Honey-based Silver Sulfadiazine Microsponge-Loaded Hydrogel: In vitro and In vivo Evaluation for Burn Wound Healing

Page: [608 - 628] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Objective: Silver sulfadiazine has often been used as a topical antibacterial agent for burn wounds. Aim of this study is to develop silver sulfadiazine-loaded microsponge along with honeyimpelled hydrogel for improved burn wound healing activity.

Methods: Microsponge were prepared by quasi-emulsion solvent diffusion method. Formulation variables such as concentration of emulsifier and Internal phase volume were optimized by using 32 factorial design. Further, SSD microsponge-based Hydrogel was prepared using carbopol 934 and honey as natural healing agents. In vitro drug release, ex vivo drug deposition, skin irritancy study, and in vivo antibacterial activity were evaluated for optimized hydrogel formulations. The MTT assay was used to determine the safety of the optimized hydrogel using epidermal keratinocyte (HaCaT) cell lines.

Results: At the 12th hour, in vitro drug release was found to be 85.11±0.89. An adjusted microspongeloaded hydrogel increased medication retention ability in the epidermal layers when compared to the commercial product. There was also less application time, no skin irritation, low cytotoxicity on dermal cell lines, and better wound contraction.

Conclusion: The prepared microsponge-loaded hydrogel can serve as a potential alternative for burn wound as compared to the marketed product.

Keywords: Silver sulfadiazine, quasi-emulsion solvent diffusion, 32 factorial design, dermal toxicity, in vivo burn healing study, (HaCaT) cell lines.

Graphical Abstract

[1]
Kaddoura, I.; Abu-Sittah, G.; Ibrahim, A.; Karamanoukian, R.; Papazian, N. Burn injury: Review of pathophysiology and therapeutic modalities in major burns. Ann. Burns Fire Disasters, 2017, 30(2), 95-102.
[PMID: 29021720]
[2]
Peck, M.; Molnar, J.; Swart, D. A global plan for burn prevention and care. Bull. World Health Organ., 2009, 87(10), 802-803.
[http://dx.doi.org/10.2471/BLT.08.059733] [PMID: 19876549]
[3]
Miller, A.C.; Rashid, R.M.; Falzon, L.; Elamin, E.M.; Zehtabchi, S. Silver sulfadiazine for the treatment of partial-thickness burns and venous stasis ulcers. J. Am. Acad. Dermatol., 2012, 66(5), e159-e165.
[http://dx.doi.org/10.1016/j.jaad.2010.06.014] [PMID: 20724028]
[4]
Sandri, G.; Bonferoni, M.C.; Ferrari, F.; Rossi, S.; Aguzzi, C.; Mori, M.; Grisoli, P.; Cerezo, P.; Tenci, M.; Viseras, C.; Caramella, C. Montmorillonite-chitosan-silver sulfadiazine nanocomposites for topical treatment of chronic skin lesions: in vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties. Carbohydr. Polym., 2014, 102, 970-977.
[http://dx.doi.org/10.1016/j.carbpol.2013.10.029] [PMID: 24507371]
[5]
Moghbela, A.; Ghalamborb, A.; Allipanaha, S. Wound healing and toxicity evaluation of aloe vera cream on outpatients with second degree burns. Iran. J. Pharm. Sci., 2007, 3, 157-160.
[6]
Brandt, O.; Mildner, M.; Egger, A.E.; Groessl, M.; Rix, U.; Posch, M.; Keppler, B.K.; Strupp, C.; Mueller, B.; Stingl, G. Nanoscalic silver possesses broad-spectrum antimicrobial activities and exhibits fewer toxicological side effects than silver sulfadiazine. Nanomedicine, 2012, 8(4), 478-488.
[http://dx.doi.org/10.1016/j.nano.2011.07.005] [PMID: 21839058]
[7]
Muller, M.J.; Hollyoak, M.A.; Moaveni, Z.; Brown, T.L.; Herndon, D.N.; Heggers, J.P. Retardation of wound healing by silver sulfadiazine is reversed by Aloe vera and nystatin. Burns, 2003, 29(8), 834-836.
[http://dx.doi.org/10.1016/S0305-4179(03)00198-0] [PMID: 14636760]
[8]
Shao, W.; Liu, H.; Liu, X.; Wang, S.; Wu, J.; Zhang, R.; Min, H.; Huang, M. Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property. Carbohydr. Polym., 2015, 132, 351-358.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.057] [PMID: 26256359]
[9]
Fuller, F.W.; Frederick, W. The side effects of silver sulfadiazine. J. Burn Care Res., 2009, 30(3), 464-470.
