Impact of POR*28 Variant on Tacrolimus Pharmacokinetics in Kidney Transplant Patients with Different CYP3A5 Genotypes

Page: [233 - 241] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: The introduction of tacrolimus (TAC) to clinical practice was essential to the establishment of transplantation as a therapy for patients with chronic renal disease. However, the higher interindividual variation of TAC metabolism has been an important limiting factor for its clinical use. Although the relationship between CYP3A5 polymorphisms and TAC pharmacokinetics (PK) is well established, the effects of other genetic variants on TAC metabolism, such as POR*28, still remain uncertain.

Objective: The study aimed to evaluate the impact of POR variants on TAC PK in renal transplant patients with different CYP3A5 genotypes (expressers and non-expressers).

Methods: A total of 115 patients were included in this study. Genomic DNA was isolated from peripheral blood, and the real-time PCR technique was used to analyze the polymorphism POR rs1057868; C>T.

Results: During the initial post-transplant period, variant allele carriers (*1/*28 and *28/*28) showed a lower TAC dose requirement than POR wild homozygotes (*1/*1). Regarding the influence of the different polymorphisms of POR within the CYP3A5 expresser and non-expresser groups, no differences were observed in any of the PK parameters analyzed during 12 months after transplantation.

Conclusion: In the studied population, the variant allelic POR*28 was significantly associated with lower TAC dose requirements and higher Co/D ratio in the first-month post-transplant. However, the effects of this polymorphism on the CYP3A5 enzyme activity were not observed.

Keywords: Genetic polymorphism, pharmacokinetics, POR, Co/D ratio, kidney transplantation, risk of rejection, admixed population.

Graphical Abstract

[1]
Webster, A.C.; Woodroffe, R.C.; Taylor, R.S.; Chapman, J.R.; Craig, J.C. Tacrolimus versus ciclosporin as primary immunosuppression for kidney transplant recipients: Meta-analysis and meta-regression of randomised trial data. BMJ, 2005, 331(7520), 810.
[http://dx.doi.org/10.1136/bmj.38569.471007.AE] [PMID: 16157605]
[2]
Ekberg, H.; Tedesco-Silva, H.; Demirbas, A.; Vítko, S.; Nashan, B.; Gürkan, A.; Margreiter, R.; Hugo, C.; Grinyó, J.M.; Frei, U.; Vanrenter-ghem, Y.; Daloze, P.; Halloran, P.F. ELITE-Symphony Study. Reduced exposure to calcineurin inhibitors in renal transplantation. N. Engl. J. Med., 2007, 357(25), 2562-2575.
[http://dx.doi.org/10.1056/NEJMoa067411] [PMID: 18094377]
[3]
Thishya, K.; Sreenu, B.; Raju, S.B.; Kutala, V.K. Impact of pharmacogenetic determinants of tacrolimus and mycophenolate on adverse events in renal transplant patients. Curr. Drug Metab., 2021, 22(5), 342-352.
[http://dx.doi.org/10.2174/1389200222666210114123349] [PMID: 33459227]
[4]
Haufroid, V.; Wallemacq, P.; VanKerckhove, V.; Elens, L.; De Meyer, M.; Eddour, D.C.; Malaise, J.; Lison, D.; Mourad, M. CYP3A5 and ABCB1 polymorphisms and tacrolimus pharmacokinetics in renal transplant candidates: Guidelines from an experimental study. Am. J. Transplant., 2006, 6(11), 2706-2713.
[http://dx.doi.org/10.1111/j.1600-6143.2006.01518.x] [PMID: 17049058]
[5]
Khan, A.R.; Raza, A.; Firasat, S.; Abid, A. CYP3A5 gene polymorphisms and their impact on dosage and trough concentration of tacrolimus among kidney transplant patients: A systematic review and meta-analysis. Pharmacogenomics J., 2020, 20(4), 553-562.
