bander B. Seven-point checklist with convolutional neural networks for melanoma diagnosis. In: 2019 8th European Workshop on Visual Information Processing (EUVIP); Oct 28-31; Roma, Italy.. 2019; pp. 211-6.
[316]
Chu T, Li X, Vo HV, et al. Improving weakly supervised lesion segmentation using multi-task learning. Medical Imaging with Deep Learning. 2021.
[323]
Berthelot D, Carlini N, Goodfellow I, et al. Mixmatch: A holistic approach to semi-supervised learning. arXiv 2019.
[325]
Liu Y, Lee J, Park M, et al. Learning to propagate labels: Transductive propagation network for few-shot learning. arXiv 2018.
[330]
Marcus G, Davis E. Rebooting AI: Building artificial intelligence we can trust. New York City: Knopf Doubleday Publishing Group 2019.
[331]
Li X, Xu Y, Xiang F, et al. Prediction of IDH mutation status of glioma based on multimodal MRI images. In: 2021 3rd International Conference on Intelligent Medicine and Image Processing; Apr 23-26; Tianjin, China. 2021; pp. 39-44.
[333]
Zadeh A, Chen M, Poria S, et al. Tensor fusion network for multimodal sentiment analysis. arXiv 2017.
[335]
Liu Z, Shen Y, Lakshminarasimhan VB, et al. Efficient low-rank multimodal fusion with modality-specific factors arXiv 2018.
[336]
Hou M, Tang J, Zhang J, et al. Deep multimodal multilinear fusion with high-order polynomial pooling. Adv Neural Inf Process Syst 2019; 32: 12136-45.
[337]
Zadeh A, Liang PP, Mazumder N, et al. Memory fusion network for multi-view sequential learning. Proc Conf AAAI Artif Intell 2018; 32(1): 5634-41.
[339]
Zhang Z, Chen K, Wang R, et al. Neural machine translation with universal visual representation. In: International Conference on Learning Representations; Apr 30; Addis Ababa, Ethiopia. 2020.
[344]
Pérez-Rúa JM, Vielzeuf V, Pateux S, et al. Mfas: Multimodal fusion architecture search In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2019 Jun. 15-19; Long Beach, CA, USA, 6966-75.
[345]
Joze HRV, Shaban A, Iuzzolino ML, et al. MMTM: Multimodal transfer module for CNN fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); Jun 13-19; Seattle, WA, USA. 2020; pp. 13289-99.
[347]
Hu L, Wang S, Li L, et al. How functions evolve in deep convolutional neural network. In: 2018 14th IEEE International Conference on Signal Processing (ICSP); Beijing, China. 2018; pp. Aug 12-16; 1133-8.
[353]
Olah C, Mordvintsev A, Schubert L. Feature visualization: How neural networks build up their understanding of images. Distill 2017.
[354]
Sanh V, Debut L, Chaumond J, et al. DistilBERT, a distilled version of BERT. arXiv 2019.
[355]
Jiao X, Yin Y, Shang L, et al. Distilling bert for natural language understanding. arXiv 2019.