[http://dx.doi.org/10.1097/BCR.0b013e3181a28c9b] [PMID: 19349889]
[10]
Ben Djemaa, F.G.; Bellassoued, K.; Zouari, S.; El Feki, A.; Ammar, E. Antioxidant and wound healing activity of Lavandula aspic L. ointment. J. Tissue Viability, 2016, 25(4), 193-200.
[http://dx.doi.org/10.1016/j.jtv.2016.10.002] [PMID: 27769632]
[11]
Jangde, R. Microsponges for colon targeted drug delivery system: An overview. Asian J Pharm Technol., 2011, 1, 87-93.
[12]
Amrutiya, N.; Bajaj, A.; Madan, M. Development of microsponges for topical delivery of mupirocin. AAPS PharmSciTech, 2009, 10(2), 402-409.
[http://dx.doi.org/10.1208/s12249-009-9220-7] [PMID: 19381834]
[13]
Pawar, A.P.; Gholap, A.P.; Kuchekar, A.B.; Bothiraja, C.; Mali, A.J. Formulation and evaluation of optimized oxybenzone microsponge gel for topical delivery. J. Drug Deliv., 2015, 2015261068.
[http://dx.doi.org/10.1155/2015/261068] [PMID: 25789176]
[14]
Bothiraja, C.; Gholap, A.D.; Shaikh, K.S.; Pawar, A.P. Investigation of ethyl cellulose microsponge gel for topical delivery of eberconazole nitrate for fungal therapy. Ther. Deliv., 2014, 5(7), 781-794.
[http://dx.doi.org/10.4155/tde.14.43] [PMID: 25287385]
[15]
Li, S.S.; Li, G.F.; Liu, L.; Jiang, X.; Zhang, B.; Liu, Z.G.; Li, X.L.; Weng, L.D.; Zuo, T.; Liu, Q. Evaluation of paeonol skin-target delivery from its microsponge formulation: in vitro skin permeation and in vivo microdialysis. PLoS One, 2013, 8(11), e79881.
[http://dx.doi.org/10.1371/journal.pone.0079881] [PMID: 24278204]
[16]
Deshmukh, K.; Poddar, S.S. Tyrosinase inhibitor-loaded microsponge drug delivery system: New approach for hyperpigmentation disorders. J. Microencapsul., 2012, 29(6), 559-568.
[http://dx.doi.org/10.3109/02652048.2012.668955] [PMID: 22468629]
[17]
Jain, V.; Singh, R. Design and characterization of colon-specific drug delivery system containing paracetamol microsponges. Arch. Pharm. Res., 2011, 34(5), 733-740.
[http://dx.doi.org/10.1007/s12272-011-0506-4] [PMID: 21656358]
[18]
Jain, V.; Jain, D.; Singh, R. Factors effecting the morphology of Eudragit S-100 based microsponges bearing dicyclomine for colonic delivery. J. Pharm. Sci., 2011, 100(4), 1545-1552.
[http://dx.doi.org/10.1002/jps.22360] [PMID: 20960455]
[19]
Salah, S.; Awad, G.E.A.; Makhlouf, A.I.A. Improved vaginal retention and enhanced antifungal activity of miconazole microsponges gel: Formulation development and in vivo therapeutic efficacy in rats. Eur. J. Pharm. Sci., 2018, 114, 255-266.
[http://dx.doi.org/10.1016/j.ejps.2017.12.023] [PMID: 29288706]
[20]
Osmani, R.A.; Aloorkar, N.H.; Ingale, D.J.; Kulkarni, P.K.; Hani, U.; Bhosale, R.R.; Jayachandra Dev, D. Microsponges based novel drug delivery system for augmented arthritis therapy. Saudi Pharm. J., 2015, 23(5), 562-572.
[http://dx.doi.org/10.1016/j.jsps.2015.02.020] [PMID: 26594124]
[21]
Loftsson, T.; Duchêne, D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm., 2007, 329(1-2), 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.044] [PMID: 17137734]
[22]
Arya, P.; Pathak, K. Assessing the viability of microsponges as gastro retentive drug delivery system of curcumin: Optimization and pharmacokinetics. Indian J. Pharmacol., 2014, 460(1-2), 1-12.