[http://dx.doi.org/10.1038/s41397-019-0144-7] [PMID: 31902947]
[6]
Brunet, M.; van Gelder, T.; Åsberg, A.; Haufroid, V.; Hesselink, D.A.; Langman, L.; Lemaitre, F.; Marquet, P.; Seger, C.; Shipkova, M.; Vinks, A.; Wallemacq, P.; Wieland, E.; Woillard, J.B.; Barten, M.J.; Budde, K.; Colom, H.; Dieterlen, M.T.; Elens, L.; Johnson-Davis, K.L.; Kunicki, P.K.; MacPhee, I.; Masuda, S.; Mathew, B.S.; Millán, O.; Mizuno, T.; Moes, D.A.R.; Monchaud, C.; Noceti, O.; Pawinski, T.; Picard, N.; van Schaik, R.; Sommerer, C.; Vethe, N.T.; de Winter, B.; Christians, U.; Bergan, S. Therapeutic drug monitoring of tacrolimus-personalized therapy: Second consensus report. Ther. Drug Monit., 2019, 41(3), 261-307.
[http://dx.doi.org/10.1097/FTD.0000000000000640] [PMID: 31045868]
[7]
Serdarevic, N.; Smajic, J. Comparison of chemiluminescent microparticle immunoassay (CMIA) with electrochemiluminescence immunoas-say (ECLIA) for carcinoembryonic antigen (CEA). J. Health Sci., 2018, 8(2), 94-100.
[8]
Kuypers, D.R.J.; de Loor, H.; Naesens, M.; Coopmans, T.; de Jonge, H. Combined effects of CYP3A5*1, POR*28, and CYP3A4*22 single nucleotide polymorphisms on early concentration-controlled tacrolimus exposure in de-novo renal recipients. Pharmacogenet. Genomics, 2014, 24(12), 597-606.
[http://dx.doi.org/10.1097/FPC.0000000000000095] [PMID: 25322286]
[9]
Liu, S.; Chen, R.X.; Li, J.; Zhang, Y.; Wang, X.D.; Fu, Q.; Chen, L.Y.; Liu, X.M.; Huang, H.B.; Huang, M.; Wang, C.X.; Li, J.L. The POR rs1057868-rs2868177 GC-GT diplotype is associated with high tacrolimus concentrations in early post-renal transplant recipients. Acta Pharmacol. Sin., 2016, 37(9), 1251-1258.
[http://dx.doi.org/10.1038/aps.2016.77] [PMID: 27498776]
[10]
Phupradit, A.; Vadcharavivad, S.; Ingsathit, A.; Kantachuvesiri, S.; Areepium, N.; Sra-Ium, S.; Auamnoy, T.; Sukasem, C.; Sumethkul, V.; Kitiyakara, C. Impact of POR and CYP3A5 polymorphisms on trough concentration to dose ratio of tacrolimus in the early post-operative pe-riod following kidney transplantation. Ther. Drug Monit., 2018, 40(5), 549-557.
[http://dx.doi.org/10.1097/FTD.0000000000000542] [PMID: 29878980]
[11]
Suetsugu, K.; Mori, Y.; Yamamoto, N.; Shigematsu, T.; Miyamoto, T.; Egashira, N.; Akashi, K.; Masuda, S. Impact of CYP3A5, POR, and CYP2C19 Polymorphisms on trough concentration to dose ratio of tacrolimus in allogeneic hematopoietic stem cell transplantation. Int. J. Mol. Sci., 2019, 20(10), 2413.
[http://dx.doi.org/10.3390/ijms20102413] [PMID: 31096684]
[12]
Genvigir, F.D.V.; Campos-Salazar, A.B.; Felipe, C.R.; Tedesco-Silva, H., Jr; Medina-Pestana, J.O.; Doi, S.Q.; Cerda, A.; Hirata, M.H.; Herrero, M.J.; Aliño, S.F.; Hirata, R.D.C. CYP3A5*3 and CYP2C8*3 variants influence exposure and clinical outcomes of tacrolimus-based therapy. Pharmacogenomics, 2020, 21(1), 7-21.
[http://dx.doi.org/10.2217/pgs-2019-0120] [PMID: 31849280]
[13]
Nakamura, T.; Fukuda, M.; Matsukane, R.; Suetsugu, K.; Harada, N.; Yoshizumi, T.; Egashira, N.; Mori, M.; Masuda, S. Influence of POR*28 Polymorphisms on CYP3A5*3-associated variations in tacrolimus blood levels at an early stage after liver transplantation. Int. J. Mol. Sci., 2020, 21(7), 2287.
