Time for a Change! A Spotlight on Many Neglected Facets of Sponge Microbial Biotechnology

Page: [471 - 485] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

The sponge-microorganism partnership is one of the most successful symbiotic associations exploited from a biotechnological perspective. During the last thirty years, sponge-associated bacteria have been increasingly harnessed for bioactive molecules, notably antimicrobials and cytotoxic compounds. Unfortunately, there are gaps in sponge microbial biotechnology, with a multitude of applications being understudied or ignored. In this context, the current perspective aims to shed light on these underrated facets of sponge microbial biotechnology with a balance of existent reports and proposals for further research in the field. Our overview has showcased that the members of the sponge microbiome produce biomolecules whose usage can be valuable for several economically- relevant and demanding sectors. Outside the exhaustive search for antimicrobial secondary metabolites, sponge-associated microorganisms are gifted producers of antibiofilm, antivirulence and chronic diseases-attenuating substances highly envisaged by the pharmaceutical industry. Despite still at an infant stage of research, anti-ageing enzymes and pigments of special interest for the cosmetic and cosmeceutical sectors have also been reported from the sponge microbial symbionts. In a world urging for sustainability, sponge-associated microorganisms have been proven as fruitful resources for bioremediation, including recovery of heavy-metal contaminated areas, bioleaching processes, and as bioindicators of environmental pollution. In conclusion, we propose alternatives to better assess these neglected biotechnological applications of the sponge microbiome in the hope of sparking the interest of the scientific community toward their deserved exploitation.

Keywords: Biodiscovery, biotechnology, holobiont, marine bacteria, new drugs, sponge microbiome.

Graphical Abstract

[1]
Laport, M.S.; Santos, O.C.; Muricy, G. Marine sponges: Potential sources of new antimicrobial drugs. Curr. Pharm. Biotechnol., 2009, 10(1), 86-105.
[http://dx.doi.org/10.2174/138920109787048625] [PMID: 19149592]
[2]
Thomas, T.R.; Kavlekar, D.P. LokaBharathi, P.A. Marine drugs from sponge-microbe association--a review. Mar. Drugs, 2010, 8(4), 1417-1468.
[http://dx.doi.org/10.3390/md8041417] [PMID: 20479984]
[3]
Mehbub, M.F.; Lei, J.; Franco, C.; Zhang, W. Marine sponge derived natural products between 2001 and 2010: Trends and opportunities for discovery of bioactives. Mar. Drugs, 2014, 12(8), 4539-4577.
[http://dx.doi.org/10.3390/md12084539] [PMID: 25196730]
[4]
Taylor, M.W.; Radax, R.; Steger, D.; Wagner, M. Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev., 2007, 71(2), 295-347.
[http://dx.doi.org/10.1128/MMBR.00040-06] [PMID: 17554047]
[5]
Moitinho-Silva, L.; Nielsen, S.; Amir, A.; Gonzalez, A.; Ackermann, G.L.; Cerrano, C.; Astudillo-Garcia, C.; Easson, C.; Sipkema, D.; Liu, F.; Steinert, G.; Kotoulas, G.; McCormack, G.P.; Feng, G.; Bell, J.J.; Vicente, J.; Björk, J.R.; Montoya, J.M.; Olson, J.B.; Reveillaud, J.; Steindler, L.; Pineda, M.C.; Marra, M.V.; Ilan, M.; Taylor, M.W.; Polymenakou, P.; Erwin, P.M.; Schupp, P.J.; Simister, R.L.; Knight, R.; Thacker, R.W.; Costa, R.; Hill, R.T.; Lopez-Legentil, S.; Dailianis, T.; Ravasi, T.; Hentschel, U.; Li, Z.; Webster, N.S.; Thomas, T. The sponge microbiome project. Gigascience, 2017, 6(10), 1-7.
[http://dx.doi.org/10.1093/gigascience/gix077] [PMID: 29020741]
[6]
Indraningrat, A.A.; Smidt, H.; Sipkema, D. Bioprospecting sponge-associated microbes for antimicrobial compounds. Mar. Drugs, 2016, 14(5), 87.