[http://dx.doi.org/10.1016/j.ijpharm.2013.10.045] [PMID: 24184218]
[23]
Mine, O.; Erdal, C.; Ahmet, A. Design and evaluation of colon specific drug delivery system containing flurbiprofen microsponges. Indian J. Pharmacol., 2006, 318(1–2), 113-117.
[24]
Hermans, M.H. Results of a survey on the use of different treatment options for partial and full thickness burns. Burns, 1998, 24(6), 539-551.
[http://dx.doi.org/10.1016/S0305-4179(98)00079-5] [PMID: 9776093]
[25]
Deng, J.; Huang, L.; Liu, F. Understanding the structure and stability of paclitaxel nanocrystals. Int. J. Pharm., 2010, 390(2), 242-249.
[http://dx.doi.org/10.1016/j.ijpharm.2010.02.013] [PMID: 20167270]
[26]
Mishra, P.R.; Al Shaal, L.; Müller, R.H.; Keck, C.M. Production and characterization of Hesperetin nanosuspensions for dermal delivery. Int. J. Pharm., 2009, 371(1-2), 182-189.
[http://dx.doi.org/10.1016/j.ijpharm.2008.12.030] [PMID: 19162147]
[27]
Merisko-Liversidge, E.; Liversidge, G.G.; Cooper, E.R. Nanosizing: A formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci., 2003, 18(2), 113-120.
[http://dx.doi.org/10.1016/S0928-0987(02)00251-8] [PMID: 12594003]
[28]
Gulfraz, M.; Iftikhar, F.; Imran, M.; Zeenat, A.; Asif, S.; Shah, I. Compositional analysis and antimicrobial activity of various honey types of Pakistan. Int. J. Food Sci. Technol., 2011, 46(2), 263-267.
[http://dx.doi.org/10.1111/j.1365-2621.2010.02488.x]
[29]
Azim, M.K.; Sajid, M. Evaluation of nematocidal activity in natural honey. Pak. J. Bot., 2009, 41, 3261-3264.
[30]
Yang, J.M.; Su, W.Y.; Leu, T.L.; Yang, M.C. Evaluation of chitosan/PVA blended hydrogel membranes. J. Membr. Sci., 2004, 236(1-2), 39-51.
[http://dx.doi.org/10.1016/j.memsci.2004.02.005]
[31]
El-Kased Reham, F. Natural antibacterial remedy for respiratory tract infections. Asian Pac. J. Trop. Biomed., 2016, 6(3), 270-274.
[http://dx.doi.org/10.1016/j.apjtb.2015.12.002]
[32]
Swellam, T.; Miyanaga, N.; Onozawa, M.; Hattori, K.; Kawai, K.; Shimazui, T.; Akaza, H. Antineoplastic activity of honey in an experimental bladder cancer implantation model: in vivo and in vitro studies. Int. J. Urol., 2003, 10(4), 213-219.
[http://dx.doi.org/10.1046/j.0919-8172.2003.00602.x] [PMID: 12657101]
[33]
Cooper, R.A.; Molan, P.C.; Harding, K.G. Antibacterial activity of honey against strains of Staphylococcus aureus from infected wounds. J. R. Soc. Med., 1999, 92(6), 283-285.
[http://dx.doi.org/10.1177/014107689909200604] [PMID: 10472280]
[34]
Visavadia, B.G.; Honeysett, J.; Danford, M.H. Manuka honey dressing: An effective treatment for chronic wound infections. Br. J. Oral Maxillofac. Surg., 2008, 46(1), 55-56.
[http://dx.doi.org/10.1016/j.bjoms.2006.09.013] [PMID: 17113690]
[35]
Chen, Q.; Deng, X.; Qiang, L.; Yao, M.; Guan, L.; Xie, N.; Zhao, D.; Ma, J.; Ma, L.; Wu, Y.; Yan, X. Investigating the effects of walnut ointment on non-healing burn wounds. Burns, 2021, 47(2), 455-465.
[http://dx.doi.org/10.1016/j.burns.2020.06.032] [PMID: 32736884]
[36]
Jelvehgari, M.; Siahi-Shadbad, M.R.; Azarmi, S.; Martin, G.P.; Nokhodchi, A. The microsponge delivery system of benzoyl peroxide: Preparation, characterization and release studies. Int. J. Pharm., 2006, 308(1-2), 124-132.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.001] [PMID: 16359833]
[37]
Comoğlu, T.; Gönül, N.; Baykara, T. Preparation and in vitro evaluation of modified release ketoprofen microsponges. Farmaco, 2003, 58(2), 101-106.
