Diagnosis and Management of Monogenic Diabetes in Pregnancy

Article ID: e140522204792 Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Monogenic diabetes occurs in up to 3% of people with diabetes. Mutations in over 40 different genes are responsible. The most common genes affected are HNF1A, HNF4A, GCK, and HNF1B. Additionally, other types of diabetes with a genetic aetiology include neonatal diabetes and diabetes plus syndrome. Each of these genetic subtypes has a different phenotype and requires distinctive treatments. Due to the overlap of monogenic diabetes with type 1 and 2 diabetes and even gestational diabetes, they can often be misdiagnosed. During pregnancy, individual subtypes require treatment that is different from standard diabetes care, so recognition and prompt diagnosis of monogenic diabetes are important to avoid inadequate treatment.

We describe the management of monogenic diabetes for the most significant subtypes, focussing on the impact on and management in pregnancy.

A genetic diagnosis of diabetes can alter long-term treatment in those with diabetes. In pregnancy and the postnatal period, this can involve specific management changes determined by the gene affected and whether there is a fetal inheritance of the gene. Where inheritance of the genotype influences the outcomes, cell-free fetal testing will hopefully soon become a diagnostic tool for early recognition of fetal mutations.

Keywords: MODY, Monogenic diabetes, glucokinase, pregnancy, hepatocyte nuclear factor 1A, hepatocyte nuclear factor 4A, neonatal diabetes, hepatocyte nuclear factor 1B.

[1]
Ledermann HM. Maturity-onset diabetes of the young (MODY) at least ten times more common in Europe than previously assumed? Diabetologia 1995; 38(12): 1482.
[http://dx.doi.org/10.1007/BF00400611] [PMID: 8786024]
[2]
Naylor R, Knight JA, del Gaudio D. Maturity-Onset Diabetes of the Young Overview. In: Adam MP, Ardinger HH, Pagon RA, et al., Eds., GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle 2018.
[3]
Pihoker C, Gilliam LK, Ellard S, et al. Prevalence, characteristics and clinical diagnosis of maturity onset diabetes of the young due to mutations in HNF1A, HNF4A, and glucokinase: Results from the SEARCH for Diabetes in Youth. J Clin Endocrinol Metab 2013; 98(10): 4055-62.
[http://dx.doi.org/10.1210/jc.2013-1279] [PMID: 23771925]
[4]
Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, Ellard S. Maturity-onset diabetes of the young (MODY): How many cases are we missing? Diabetologia 2010; 53(12): 2504-8.
[http://dx.doi.org/10.1007/s00125-010-1799-4] [PMID: 20499044]
[5]
Stanik J, Dusatkova P, Cinek O, et al. De novo mutations of GCK, HNF1A and HNF4A may be more frequent in MODY than previously assumed. Diabetologia 2014; 57(3): 480-4.
[http://dx.doi.org/10.1007/s00125-013-3119-2] [PMID: 24323243]
[6]
Peixoto-Barbosa R, Reis AF, Giuffrida FMA. Update on clinical screening of maturity-onset diabetes of the young (MODY). Diabetol Metab Syndr 2020; 12(1): 50.
[http://dx.doi.org/10.1186/s13098-020-00557-9] [PMID: 32528556]
[7]
Kleinberger JW, Maloney KA, Pollin TI. The genetic architecture of diabetes in pregnancy: Implications for clinical practice. Am J Perinatol 2016; 33(13): 1319-26.
[http://dx.doi.org/10.1055/s-0036-1592078] [PMID: 27571483]
[8]
Johns Hopkins University. OMIM entry 606391 Maturity onset diabetes of the young. Online Medelian Inheritance in Man, OMIM. 2010. Available from: https://www.omim.org/entry/606391# Accessed July 4, 2021.
[9]
Bonnefond A, Philippe J, Durand E, et al. Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene. PLoS One 2012; 7(6)e37423
[http://dx.doi.org/10.1371/journal.pone.0037423] [PMID: 22701567]
[10]
Gardner DS, Tai ES. Clinical features and treatment of maturity onset diabetes of the young (MODY). Diabetes Metab Syndr Obes 2012; 5: 101-8.
[http://dx.doi.org/10.2147/DMSO.S23353] [PMID: 22654519]
[11]
Colclough K, Bellanne-Chantelot C, Saint-Martin C, Flanagan SE, Ellard S. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha and 4 alpha in maturity-onset diabetes of the young and hyperinsulinemic hypoglycemia. Hum Mutat 2013; 34(5): 669-85.