[http://dx.doi.org/10.3390/ijms21072287] [PMID: 32225074]
[14]
Everton, J.B.F.; Patrício, F.J.B.; Faria, M.S.; Ferreira, T.C.A.; Romao, E.A.; Silva, G.E.B.; Magalhães, M. CYP3A5 and PPARA genetic vari-ants are associated with low trough concentration to dose ratio of tacrolimus in kidney transplant recipients. Eur. J. Clin. Pharmacol., 2021, 77(6), 879-886.
[http://dx.doi.org/10.1007/s00228-020-03076-8] [PMID: 33398393]
[15]
Gounden, V.; Soldin, S.J. Tacrolimus measurement: Building a better immunoassay. Clinical chemistry; Oxford University Press, 2014, pp. 575-576.
[16]
Saitman, A.; Metushi, I.G.; Mason, D.S.; Fitzgerald, R.L. Evaluation of the waters masstrak LC-MS/MS assay for tacrolimus and a compar-ison to the abbott architect immunoassay. Ther. Drug Monit., 2016, 2016, 38-300-304.2016.
[17]
Elens, L.; Bouamar, R.; Hesselink, D.A.; Haufroid, V.; van der Heiden, I.P.; van Gelder, T.; van Schaik, R.H.N. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clin. Chem., 2011, 57(11), 1574-1583.
[http://dx.doi.org/10.1373/clinchem.2011.165613] [PMID: 21903774]
[18]
Kamdem, L.K.; Streit, F.; Zanger, U.M.; Brockmöller, J.; Oellerich, M.; Armstrong, V.W.; Wojnowski, L. Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus. Clin. Chem., 2005, 51(8), 1374-1381.
[http://dx.doi.org/10.1373/clinchem.2005.050047] [PMID: 15951320]
[19]
Staatz, C.E.; Goodman, L.K.; Tett, S.E. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharma-codynamics of calcineurin inhibitors: Part I. Clin. Pharmacokinet., 2010, 49(3), 141-175.
[http://dx.doi.org/10.2165/11317350-000000000-00000] [PMID: 20170205]
[20]
Lunde, I.; Bremer, S.; Midtvedt, K.; Mohebi, B.; Dahl, M.; Bergan, S.; Åsberg, A.; Christensen, H. The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients. Eur. J. Clin. Pharmacol., 2014, 70(6), 685-693.
[http://dx.doi.org/10.1007/s00228-014-1656-3] [PMID: 24658827]
[21]
Si, S.; Wang, Z.; Yang, H.; Han, Z.; Tao, J.; Chen, H.; Wang, K.; Guo, M.; Tan, R.; Wei, J-F.; Gu, M. Impact of single nucleotide polymor-phisms on P450 oxidoreductase and peroxisome proliferator-activated receptor alpha on tacrolimus pharmacokinetics in renal transplant re-cipients. Pharmacogenomics J., 2019, 19(1), 42-52.
[http://dx.doi.org/10.1038/s41397-018-0061-1] [PMID: 30323313]
[22]
de Jonge, H.; Metalidis, C.; Naesens, M.; Lambrechts, D.; Kuypers, D.R.J. The P450 oxidoreductase *28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients. Pharmacogenomics, 2011, 12(9), 1281-1291.
[http://dx.doi.org/10.2217/pgs.11.77] [PMID: 21770725]
[23]
Wang, M.; Roberts, D.L.; Paschke, R.; Shea, T.M.; Masters, B.S.S.; Kim, J-J.P. Three-dimensional structure of NADPH-cytochrome P450 reductase: Prototype for FMN- and FAD-containing enzymes. Proc. Natl. Acad. Sci. USA, 1997, 94(16), 8411-8416.
[http://dx.doi.org/10.1073/pnas.94.16.8411] [PMID: 9237990]
[24]
Yamano, S.; Aoyama, T.; McBride, O.W.; Hardwick, J.P.; Gelboin, H.V.; Gonzalez, F.J. Human NADPH-P450 oxidoreductase: Complemen-tary DNA cloning, sequence and vaccinia virus-mediated expression and localization of the CYPOR gene to chromosome 7. Mol. Pharmacol., 1989, 36(1), 83-88.