[http://dx.doi.org/10.1016/S0014-827X(02)00007-1] [PMID: 12581775]
[38]
Patel, N.; Padia, N.; Vadgama, N.; Raval, M.; Sheth, N. Formulation and evaluation of microsponge gel for topical delivery of fluconazole for fungal therapy. J. Pharm. Investig., 2016, 46(3), 221-238.
[http://dx.doi.org/10.1007/s40005-016-0230-7]
[39]
Acharya, S.; Patra, S.; Pani, N.R. Optimization of HPMC and carbopol concentrations in non-effervescent floating tablet through factorial design. Carbohydr. Polym., 2014, 102(1), 360-368.
[http://dx.doi.org/10.1016/j.carbpol.2013.11.060] [PMID: 24507292]
[40]
Weaver, A.J., Jr; Brandenburg, K.S.; Karna, S.L.R.; Olverson, C.; Leung, K.P. Divulging the complexities of deep partial- and full-thickness burn wounds afflicted by Staphylococcus aureus biofilms in a rat burn model. Eur. Burn J., 2021, 2(3), 106-124.
[http://dx.doi.org/10.3390/ebj2030009]
[41]
Paterakis, P.G.; Korakianiti, E.S.; Dallas, P.P.; Rekkas, D.M. Evaluation and simultaneous optimization of some pellets characteristics using a 3(3) factorial design and the desirability function. Int. J. Pharm., 2002, 248(1-2), 51-60.
[http://dx.doi.org/10.1016/S0378-5173(02)00341-1] [PMID: 12429459]
[42]
Tsipouras, N.; Rix, C.J.; Brady, P.H. Solubility of silver sulfadiazine in physiological media and relevance to treatment of thermal burns with silver sulfadiazine cream. Clin. Chem., 1995, 41(1), 87-91.
[http://dx.doi.org/10.1093/clinchem/41.1.87] [PMID: 7813087]
[43]
Morsi, N.M.; Abdelbary, G.A.; Ahmed, M.A. Silver sulfadiazine based cubosome hydrogels for topical treatment of burns: Development and in vitro/in vivo characterization. Eur. J. Pharm. Biopharm., 2014, 86(2), 178-189.
[http://dx.doi.org/10.1016/j.ejpb.2013.04.018] [PMID: 23688805]
[44]
Bhatia, M.; Saini, M. Formulation and evaluation of curcumin microsponges for oral and topical drug delivery. Prog. Biomater., 2018, 7(3), 239-248.
[http://dx.doi.org/10.1007/s40204-018-0099-9] [PMID: 30242738]
[45]
Basit, H.M.; Mohd Amin, M.C.I.; Ng, S.F.; Katas, H.; Shah, S.U.; Khan, N.R. Formulation and evaluation of microwave-modified chitosan-curcumin nanoparticles-a promising nanomaterials platform for skin tissue regeneration applications following burn wounds. Polymers (Basel), 2020, 12(11), 2608.
[http://dx.doi.org/10.3390/polym12112608] [PMID: 33171959]
[46]
Shewale, A.; Puri, S.; Bele, R.; Fatema, M. Design, formulation, and physicochemical evaluation of occimum sanctum containing honey based hydrogel. J. Pharm. Res. Int., 2021, 33(34B), 33-38.
[http://dx.doi.org/10.9734/jpri/2021/v33i34B31846]
[47]
Singh, R.M.; Kumar, A.; Pathak, K. Thermally triggered mucoadhesive in situ gel of loratadine: Β-cyclodextrin complex for nasal delivery. AAPS PharmSciTech, 2013, 14(1), 412-424.
[http://dx.doi.org/10.1208/s12249-013-9921-9] [PMID: 23358934]
[48]
Sezer, A.D.; Cevher, E. Hatipoğlu, F.; Oğurtan, Z.; Baş A.L.; Akbuğa, J. Preparation of fucoidan-chitosan hydrogel and its application as burn healing accelerator on rabbits. Biol. Pharm. Bull., 2008, 31(12), 2326-2333.
[http://dx.doi.org/10.1248/bpb.31.2326] [PMID: 19043221]
[49]
Purohit, S.; Solanki, R.; Soni, M.; Mathur, V. Experimental evaluation of indian aloe (aloe vera) leaves pulp as topical medicament on wound healing. Int J Pharmacol Res., 2012, 2(3), 4-12.