[http://dx.doi.org/10.3390/md14050087] [PMID: 27144573]
[7]
Brinkmann, C.M. Marker, A.; Kurtböke, D.İ. An overview on marine sponge-symbiotic bacteria as unexhausted sources for natural product discovery. Diversity, 2017, 9(4), 40.
[http://dx.doi.org/10.3390/d9040040]
[8]
Zhang, H.; Zhao, Z.; Wang, H. Cytotoxic natural products from marine sponge-derived microorganisms. Mar. Drugs, 2017, 15(3), 68.
[http://dx.doi.org/10.3390/md15030068] [PMID: 28287431]
[9]
McCauley, E.P.; Piña, I.C.; Thompson, A.D.; Bashir, K.; Weinberg, M.; Kurz, S.L.; Crews, P. Highlights of marine natural products having parallel scaffolds found from marine-derived bacteria, sponges, and tunicates. J. Antibiot., 2020, 73(8), 504-525.
[http://dx.doi.org/10.1038/s41429-020-0330-5] [PMID: 32507851]
[10]
Wang, G. Diversity and biotechnological potential of the sponge-associated microbial consortia. J. Ind. Microbiol. Biotechnol., 2006, 33(7), 545-551.
[http://dx.doi.org/10.1007/s10295-006-0123-2] [PMID: 16761166]
[11]
Taylor, M.W.; Hill, R.T.; Hentschel, U. Meeting report: 1st international symposium on sponge microbiology. Mar. Biotechnol., 2011, 13(6), 1057-1061.
[http://dx.doi.org/10.1007/s10126-011-9397-0] [PMID: 21773777]
[12]
Santos-Gandelman, J.F.; Giambiagi-deMarval, M.; Oelemann, W.M.; Laport, M.S. Biotechnological potential of sponge-associated bacteria. Curr. Pharm. Biotechnol., 2014, 15(2), 143-155. [c
[http://dx.doi.org/10.2174/1389201015666140711115033] [PMID: 25022270]
[13]
de Oliveira, B.F.R.; Carr, C.M.; Dobson, A.D.W.; Laport, M.S. Harnessing the sponge microbiome for industrial biocatalysts. Appl. Microbiol. Biotechnol., 2020, 104(19), 8131-8154.
[http://dx.doi.org/10.1007/s00253-020-10817-3] [PMID: 32827049]
[14]
Freitas-Silva, J.; de Oliveira, B.F.R.; Dias, G.R.; Machado, M.M. Unraveling the sponge microbiome as a promising source of biosurfactants. Crit. Rev. Microbiol., 2022, 1-6.
[15]
Balasubramanian, S.; Skaf, J.; Holzgrabe, U.; Bharti, R.; Förstner, K.U.; Ziebuhr, W.; Humeida, U.H.; Abdelmohsen, U.R.; Oelschlaeger, T.A. A new bioactive compound from the marine sponge-derived Streptomyces sp. SBT348 inhibits staphylococcal growth and biofilm formation. Front. Microbiol., 2018, 9, 1473.
[http://dx.doi.org/10.3389/fmicb.2018.01473] [PMID: 30050506]
[16]
Nunes, S.O.; Oliveira, B.F.R.; Giambiagi-deMarval, M.; Laport, M.S. Antimicrobial and antibiofilm activities of marine sponge-associated bacteria against multidrug-resistant Staphylococcus spp. isolated from canine skin. Microb. Pathog., 2021, 152, 104612. [a
[http://dx.doi.org/10.1016/j.micpath.2020.104612] [PMID: 33212197]
[17]
Nunes, S.O.; Rosa, H.D.S.; Canellas, A.L.B.; Romanos, M.T.V.; Dos Santos, K.R.N.; Muricy, G.; Oelemann, W.M.R.; Laport, M.S. High reduction of staphylococcal biofilm by aqueous extract from marine sponge-isolated Enterobacter sp. Res. Microbiol., 2021, 172(1), 103787. [b
[http://dx.doi.org/10.1016/j.resmic.2020.10.002] [PMID: 33049327]
[18]
Rizzo, C.; Zammuto, V.; Lo Giudice, A.; Rizzo, M.G.; Spanò, A.; Laganà, P.; Martinez, M.; Guglielmino, S.; Gugliandolo, C. Antibiofilm activity of antarctic sponge-associated bacteria against Pseudomonas aeruginosa and Staphylococcus aureus. J. Mar. Sci. Eng., 2021, 9(3), 243.