[PMID: 2501655]
[25]
Masters, B.S.S. The journey from NADPH-cytochrome P450 oxidoreductase to nitric oxide synthases. Biochem. Biophys. Res. Commun., 2005, 338(1), 507-519.
[http://dx.doi.org/10.1016/j.bbrc.2005.09.165] [PMID: 16246311]
[26]
Agrawal, V.; Huang, N.; Miller, W.L. Pharmacogenetics of P450 oxidoreductase: Effect of sequence variants on activities of CYP1A2 and CYP2C19. Pharmacogenet. Genomics, 2008, 18(7), 569-576.
[http://dx.doi.org/10.1097/FPC.0b013e32830054ac] [PMID: 18551037]
[27]
Zhang, J.J.; Zhang, H.; Ding, X.L.; Ma, S.; Miao, L.Y. Effect of the P450 oxidoreductase 28 polymorphism on the pharmacokinetics of tacro-limus in Chinese healthy male volunteers. Eur. J. Clin. Pharmacol., 2013, 69(4), 807-812.
[http://dx.doi.org/10.1007/s00228-012-1432-1] [PMID: 23097010]
[28]
Kurzawski, M.; Malinowski, D.; Dziewanowski, K. Droździk, M. Impact of PPARA and POR polymorphisms on tacrolimus pharmacokinet-ics and new-onset diabetes in kidney transplant recipients. Pharmacogenet. Genomics, 2014, 24(8), 397-400.
[http://dx.doi.org/10.1097/FPC.0000000000000067] [PMID: 24921414]
[29]
Gijsen, V.M.G.J.; van Schaik, R.H.N.; Soldin, O.P.; Soldin, S.J.; Nulman, I.; Koren, G.; de Wildt, S.N. P450 oxidoreductase *28 (POR*28) and tacrolimus disposition in pediatric kidney transplant recipients--a pilot study. Ther. Drug Monit., 2014, 36(2), 152-158.
[http://dx.doi.org/10.1097/FTD.0b013e3182a3f282] [PMID: 24089076]
[30]
Jannot, A-S.; Vuillemin, X.; Etienne, I.; Buchler, M.; Hurault de Ligny, B.; Choukroun, G.; Colosio, C.; Thierry, A.; Vigneau, C.; Moulin, B.; Rerolle, J.P.; Heng, A.E.; Subra, J.F.; Legendre, C.; Beaune, P.; Loriot, M.A.; Thervet, E.; Pallet, N. A lack of significant effect of POR*28 al-lelic variant on tacrolimus exposure in kidney transplant recipients. Ther. Drug Monit., 2016, 38(2), 223-229.
[http://dx.doi.org/10.1097/FTD.0000000000000267] [PMID: 26829596]
[31]
Kolonko, A.; Pokora, P.; Słabiak-Błaż, N.; Czerwieńska, B.; Karkoszka, H.; Kuczera, P.; Piecha, G.; Więcek, A. The relationship between initial tacrolimus metabolism rate and recipients body composition in kidney transplantation. J. Clin. Med., 2021, 10(24), 5793.
[http://dx.doi.org/10.3390/jcm10245793] [PMID: 34945089]
[32]
Schütte-Nütgen, K.; Thölking, G.; Steinke, J.; Pavenstädt, H.; Schmidt, R.; Suwelack, B.; Reuter, S. Fast tac metabolizers at risk - it is time for a C/D ratio calculation. J. Clin. Med., 2019, 8(5), 587.
[http://dx.doi.org/10.3390/jcm8050587] [PMID: 31035422]
[33]
Genvigir, F.D.V.; Salgado, P.C.; Felipe, C.R.; Luo, E.Y.F.; Alves, C.; Cerda, A.; Tedesco-Silva, H., Jr; Medina-Pestana, J.O.; Oliveira, N.; Rodrigues, A.C.; Doi, S.Q.; Hirata, M.H.; Hirata, R.D. Influence of the CYP3A4/5 genetic score and ABCB1 polymorphisms on tacrolimus exposure and renal function in Brazilian kidney transplant patients. Pharmacogenet. Genomics, 2016, 26(10), 462-472.