[http://dx.doi.org/10.7439/ijpr.v2i3.702]
[50]
Niamlang, S.; Buranut, T.; Niansiri, A. Electrically controlled aloe-vera extraction release from poly acrylamide hydrogel. Energy Procedia, 2011, 9, 468-473.
[http://dx.doi.org/10.1016/j.egypro.2011.09.053]
[51]
Zhao, G.; Dai, C.; Qing, Y.; Zhao, M.; Zhao, J. Study on formation of gel formed by different polymers and zicronium aceate. J. Sol-Gel Sci. Technol., 2013, 65, 392-398.
[http://dx.doi.org/10.1007/s10971-012-2951-z]
[52]
Aslani, A.; Emami, Sm.; Ghannadi, A.; Ajdari, M. Formulation and physicochemical evaluation of an herbal antihemorrhoid ointment from quercus, black cumin and fenugreek for the treatment of internal anal hemorrhoids. J. Pharm. Sci. Tabriz Univ. Med. Sci., 2009, 14, 247-257.
[53]
Xia, D.; Quan, P.; Piao, H.; Piao, H.; Sun, S.; Yin, Y.; Cui, F. Preparation of stable nitrendipine nanosuspensions using the precipitation-ultrasonication method for enhancement of dissolution and oral bioavailability. Eur. J. Pharm. Sci., 2010, 40(4), 325-334.
[http://dx.doi.org/10.1016/j.ejps.2010.04.006] [PMID: 20417274]
[54]
Alemdaroğlu, C.; Değim, Z.; Celebi, N.; Zor, F.; Oztürk, S.; Erdoğan, D. An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns, 2006, 32(3), 319-327.
[http://dx.doi.org/10.1016/j.burns.2005.10.015] [PMID: 16527411]
[55]
Thirumurugan, G.; Shaheedha, S.M.; Dhanaraju, M.D. In-vitro evaluation of anti-bacterial activity of silver nanoparticles synthesised by using Phytophthora infestans. Int. J. Chemtech Res., 2009, 1, 714-716.
[56]
Lusby, P.E.; Coombes, A.L.; Wilkinson, J.M. Bactericidal activity of different honeys against pathogenic bacteria. Arch. Med. Res., 2005, 36(5), 464-467.
[http://dx.doi.org/10.1016/j.arcmed.2005.03.038] [PMID: 16099322]
[57]
Ustündağ N.; Okur, V.; Yozgat, M.E.; Okur, A.; Yoltaş P.I. Improving therapeutic efficacy of voriconazole against fungal keratitis: Thermo-sensitive in situ gels as ophthalmic drug carriers. J. Drug Deliv. Sci. Technol., 2019, 49, 323-333.
[http://dx.doi.org/10.1016/j.jddst.2018.12.005]
[58]
Thakkar, V.; Korat, V.; Baldaniya, L.; Gohel, M.; Gandhi, T.; Patel, N. Development and characterization of novel hydrogel containing antimicrobial drug for treatment of burns. Int. J. Pharm. Investig., 2016, 6(3), 158-168.
[59]
El-Kased, R.F.; Amer, R.I.; Attia, D.; Elmazar, M.M. Honey-based hydrogel: in vitro and comparative in vivo evaluation for burn wound healing. Sci. Rep., 2017, 7(1), 9692.
[http://dx.doi.org/10.1038/s41598-017-08771-8] [PMID: 28851905]
[60]
Padamwar, M.N.; Pokharkar, V.B. Development of vitamin loaded topical liposomal formulation using factorial design approach: Drug deposition and stability. Int. J. Pharm., 2006, 320(1-2), 37-44.
[http://dx.doi.org/10.1016/j.ijpharm.2006.04.001] [PMID: 16707237]
[61]
Liu, P.; De Wulf, O.; Laru, J.; Heikkilä, T.; van Veen, B.; Kiesvaara, J.; Hirvonen, J.; Peltonen, L.; Laaksonen, T. Dissolution studies of poorly soluble drug nanosuspensions in non-sink conditions. AAPS PharmSciTech, 2013, 14(2), 748-756.