[http://dx.doi.org/10.3390/jmse9030243]
[19]
Saurav, K.; Bar-Shalom, R.; Haber, M.; Burgsdorf, I.; Oliviero, G.; Costantino, V.; Morgenstern, D.; Steindler, L. In search of alternative antibiotic drugs: Quorum-quenching activity in sponges and their bacterial isolates. Front. Microbiol., 2016, 7, 416.
[http://dx.doi.org/10.3389/fmicb.2016.00416] [PMID: 27092109]
[20]
Gutiérrez-Barranquero, J.A.; Reen, F.J.; Parages, M.L.; McCarthy, R.; Dobson, A.D.W.; O’Gara, F. Disruption of N-acyl-homoserine lactone-specific signalling and virulence in clinical pathogens by marine sponge bacteria. Microb. Biotechnol., 2019, 12(5), 1049-1063.
[http://dx.doi.org/10.1111/1751-7915.12867] [PMID: 29105344]
[21]
Ong, J.F.M.; Goh, H.C.; Tan, L.T. Draft genome sequence of Bacillus sp. strain 007/AIA-02/001, isolated from the marine sponge Coelocarteria singaporensis. Microbiol. Resour. Announc., 2019, 8(35), e00389-e19.
[http://dx.doi.org/10.1128/MRA.00389-19] [PMID: 31467090]
[22]
Singh, A.A.; Singh, A.K.; Nerurkar, A. Bacteria associated with marine macroorganisms as potential source of quorum-sensing antagonists. J. Basic Microbiol., 2020, 60(9), 799-808.
[http://dx.doi.org/10.1002/jobm.202000231] [PMID: 32598075]
[23]
Li, Y.; Wu, C.; Liu, D.; Proksch, P.; Guo, P.; Lin, W. Chartarlactams A-P, phenylspirodrimanes from the sponge-associated fungus Stachybotrys chartarum with antihyperlipidemic activities. J. Nat. Prod., 2014, 77(1), 138-147.
[http://dx.doi.org/10.1021/np400824u] [PMID: 24387683]
[24]
Noinart, J.; Buttachon, S.; Dethoup, T.; Gales, L.; Pereira, J.A.; Urbatzka, R.; Freitas, S.; Lee, M.; Silva, A.M.S.; Pinto, M.M.M.; Vasconcelos, V.; Kijjoa, A. A new ergosterol analog, a new bis-anthraquinone and anti-obesity activity of anthraquinones from the marine sponge-associated fungus Talaromyces stipitatus KUFA 0207. Mar. Drugs, 2017, 15(5), 139.
[http://dx.doi.org/10.3390/md15050139] [PMID: 28509846]
[25]
Thakur, A.N.; Thakur, N.L.; Indap, M.M.; Pandit, R.A.; Datar, V.V.; Müller, W.E. Antiangiogenic, antimicrobial, and cytotoxic potential of sponge-associated bacteria. Mar. Biotechnol. (NY), 2005, 7(3), 245-252.
[http://dx.doi.org/10.1007/s10126-004-4085-y] [PMID: 15776311]
[26]
Pandey, S.; Sree, A.; Sethi, D.P.; Kumar, C.G.; Kakollu, S.; Chowdhury, L.; Dash, S.S. A marine sponge associated strain of Bacillus subtilis and other marine bacteria can produce anticholinesterase compounds. Microb. Cell Fact., 2014, 13(1), 24.
[http://dx.doi.org/10.1186/1475-2859-13-24] [PMID: 24528673]
[27]
Zhao, J.; Liu, F.; Huang, C.; Shentu, J.; Wang, M.; Sun, C.; Chen, L.; Yan, S.; Fang, F.; Wang, Y.; Xu, S.; Naman, C.B.; Wang, Q.; He, S.; Cui, W. 5-Hydroxycyclopenicillone inhibits β-amyloid oligomerization and produces anti-β-amyloid neuroprotective effects in vitro. Molecules, 2017, 22(10), 1651.