[http://dx.doi.org/10.1097/FPC.0000000000000237] [PMID: 27434656]
[34]
Stratta, P.; Quaglia, M.; Cena, T.; Antoniotti, R.; Fenoglio, R.; Menegotto, A.; Ferrante, D.; Genazzani, A.; Terrazzino, S.; Magnani, C. The interactions of age, sex, body mass index, genetics, and steroid weight-based doses on tacrolimus dosing requirement after adult kidney transplantation. Eur. J. Clin. Pharmacol., 2012, 68(5), 671-680.
[http://dx.doi.org/10.1007/s00228-011-1150-0] [PMID: 22101623]
[35]
Rančić, N.; Vavić, N.; Cikota-Aleksić, B.; Magić, Z.; Mikov, M.; Bokonjić, D.; Šegrt, Z.; Dragojević-Simić, V. The relationship between tacrolimus concentration-dose ratio and genetic polymorphism in patients subjected to renal transplantation. Vojnosanit. Pregl., 2018, 75(2), 147-153.
[http://dx.doi.org/10.2298/VSP151230329R]
[36]
Cusinato, D.A.C.; Lacchini, R.; Romao, E.A.; Moysés-Neto, M.; Coelho, E.B. Relationship of CYP3A5 genotype and ABCB1 diplotype to tacrolimus disposition in Brazilian kidney transplant patients. Br. J. Clin. Pharmacol., 2014, 78(2), 364-372.
[http://dx.doi.org/10.1111/bcp.12345] [PMID: 24528196]
[37]
Beltz, K.; Tsang, D.; Wang, J.; Rose, S.; Bao, Y.; Wang, Y.; Larkin, K.; Rupp, S.; Schrepfer, D.; Datta, K.A.; Gunderson, K.; Sailor, C.; Han-sen, S.; Dobosy, J.; Lewis, L.; Menezes, A.; Walder, J.; Behlke, M.; Chen, C. High-performing and cost-effective SNP genotyping method us-ing RhPCR and universal reporters. Adv. Biosci. Biotechnol., 2018, 9(09), 497-512.
[http://dx.doi.org/10.4236/abb.2018.99034]
[38]
Azulay, R.S.; Porto, L.C.; Silva, D.A.; Tavares, M.; Reis, R.M.; Nascimento, G.C.; Damianse, S.P.; Rocha, V.C.; Magalhães, M.; Rodrigues, V. Genetic ancestry inferred from autosomal and Y chromosome markers and HLA genotypes in type 1 diabetes from an admixed Brazilian population. Sci. Rep., 2021, 11(1), 1-2.
[39]
Elens, L.; Hesselink, D.A.; Bouamar, R.; Budde, K.; de Fijter, J.W.; De Meyer, M.; Mourad, M.; Kuypers, D.R.J.; Haufroid, V.; van Gelder, T.; van Schaik, R.H. Impact of POR*28 on the pharmacokinetics of tacrolimus and cyclosporine A in renal transplant patients. Ther. Drug Monit., 2014, 36(1), 71-79.
[http://dx.doi.org/10.1097/FTD.0b013e31829da6dd] [PMID: 24061445]
[40]
Ozdemir, F.; Oz, M.D.; Suzen, H.S. A novel PCR-RFLP method for detection of POR*28 polymorphism and its genotype/allele frequencies in a Turkish population. Curr. Drug Metab., 2019, 20(10), 845-851.
[http://dx.doi.org/10.2174/1389200220666190913121052] [PMID: 31518218]
[41]
Huang, N.; Agrawal, V.; Giacomini, K.M.; Miller, W.L. Genetics of P450 oxidoreductase: Sequence variation in 842 individuals of four eth-nicities and activities of 15 missense mutations. Proc. Natl. Acad. Sci., 2008, 105(5), 1733-1738.
[http://dx.doi.org/10.1073/pnas.0711621105] [PMID: 18230729]
[42]
Hesselink, D.A.; Bouamar, R.; Elens, L.; van Schaik, R.H.N.; van Gelder, T. The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation. Clin. Pharmacokinet., 2014, 53(2), 123-139.