[http://dx.doi.org/10.1208/s12249-013-9960-2] [PMID: 23615772]
[62]
Bellamakondi, P.K.; Godavarthi, A.; Ibrahim, M.; Kulkarni, S.; Naik, M.R.; Sunitha, M. In vitro cytotoxicity of caralluma species by MTT and Trypan blue dye exclusion. Asian J. Pharm. Clin. Res., 2014, 7, 17-19.
[63]
Kumar, P.M.; Ghosh, A. Development and evaluation of silver sulfadiazine loaded microsponge based gel for partial thickness (second degree) burn wounds. Eur. J. Pharm. Sci., 2017, 96, 243-254.
[http://dx.doi.org/10.1016/j.ejps.2016.09.038] [PMID: 27697504]
[64]
Keck, C.M.; Müller, R.H. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur. J. Pharm. Biopharm., 2006, 62(1), 3-16.
[http://dx.doi.org/10.1016/j.ejpb.2005.05.009] [PMID: 16129588]
[65]
Zohdi, R.M.; Zakaria, Z.A.; Yusof, N.; Mustapha, N.M.; Abdullah, M.N. Sea cucumber (Stichopus hermanii) based hydrogel to treat burn wounds in rats. J. Biomed. Mater. Res. B Appl. Biomater., 2011, 98(1), 30-37.
[http://dx.doi.org/10.1002/jbm.b.31828] [PMID: 21504052]
[66]
Rozaini, M.Z.; Zuki, A.B.; Noordin, M.; Norimah, Y.; Nazrul, H.A. The effect of different types of honey on tensile strenght evaluation of burn wound tissue healing. Int. J. Appl. Res. Vet. Med., 2004, 2(4), 290-296.
[67]
Kosto, T.J., II; Nauman, E.B. A density-functional model for controlled release. J. Control. Release, 2003, 93(3), 301-308.
[http://dx.doi.org/10.1016/j.jconrel.2003.08.018] [PMID: 14644580]
[68]
Banchroft, J.D.; Stevens, A.; Turner, D.R. Theory and practice of histological techniques, Fourth edt; New York, 1996, pp. 273-292.
[69]
Galeano, M.; Altavilla, D.; Bitto, A.; Minutoli, L.; Calò, M.; Lo Cascio, P.; Polito, F.; Giugliano, G.; Squadrito, G.; Mioni, C.; Giuliani, D.; Venuti, F.S.; Squadrito, F. Recombinant human erythropoietin improves angiogenesis and wound healing in experimental burn wounds. Crit. Care Med., 2006, 34(4), 1139-1146.
[http://dx.doi.org/10.1097/01.CCM.0000206468.18653.EC] [PMID: 16484928]
[70]
Ayla, S.; Günal, M.Y. Sayın Şakul, A.A.; Biçeroğlu, O.; Özdemir, E.M.; Okur, M.E.; Polat, D.C.; Üstündağ Okur, N.; Bilgiç, B.E. Effects of Prunus spinosa L. fruits on experimental wound healing. Medeni. Med. J., 2017, 32, 152-158.
[http://dx.doi.org/10.5222/MMJ.2017.152]
[72]
Huang, X.; Bao, X.; Liu, Y.; Wang, Z.; Hu, Q. Catechol-functional chitosan/silver nanoparticle composite as a highly effective antibacterial agent with species-specific mechanisms. Sci. Rep., 2017, 7(1), 1860.
[http://dx.doi.org/10.1038/s41598-017-02008-4] [PMID: 28500325]
[73]
Miastkowska, M.; Kulawik-Pioro, A.; Szczurek, M. Nanoemulsion gel formulation optimization for burn wounds: Analysis of rheological and sensory properties. Processes (Basel), 2020, 8(1416), 1-26.
[74]
Maiti, S.; Kaity, S.; Ray, S.; Sa, B. Development and evaluation of xanthan gum-facilitated ethyl cellulose microsponges for controlled percutaneous delivery of diclofenac sodium. Acta Pharm., 2011, 61(3), 257-270.
[http://dx.doi.org/10.2478/v10007-011-0022-6] [PMID: 21945905]
[75]
Shukla, R.; Tiwari, A. Carbohydrate polymers: Applications and recent advances in delivering drugs to the colon. Carbohydr. Polym., 2012, 88(2), 399-416.
[http://dx.doi.org/10.1016/j.carbpol.2011.12.021]
[76]
Behan, N.O.; Sullivan, C.; Birkinshaw, C. Synthesis and in-vitro drug release of insulin-loaded poly(n-butyl cyanoacrylate) nanoparticles. Macromol. Biosci., 2002, 2(7), 336-340.