[http://dx.doi.org/10.1002/humu.22279] [PMID: 23348805]
[12]
Hattersley AT, Patel KA. Precision diabetes: Learning from monogenic diabetes. Diabetologia 2017; 60(5): 769-77.
[http://dx.doi.org/10.1007/s00125-017-4226-2] [PMID: 28314945]
[13]
Rudland VL. Diagnosis and management of glucokinase monogenic diabetes in pregnancy: Current perspectives. Diabetes Metab Syndr Obes 2019; 12: 1081-9.
[http://dx.doi.org/10.2147/DMSO.S186610] [PMID: 31372018]
[14]
Shields BM, McDonald TJ, Ellard S, Campbell MJ, Hyde C, Hattersley AT. The development and validation of a clinical prediction model to determine the probability of MODY in patients with young-onset diabetes. Diabetologia 2012; 55(5): 1265-72.
[http://dx.doi.org/10.1007/s00125-011-2418-8] [PMID: 22218698]
[15]
Chakera AJ, Spyer G, Vincent N, Ellard S, Hattersley AT, Dunne FP. The 0.1% of the population with glucokinase monogenic diabetes can be recognized by clinical characteristics in pregnancy: The atlantic diabetes in pregnancy cohort. Diabetes Care 2014; 37(5): 1230 LP-6.
[http://dx.doi.org/10.2337/dc13-2248]
[16]
Rudland VL, Price SAL, Hughes R, et al. ADIPS 2020 guideline for pre-existing diabetes and pregnancy. Aust N Z J Obstet Gynaecol 2020; 60(6): E18-52.
[http://dx.doi.org/10.1111/ajo.13265] [PMID: 33200400]
[17]
National institute for health and Care excellence. Diabetes in pregnancy: Management from preconception to the postnatal period 2015.
[18]
Fu J, Wang T, Liu J, Wang X, Li M, Xiao X. Birthweight correlates with later metabolic abnormalities in Chinese patients with maturity-onset diabetes of the young type 2. Endocrine 2019; 65(1): 53-60.
[http://dx.doi.org/10.1007/s12020-019-01929-6] [PMID: 31028668]
[19]
Matschinsky FM, Wilson DF. The central role of glucokinase in glucose homeostasis: A Perspective 50 years after demonstrating the presence of the enzyme in islets of Langerhans. Front Physiol 2019; 10: 148.
[http://dx.doi.org/10.3389/fphys.2019.00148] [PMID: 30949058]
[20]
Kavvoura FK, Owen KR. Monogenic diabetes. Medicine (Abingdon) 2019; 47(1): 16-21.
[http://dx.doi.org/10.1016/j.mpmed.2018.10.007]
[21]
Chakera AJ, Steele AM, Gloyn AL, et al. Recognition and management of individuals with hyperglycemia because of a heterozygous glucokinase mutation. Diabetes Care 2015; 38(7): 1383-92.
[http://dx.doi.org/10.2337/dc14-2769] [PMID: 26106223]
[22]
Owen KR. Monogenic diabetes in adults: What are the new developments? Curr Opin Genet Dev 2018; 50: 103-10.
[http://dx.doi.org/10.1016/j.gde.2018.04.006] [PMID: 29734081]
[23]
Dickens LT, Letourneau LR, Sanyoura M, Greeley SAW, Philipson LH, Naylor RN. Management and pregnancy outcomes of women with GCK-MODY enrolled in the US Monogenic Diabetes Registry. Acta Diabetol 2019; 56(4): 405-11.
[http://dx.doi.org/10.1007/s00592-018-1267-z] [PMID: 30535721]
[24]
Bacon S, Schmid J, McCarthy A, et al. The clinical management of hyperglycemia in pregnancy complicated by maturity-onset diabetes of the young. Am J Obstet Gynecol 2015; 213(2): 236.e1-7.
[http://dx.doi.org/10.1016/j.ajog.2015.04.037] [PMID: 25935773]
[25]
Spyer G, Macleod KM, Shepherd M, Ellard S, Hattersley AT. Pregnancy outcome in patients with raised blood glucose due to a heterozygous glucokinase gene mutation. Diabet Med 2009; 26(1): 14-8.