[http://dx.doi.org/10.1007/s40262-013-0120-3] [PMID: 24249597]
[43]
Lesche, D.; Sigurdardottir, V.; Setoud, R.; Oberhänsli, M.; Carrel, T.; Fiedler, G.M.; Largiadèr, C.R.; Mohacsi, P.; Sistonen, J. CYP3A5*3 and POR*28 genetic variants influence the required dose of tacrolimus in heart transplant recipients. Ther. Drug Monit., 2014, 36(6), 710-715.
[http://dx.doi.org/10.1097/FTD.0000000000000080] [PMID: 24739669]
[44]
Almeida-Paulo, G.N.; Dapía García, I.; Lubomirov, R.; Borobia, A.M.; Alonso-Sánchez, N.L.; Espinosa, L.; Carcas-Sansuán, A.J. Weight of ABCB1 and POR genes on oral tacrolimus exposure in CYP3A5 nonexpressor pediatric patients with stable kidney transplant. Pharmacogenomics J., 2018, 18(1), 180-186.
[http://dx.doi.org/10.1038/tpj.2016.93] [PMID: 28094348]
[45]
de Jonge, H.; Vanhove, T.; de Loor, H.; Verbeke, K.; Kuypers, D.R.J. Progressive decline in tacrolimus clearance after renal transplantation is partially explained by decreasing CYP3A4 activity and increasing haematocrit. Br. J. Clin. Pharmacol., 2015, 80(3), 548-559.
[http://dx.doi.org/10.1111/bcp.12703] [PMID: 26114223]
[46]
Anglicheau, D.; Flamant, M.; Schlageter, M.H.; Martinez, F.; Cassinat, B.; Beaune, P.; Legendre, C.; Thervet, E. Pharmacokinetic interaction between corticosteroids and tacrolimus after renal transplantation. Nephrol. Dial. Transplant., 2003, 18(11), 2409-2414.
[http://dx.doi.org/10.1093/ndt/gfg381] [PMID: 14551375]
[47]
Egeland, E.J.; Robertsen, I.; Hermann, M.; Midtvedt, K.; Størset, E.; Gustavsen, M.T.; Reisæter, A.V.; Klaasen, R.; Bergan, S.; Holdaas, H.; Hartmann, A.; Åsberg, A. High tacrolimus clearance is a risk factor for acute rejection in the early phase after renal transplantation. Transplantation, 2017, 101(8), e273-e279.
[http://dx.doi.org/10.1097/TP.0000000000001796] [PMID: 28452920]
[48]
Oetting, W.S.; Wu, B.; Schladt, D.P.; Guan, W.; Remmel, R.P.; Dorr, C.; Mannon, R.B.; Matas, A.J.; Israni, A.K.; Jacobson, P.A. Attempted validation of 44 reported SNPs associated with tacrolimus troughs in a cohort of kidney allograft recipients. Pharmacogenomics, 2018, 19(3), 175-184.
[http://dx.doi.org/10.2217/pgs-2017-0187] [PMID: 29318894]
[49]
Dorr, C.R.; Wu, B.; Remmel, R.P.; Muthusamy, A.; Schladt, D.P.; Abrahante, J.E.; Guan, W.; Mannon, R.B.; Matas, A.J.; Oetting, W.S.; Jacob-son, P.A.; Israni, A.K. for DeKAF Genomics. Identification of genetic variants associated with tacrolimus metabolism in kidney transplant recipients by extreme phenotype sampling and next generation sequencing. Pharmacogenomics J., 2019, 19(4), 375-389.
[http://dx.doi.org/10.1038/s41397-018-0063-z] [PMID: 30442921]
[50]
Miano, T.A.; Flesch, J.D.; Feng, R.; Forker, C.M.; Brown, M.; Oyster, M.; Kalman, L.; Rushefski, M.; Cantu, E., III; Porteus, M.; Yang, W.; Localio, A.R.; Diamond, J.M.; Christie, J.D.; Shashaty, M.G.S. Early tacrolimus concentrations after lung transplant are predicted by com-bined clinical and genetic factors and associated with acute kidney injury. Clin. Pharmacol. Ther., 2020, 107(2), 462-470.
[http://dx.doi.org/10.1002/cpt.1629] [PMID: 31513279]