[http://dx.doi.org/10.1002/1616-5195(200209)2:7<336::AIDMABI336>3.0.CO;2-P]
[77]
Bothiraja, C.; Kapare, H.S.; Pawar, A.P.; Shaikh, K.S. Development of plumbagin-loaded phospholipid-Tween® 80 mixed micelles: Formulation, optimization, effect on breast cancer cells and human blood/serum compatibility testing. Ther. Deliv., 2013, 4(10), 1247-1259.
[http://dx.doi.org/10.4155/tde.13.92] [PMID: 24116910]
[78]
Draper, N.R.; Smith, H. Applied regression analysis; John Wiley & Sons, 1998, pp. 125-133.
[http://dx.doi.org/10.1002/9781118625590]
[79]
Sakia, R.M. The Box-Cox transformation technique: A review. Statistician, 1992, 41(2), 169-178.
[http://dx.doi.org/10.2307/2348250]
[80]
Bult, A; Plug, CM Silver sulfadiazine. Analytical profiles of drug substances., 1984, 13, 553-571.
[http://dx.doi.org/10.1016/S0099-5428(08)60202-6]
[81]
Narang, K.; Gupta, J. Silver (i) complexes of sulfathiazole, sulfadiazine, sulfamerazine and sulfamethazine. Curr. Sci., 1976, 45(21), 744-746.
[82]
Emami, J.; Mohiti, H.; Hamishehkar, H.; Varshosaz, J. Formulation and optimization of solid lipid nanoparticle formulation for pulmonary delivery of budesonide using Taguchi and Box-Behnken design. Res. Pharm. Sci., 2015, 10(1), 17-33.
[PMID: 26430454]
[83]
Talele, S; Nikam, P; Ghosh, B; Deore, C; Jaybhave, A; Jadhav, A Nanogel as topical promising drug delivery for diclofenac sodium. Indian j pharm educ res, 2017, 51(4), 580-587.
[84]
Shidhaye, S.; Lotlikar, V.; Malke, S.; Kadam, V. Nanogel engineered polymeric micelles for drug delivery. Curr. Drug Ther., 2008, 3(3), 209-217.
[http://dx.doi.org/10.2174/157488508785747880]
[85]
Ito, K.; Saito, A.; Fujie, T.; Nishiwaki, K.; Miyazaki, H.; Kinoshita, M.; Saitoh, D.; Ohtsubo, S.; Takeoka, S. Sustainable antimicrobial effect of silver sulfadiazine-loaded nanosheets on infection in a mouse model of partial-thickness burn injury. Acta Biomater., 2015, 24, 87-95.
[http://dx.doi.org/10.1016/j.actbio.2015.05.035] [PMID: 26079191]
[86]
Joshi, N.; Mishra, N.; Rai, V.K. Development and evaluation of in situ gel of silver sulfadiazine for improved therapeutic efficacy against infectious burn wound. J. Pharm. Innov., 2020.
[http://dx.doi.org/10.1007/s12247-020-09464-y]
[87]
Ahmad, J.; Gautam, A.; Komath, S.; Bano, M.; Garg, A.; Jain, K. Topical nano-emulgel for skin disorders: Formulation approach and characterization. Recent Pat. Antiinfect. Drug Discov., 2019, 14(1), 36-48.
[http://dx.doi.org/10.2174/1574891X14666181129115213] [PMID: 30488798]
[88]
Hamdan, S.; Pastar, I.; Drakulich, S.; Dikici, E.; Tomic-Canic, M.; Deo, S.; Daunert, S. Nanotechnology-driven therapeutic interventions in wound healing: Potential uses and applications. ACS Cent. Sci., 2017, 3(3), 163-175.
[http://dx.doi.org/10.1021/acscentsci.6b00371] [PMID: 28386594]
[89]
Mona, G. Arafa; El-Kased, Reham F.; Elmazar, M.M. Thermoresponsive gels containing gold nanoparticles as smart antibacterial and wound healing agents, scientific reports. 2018, 8, 13674.
[90]
Azim, M.K.; Perveen, H.; Mesaik, M.A.; Simjee, S.U. Antinociceptive activity of natural honey in thermal-nociception models in mice. Phytother. Res., 2007, 21(2), 194-197.
[http://dx.doi.org/10.1002/ptr.2049] [PMID: 17160970]