[http://dx.doi.org/10.1111/j.1464-5491.2008.02622.x] [PMID: 19125755]
[26]
Rees K, Reed A, Banerjee A, Pasupathy D. Maturity onset diabetes of the young in pregnancy: Diagnosis, management and prognosis of MODY in pregnancy. Obstetrics, Gynaecol Reprod Med 2017; 27(5): 144-7.
[http://dx.doi.org/10.1016/j.ogrm.2017.02.005]
[27]
López Tinoco C, Sánchez Lechuga B, Bacon S, et al. Evaluation of pregnancy outcomes in women with GCK-MODY. Diabet Med 2021; 38(6)e14488
[http://dx.doi.org/10.1111/dme.14488]
[28]
Hosokawa Y, Higuchi S, Kawakita R, et al. Pregnancy outcome of Japanese patients with glucokinase-maturity-onset diabetes of the young. J Diabetes Investig 2019; 10(6): 1586-9.
[http://dx.doi.org/10.1111/jdi.13046] [PMID: 30897270]
[29]
Chakera AJ, Carleton VL, Ellard S, et al. Antenatal diagnosis of fetal genotype determines if maternal hyperglycemia due to a glucokinase mutation requires treatment. Diabetes Care 2012; 35(9): 1832-4.
[http://dx.doi.org/10.2337/dc12-0151] [PMID: 22773699]
[30]
Chen L, Yang T, Chen L, et al. Risk of congenital heart defects in offspring exposed to maternal diabetes mellitus: An updated systematic review and meta-analysis. Arch Gynecol Obstet 2019; 300(6): 1491-506.
[http://dx.doi.org/10.1007/s00404-019-05376-6] [PMID: 31713644]
[31]
Parimi M, Nitsch D. A Systematic review and meta-analysis of diabetes during pregnancy and congenital genitourinary abnormalities. Kidney Int Rep 2020; 5(5): 678-93.
[http://dx.doi.org/10.1016/j.ekir.2020.02.1027] [PMID: 32405589]
[32]
Taylor RAM, Mackie A, Mogra R, Pinner J, Rajendran S, Ross GP. Caudal regression syndrome in a fetus of a glucokinase-maturity-onset diabetes of the young pregnancy. Diabet Med 2019; 36(2): 252-5.
[http://dx.doi.org/10.1111/dme.13844] [PMID: 30362177]
[33]
Singh R, Pearson ER, Clark PM, Hattersley AT. The long-term impact on offspring of exposure to hyperglycaemia in utero due to maternal glucokinase gene mutations. Diabetologia 2007; 50(3): 620-4.
[http://dx.doi.org/10.1007/s00125-006-0541-8] [PMID: 17216282]
[34]
Velho G, Hattersley AT, Froguel P. Maternal diabetes alters birth weight in glucokinase-deficient (MODY2) kindred but has no influence on adult weight, height, insulin secretion or insulin sensitivity. Diabetologia 2000; 43(8): 1060-3.
[http://dx.doi.org/10.1007/s001250051490] [PMID: 10990085]
[35]
Allan CJ, Argyropoulos G, Bowker M, et al. Gestational diabetes mellitus and gene mutations which affect insulin secretion. Diabetes Res Clin Pract 1997; 36(3): 135-41.
[http://dx.doi.org/10.1016/S0168-8227(97)00042-9] [PMID: 9237779]
[36]
Frigeri HR, Santos ICR, Réa RR, et al. Low prevalence of glucokinase gene mutations in gestational diabetic patients with good glycemic control. Genet Mol Res 2012; 11(2): 1433-41.
[http://dx.doi.org/10.4238/2012.May.18.2] [PMID: 22653590]
[37]
Stoffel M, Bell KL, Blackburn CL, et al. Identification of glucokinase mutations in subjects with gestational diabetes mellitus. Diabetes 1993; 42(6): 937-40.
[http://dx.doi.org/10.2337/diab.42.6.937] [PMID: 8495817]
[38]
Lima Ferreira J, Voss G, Sá Couto A, Príncipe RM. Monogenic diabetes caused by GCK gene mutation is misdiagnosed as gestational diabetes - A multicenter study in Portugal. Diabetes Metab Syndr 2021; 15(5)102259
[http://dx.doi.org/10.1016/j.dsx.2021.102259] [PMID: 34438359]
[39]
Lepore C, Damaso E, Suazo V, Queiroz R, Junior RL, Moisés E. Molecular changes in the Glucokinase gene (GCK) associated with the diagnosis of Maturity Onset Diabetes of the Young (MODY) in pregnant women and newborns. Curr Diabetes Rev 2022; 18(16): e0608, 21195358.