[http://dx.doi.org/10.3390/molecules22101651] [PMID: 28974023]
[28]
Zhang, P.; Bao, B.; Dang, H.T.; Hong, J.; Lee, H.J.; Yoo, E.S.; Bae, K.S.; Jung, J.H. Anti-inflammatory sesquiterpenoids from a sponge-derived Fungus Acremonium sp. J. Nat. Prod., 2009, 72(2), 270-275.
[http://dx.doi.org/10.1021/np8006793] [PMID: 19199645]
[29]
Li, J.L.; Zhang, P.; Lee, Y.M.; Hong, J.; Yoo, E.S.; Bae, K.S.; Jung, J.H. Oxygenated hexylitaconates from a marine sponge-derived fungus Penicillium sp. Chem. Pharm. Bull. (Tokyo), 2011, 59(1), 120-123.
[http://dx.doi.org/10.1248/cpb.59.120] [PMID: 21212560]
[30]
Hong, Z.; Hua, X.X.; Gong, T.; Jie, P.; Qi, H.; Ping, Z. Hypocreaterpenes A and B, cadinane-type sesquiterpenes from a marine-derived fungus, Hypocreales sp. Phytochem. Lett., 2013, 6(3), 392-396.
[http://dx.doi.org/10.1016/j.phytol.2013.04.008]
[31]
Lee, D.S.; Jang, J.H.; Ko, W.; Kim, K.S.; Sohn, J.H.; Kang, M.S.; Ahn, J.S.; Kim, Y.C.; Oh, H. PTP1B inhibitory and anti-inflammatory effects of secondary metabolites isolated from the marine-derived fungus Penicillium sp. JF-55. Mar. Drugs, 2013, 11(4), 1409-1426.
[http://dx.doi.org/10.3390/md11041409] [PMID: 23612372]
[32]
Toledo, T.R.; Dejani, N.N.; Monnazzi, L.G.S.; Kossuga, M.H.; Berlinck, R.G.S.; Sette, L.D.; Medeiros, A.I. Potent anti-inflammatory activity of pyrenocine A isolated from the marine-derived fungus Penicillium paxilli Ma(G)K. Mediators Inflamm., 2014, 2014, 767061.
[http://dx.doi.org/10.1155/2014/767061] [PMID: 24574582]
[33]
Yoon, C.S.; Kim, D.C.; Lee, D.S.; Kim, K.S.; Ko, W.; Sohn, J.H.; Yim, J.H.; Kim, Y.C.; Oh, H. Anti-neuroinflammatory effect of aurantiamide acetate from the marine fungus Aspergillus sp. SF-5921: Inhibition of NF-κB and MAPK pathways in lipopolysaccharide-induced mouse BV2 microglial cells. Int. Immunopharmacol., 2014, 23(2), 568-574.
[http://dx.doi.org/10.1016/j.intimp.2014.10.006] [PMID: 25448500]
[34]
Wang, J.F.; Qin, X.; Xu, F.Q.; Zhang, T.; Liao, S.; Lin, X.; Yang, B.; Liu, J.; Wang, L.; Tu, Z.; Liu, Y. Tetramic acid derivatives and polyphenols from sponge-derived fungus and their biological evaluation. Nat. Prod. Res., 2015, 29(18), 1761-1765.
[http://dx.doi.org/10.1080/14786419.2014.999061] [PMID: 25573692]
[35]
Shin, H.J.; Pil, G.B.; Heo, S.J.; Lee, H.S.; Lee, J.S.; Lee, Y.J.; Lee, J.; Won, H.S. Anti-inflammatory activity of Tanzawaic acid derivatives from a marine-derived fungus Penicillium steckii 108YD142. Mar. Drugs, 2016, 14(1), 14.
[http://dx.doi.org/10.3390/md14010014] [PMID: 26761016]
[36]
Li, L.; Zhang, Y.; Li, Z.; Yu, Z.; Sun, T. Stereochemical investigation of a novel biological active substance from the secondary metabolites of marine fungus Penicillium chrysogenum SYP-F-2720. Rev. Soc. Quím. Méx., 2017, 59, 53-58.
[37]
Liu, S.; Wang, H.; Su, M.; Hwang, G.J.; Hong, J.; Jung, J.H. New metabolites from the sponge-derived fungus Aspergillus sydowii J05B-7F-4. Nat. Prod. Res., 2017, 31(14), 1682-1686.
[http://dx.doi.org/10.1080/14786419.2017.1289205] [PMID: 28278674]
[38]
Du, X.; Liu, D.; Huang, J.; Zhang, C.; Proksch, P.; Lin, W. Polyketide derivatives from the sponge associated fungus Aspergillus europaeus with antioxidant and NO inhibitory activities. Fitoterapia, 2018, 130, 190-197.
[http://dx.doi.org/10.1016/j.fitote.2018.08.030] [PMID: 30193789]
[39]
Gu, B.B.; Jiao, F.R.; Wu, W.; Jiao, W.H.; Li, L.; Sun, F.; Wang, S.P.; Yang, F.; Lin, H.W. Preussins with inhibition of IL-6 expression from Aspergillus flocculosus 16D-1, a fungus isolated from the marine sponge Phakellia fusca. J. Nat. Prod., 2018, 81(10), 2275-2281.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00662] [PMID: 30350993]
[40]
Liu, J.; Gu, B.; Yang, L.; Yang, F.; Lin, H. New Anti-inflammatory cyclopeptides from a sponge-derived fungus Aspergillus violaceofuscus. Front Chem., 2018, 6, 226.
[http://dx.doi.org/10.3389/fchem.2018.00226] [PMID: 29963550]
[41]
Lei, H.; Bi, X.; Lin, X.; She, J.; Luo, X.; Niu, H.; Zhang, D.; Yang, B. Heterocornols from the sponge-derived fungus Pestalotiopsis heterocornis with anti-inflammatory Activity. Mar. Drugs, 2021, 19(11), 585.
[http://dx.doi.org/10.3390/md19110585] [PMID: 34822456]
[42]
Quang, T.H.; Vien, L.T.; Anh, L.N.; Ngan, N.T.T.; Hanh, T.T.H.; Cuong, N.X.; Nam, N.H.; Van Minh, C. Anti-inflammatory metabolites from a marine sponge-associated fungus Aspergillus sp. IMBC-FP2.05. VJCH, 2021, 59, 52-56.
[43]
Seals, D.R.; Justice, J.N.; LaRocca, T. J. Physiological geroscience: Targeting function to increase healthspan and achieve optimal longevity. J. Physiol., 2016, 594(8), 2001-2024.
[http://dx.doi.org/10.1113/jphysiol.2014.282665] [PMID: 25639909]
[44]
Said Hassane, C.; Fouillaud, M.; Le Goff, G.; Sklirou, A.D.; Boyer, J.B.; Trougakos, I.P.; Jerabek, M.; Bignon, J.; de Voogd, N.J.; Ouazzani, J.; Gauvin-Bialecki, A.; Dufossé, L. Microorganisms associated with the marine sponge Scopalina hapalia: a reservoir of bioactive molecules to slow down the aging process. Microorganisms, 2020, 8(9), 1262.
[http://dx.doi.org/10.3390/microorganisms8091262] [PMID: 32825344]
[45]
Dharmaraj, S.; Ashokkumar, B.; Dhevendaran, K. Food-grade pigments from Streptomyces sp. isolated from the marine sponge Callyspongia diffusa. Food Res. Int., 2009, 42(4), 487-492.
[http://dx.doi.org/10.1016/j.foodres.2009.02.006]
[46]
Asker, D.; Awad, T.S.; Beppu, T.; Ueda, K. Screening, isolation, and identification of zeaxanthin-producing bacteria. Methods Mol. Biol., 2018, 1852, 193-209.
[http://dx.doi.org/10.1007/978-1-4939-8742-9_11] [PMID: 30109632]
[47]
Yokoyama, A.; Miki, W. Isolation of myxol from a marine bacterium Flavobacterium sp. associated with a marine sponge. Fish. Sci., 1995, 61(4), 684-686.
[http://dx.doi.org/10.2331/fishsci.61.684]
[48]
Thawornwiriyanun, P.; Tanasupawat, S.; Dechsakulwatana, C.; Techkarnjanaruk, S.; Suntornsuk, W. Identification of newly zeaxanthin-producing bacteria isolated from sponges in the Gulf of Thailand and their zeaxanthin production. Appl. Biochem. Biotechnol., 2012, 167(8), 2357-2368.
[http://dx.doi.org/10.1007/s12010-012-9760-2] [PMID: 22715027]
[49]
Abfa, I.K.; Radjasa, O.K.; Susanto, A.B.; Nuryadi, H.; Karwur, F.F. Exploration, isolation, and identification of carotenoid from bacterial symbiont of sponge Callyspongia vaginalis. Ilmu Kelaut., 2017, 22(2), 49-58.
[http://dx.doi.org/10.14710/ik.ijms.22.2.49-58]
[50]
Darshan, N.; Manonmani, H.K. Prodigiosin and its potential applications. J. Food Sci. Technol., 2015, 52(9), 5393-5407.
[http://dx.doi.org/10.1007/s13197-015-1740-4] [PMID: 26344956]
[51]
You, Z.; Zhang, S.; Liu, X.; Zhang, J.; Wang, Y.; Peng, Y.; Wu, W. Insights into the anti-infective properties of prodiginines. Appl. Microbiol. Biotechnol., 2019, 103(7), 2873-2887.
[http://dx.doi.org/10.1007/s00253-019-09641-1]
[52]
Ibrahim, D.; Nazari, T.F.; Kassim, J.; Lim, S-H. Prodigiosin - an antibacterial red pigment produced by Serratia marcescens IBRL USM 84 associated with a marine sponge Xestospongia testudinaria. J. Appl. Pharm. Sci., 2014, 4(10), 1-6.
[http://dx.doi.org/10.7324/JAPS.2014.401001]
[53]
Abdelfattah, M.S.; Elmallah, M.I.Y.; Ebrahim, H.Y.; Almeer, R.S.; Eltanany, R.M.A.; Abdel Moneim, A.E. Prodigiosins from a marine sponge-associated actinomycete attenuate HCl/ethanol-induced gastric lesion via antioxidant and anti-inflammatory mechanisms. PLoS One, 2019, 14(6), e0216737.
[http://dx.doi.org/10.1371/journal.pone.0216737] [PMID: 31194753]
[54]
Sakai-Kawada, F.E.; Ip, C.G.; Hagiwara, K.A.; Nguyen, H.Y.X.; Yakym, C.J.A.; Helmkampf, M.; Armstrong, E.E.; Awaya, J.D. Characterization of prodiginine pathway in marine sponge-associated Pseudoalteromonas sp. PPB1 in Hilo, Hawai ‘i. Front. Sustain. Food Syst., 2020, 4, 275.
[http://dx.doi.org/10.3389/fsufs.2020.600201]
[55]
Vijayan, V.; Jasmin, C.; Anas, A.; Parakkaparambil Kuttan, S.; Vinothkumar, S.; Perunninakulath, S.P.; Nair, S. Sponge-associated bacteria produce non-cytotoxic melanin which protects animal cells from photo-toxicity. App. Biochem. Biotechnol., 2017, 183(1), 396-411.
[http://dx.doi.org/10.1007/s12010-017-2453-0] [PMID: 28315112]
[56]
Poulose, N.; Sajayan, A.; Ravindran, A.; Sreechithra, T.V.; Vardhan, V.; Selvin, J.; Kiran, G.S. Photoprotective effect of nanomelanin-seaweed concentrate in formulated cosmetic cream: With improved antioxidant and wound healing properties. J. Photochem. Photobiol. B, 2020, 205, 111816.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.111816] [PMID: 32070822]
[57]
Solano, F. Photoprotection and skin pigmentation: Melanin-related molecules and some other new agents obtained from natural sources. Molecules, 2020, 25(7), 1537.
[http://dx.doi.org/10.3390/molecules25071537] [PMID: 32230973]
[58]
Esposito, R.; Ruocco, N.; Viel, T.; Federico, S.; Zupo, V.; Costantini, M. Sponges and their symbionts as a source of valuable compounds in cosmeceutical field. Mar. Drugs, 2021, 19(8), 444.
[http://dx.doi.org/10.3390/md19080444] [PMID: 34436283]
[59]
Sigwart, J.D.; Bennett, K.D.; Edie, S.M.; Mander, L.; Okamura, B.; Padian, K.; Wheeler, Q.; Winston, J.E.; Yeung, N.W. Measuring biodiversity and extinction-present and past. Integr. Comp. Biol., 2018, 58(6), 1111-1117.
[PMID: 30535078]
[60]
Webster, N.S.; Webb, R.I.; Ridd, M.J.; Hill, R.T.; Negri, A.P. The effects of copper on the microbial community of a coral reef sponge. Environ. Microbiol., 2001, 3, 19-e31.
[http://dx.doi.org/10.1046/j.1462-2920.2001.00155.x]
[61]
Perez, T.; Vacelet, J.; Rebouillon, P. In situ comparative study of several Mediterranean sponges as potential biomonitors of heavy metals. In: Sponge science in the new millennium; Pansini, M.; Pronzato, R.; Bavestrello, G.; Manconi, R., Eds.; Bull Mus Ist Biol Univ: Genova, 2004, pp. 517-525.
[62]
Selvin, J.; Shanmugha Priya, S.; Seghal Kiran, G.; Thangavelu, T.; Sapna Bai, N. Sponge-associated marine bacteria as indicators of heavy metal pollution. Microbiol. Res., 2009, 164(3), 352-363.
[http://dx.doi.org/10.1016/j.micres.2007.05.005] [PMID: 17604613]
[63]
Kefalas, E.; Castritsi-Catharios, J.; Miliou, H. Bacteria associated with the sponge Spongia officinalis as indicators of contamination. Ecol. Indic., 2003, 2(4), 339-343.
[http://dx.doi.org/10.1016/S1470-160X(03)00002-5]
[64]
Bauvais, C.; Zirah, S.; Piette, L.; Chaspoul, F.; Domart-Coulon, I.; Chapon, V.; Gallice, P.; Rebuffat, S.; Pérez, T.; Bourguet-Kondracki, M.L. Sponging up metals: Bacteria associated with the marine sponge Spongia officinalis. Mar. Environ. Res., 2015, 104, 20-30.
[http://dx.doi.org/10.1016/j.marenvres.2014.12.005] [PMID: 25575352]
[65]
Santos-Gandelman, J.F.; Cruz, K.; Crane, S.; Muricy, G.; Giambiagi-deMarval, M.; Barkay, T.; Laport, M.S. Potential application in mercury bioremediation of a marine sponge-isolated Bacillus cereus strain Pj1. Curr. Microbiol., 2014, 69(3), 374-380. [a
[http://dx.doi.org/10.1007/s00284-014-0597-5] [PMID: 24807626]
[66]
Santos-Gandelman, J.F.; Giambiagi-deMarval, M.; Muricy, G.; Barkay, T.; Laport, M.S. Mercury and methylmercury detoxification potential by sponge-associated bacteria. Antonie van Leeuwenhoek, 2014, 106(3), 585-590. [b
[http://dx.doi.org/10.1007/s10482-014-0224-2] [PMID: 24996548]
[67]
Shoham, S.; Weinberger, A.; Kaplan, A.; Avisar, D.; Ilan, M. Arsenate reducing bacteria isolated from the marine sponge Theonella swinhoei: Bioremediation potential. Ecotoxicol. Environ. Saf., 2021, 222, 112522.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112522] [PMID: 34304132]
[68]
Fonti, V.; Dell’Anno, A.; Beolchini, F. Does bioleaching represent a biotechnological strategy for remediation of contaminated sediments? Sci. Total Environ., 2016, 563-564, 302-319.
[http://dx.doi.org/10.1016/j.scitotenv.2016.04.094] [PMID: 27139303]
[69]
Yang, W.; Song, W.; Li, J.; Zhang, X. Bioleaching of heavy metals from wastewater sludge with the aim of land application. Chemosphere, 2020, 249, 126134.
[http://dx.doi.org/10.1016/j.chemosphere.2020.126134] [PMID: 32058136]
[70]
Rozas, E.E.; Mendes, M.A.; Nascimento, C.A.; Espinosa, D.C.; Oliveira, R.; Oliveira, G.; Custodio, M.R. Bioleaching of electronic waste using bacteria isolated from the marine sponge Hymeniacidon heliophila (Porifera). J. Hazard. Mater., 2017, 329, 120-130.
[http://dx.doi.org/10.1016/j.jhazmat.2017.01.037] [PMID: 28131039]
[71]
Rozas, E.E.; Mendes, M.A.; Custódio, M.R.; Espinosa, D.C.R.; do Nascimento, C.A.O. Self-assembly of supramolecular structure based on copper-lipopeptides isolated from e-waste bioleaching liquor. J. Hazard. Mater., 2019, 368, 63-71.
[http://dx.doi.org/10.1016/j.jhazmat.2019.01.038] [PMID: 30665109]
[72]
Yebra, D.M.; Kiil, S.; Kim Dam-Johansen, K.D. Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat., 2004, 50(2), 75-104.
[http://dx.doi.org/10.1016/j.porgcoat.2003.06.001]
[73]
Hellio, C.; Yebra, D. Advances in marine antifouling coatings and technologies; Elsevier: Amsterdam, 2009.
[http://dx.doi.org/10.1533/9781845696313]
[74]
Nalini, S.; Inbakandan, D.; Venkatnarayanan, S.; Mohammed Riyaz, S.U.; Dheenan, P.S.; Vinithkumar, N.V.; Sriyutha Murthy, P.; Parthasarathi, R.; Kirubagaran, R. PYRROLO isolated from marine sponge associated bacterium Halobacillus kuroshimensis SNSAB01 - Antifouling study based on molecular docking, diatom adhesion and mussel byssal thread inhibition. Colloids Surf. B Biointerfaces, 2019, 173, 9-17.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.044] [PMID: 30261347]
[75]
Bovio, E.; Fauchon, M.; Toueix, Y.; Mehiri, M.; Varese, G.C.; Hellio, C. The sponge-associated fungus Eurotium chevalieri MUT 2316 and its bioactive molecules: Potential applications in the field of antifouling. Mar. Biotechnol., 2019, 21(6), 743-752.
[http://dx.doi.org/10.1007/s10126-019-09920-y] [PMID: 31494811]
[76]
Waring, R.H.; Harris, R.M.; Mitchell, S.C. Plastic contamination of the food chain: A threat to human health? Maturitas, 2018, 115, 64-68.
[http://dx.doi.org/10.1016/j.maturitas.2018.06.010] [PMID: 30049349]
[77]
El-Malek, F.A.; Khairy, H.; Farag, A.; Omar, S. The sustainability of microbial bioplastics, production and applications. Int. J. Biol. Macromol., 2020, 157, 319-328.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.076] [PMID: 32315677]
[78]
Sathiyanarayanan, G.; Saibaba, G.; Seghal Kiran, G.; Selvin, J. Process optimization and production of polyhydroxybutyrate using palm jaggery as economical carbon source by marine sponge-associated Bacillus licheniformis MSBN12. Bioprocess Biosyst. Eng., 2013, 36(12), 1817-1827.
[http://dx.doi.org/10.1007/s00449-013-0956-9] [PMID: 23670633]
[79]
Sathiyanarayanan, G.; Saibaba, G.; Kiran, G.S.; Yang, Y.H.; Selvin, J. Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates. Crit. Rev. Microbiol., 2017, 43(3), 294-312.
[http://dx.doi.org/10.1080/1040841X.2016.1206060] [PMID: 27824282]
[80]
Laport, M.S. Isolating bacteria from sponges: Why and how? Curr. Pharm. Biotechnol., 2017, 18(15), 1224-1236.
[http://dx.doi.org/10.2174/1389201019666180329111327] [PMID: 29595106]
[81]
Vincent, J.; Sabot, R.; Lanneluc, I.; Refait, P.; Turcry, P.; Mahieux, P-Y.; Jeannin, M.; Sablé, S.; Guéguen Minerbe, M.; Feugeas, F.; Lors, C. Biomineralization of calcium carbonate by marine bacterial strains isolated from calcareous deposits. Matér. Tech., 2020, 108(3), 302.
[http://dx.doi.org/10.1051/mattech/2020027]