[http://dx.doi.org/10.2174/1573399817666210806110633] [PMID: 34365926]
[40]
Monsonego S, Clark H, Karovitch A, O’Meara P, Shaw T, Malcolm J. Management and outcomes of maturity-onset diabetes of the young in pregnancy. Can J Diabetes 2019; 43(8): 647-54.
[http://dx.doi.org/10.1016/j.jcjd.2019.07.004] [PMID: 31564623]
[41]
Kwak SH, Powe CE, Jang SS, et al. Sequencing cell-free fetal DNA in pregnant women with GCK-MODY: A proof-of-concept study. J Clin Endocrinol Metab 2021; 106(9)dgab265
[http://dx.doi.org/10.1210/clinem/dgab265] [PMID: 33878173]
[42]
Caswell RC, Snowsill T, Houghton JAL, et al. Noninvasive fetal genotyping by droplet digital PCR to identify maternally inherited monogenic diabetes variants. Clin Chem 2020; 66(7): 958-65.
[http://dx.doi.org/10.1093/clinchem/hvaa104] [PMID: 32533152]
[43]
Valkovicova T, Skopkova M, Stanik J, Gasperikova D. Novel insights into genetics and clinics of the HNF1A-MODY. Endocr Regul 2019; 53(2): 110-34.
[http://dx.doi.org/10.2478/enr-2019-0013] [PMID: 31517624]
[44]
Anık A, Çatlı G, Abacı A, Böber E. Maturity-onset diabetes of the young (MODY): An update. J Pediatr Endocrinol Metab 2015; 28(3-4): 251-63.
[http://dx.doi.org/10.1515/jpem-2014-0384] [PMID: 25581748]
[45]
Thanabalasingham G, Shah N, Vaxillaire M, et al. A large multi-centre European study validates high-sensitivity C-Reactive Protein (hsCRP) as a clinical biomarker for the diagnosis of diabetes subtypes. Diabetologia 2011; 54(11): 2801-10.
[http://dx.doi.org/10.1007/s00125-011-2261-y] [PMID: 21814873]
[46]
Bellanné-Chantelot C, Coste J, Ciangura C, et al. High-sensitivity C-reactive protein does not improve the differential diagnosis of HNF1A-MODY and familial young-onset type 2 diabetes: A grey zone analysis. Diabetes Metab 2016; 42(1): 33-7.
[http://dx.doi.org/10.1016/j.diabet.2015.02.001] [PMID: 25753245]
[47]
Besser REJ, Shepherd MH, McDonald TJ, et al. Urinary C-peptide creatinine ratio is a practical outpatient tool for identifying hepatocyte nuclear factor 1-alpha/hepatocyte nuclear factor 4-alpha maturity-onset diabetes of the young from long-duration type 1 diabetes. Diabetes Care 2011; 34(2): 286-91.
[http://dx.doi.org/10.2337/dc10-1293] [PMID: 21270186]
[48]
Steele AM, Shields BM, Shepherd M, Ellard S, Hattersley AT, Pearson ER. Increased all-cause and cardiovascular mortality in monogenic diabetes as a result of mutations in the HNF1A gene. Diabet Med 2010; 27(2): 157-61.
[http://dx.doi.org/10.1111/j.1464-5491.2009.02913.x] [PMID: 20546258]
[49]
Bacon S, Kyithar MP, Rizvi SR, et al. Successful maintenance on sulphonylurea therapy and low diabetes complication rates in a HNF1A-MODY cohort. Diabet Med 2016; 33(7): 976-84.
[http://dx.doi.org/10.1111/dme.12992] [PMID: 26479152]
[50]
Østoft SH, Bagger JI, Hansen T, et al. Glucose-lowering effects and low risk of hypoglycemia in patients with maturity-onset diabetes of the young when treated with a GLP-1 receptor agonist: A double-blind, randomized, crossover trial. Diabetes Care 2014; 37(7): 1797-805.
[http://dx.doi.org/10.2337/dc13-3007] [PMID: 24929431]
[51]
Christensen AS, Hædersdal S, Støy J, et al. Efficacy and safety of glimepiride with or without linagliptin treatment in patients with HNF1A Diabetes (Maturity-Onset Diabetes of the Young Type 3): A Randomized, Double-Blinded, Placebo-Controlled, Crossover Trial (GLIMLINA). Diabetes Care 2020; 43(9): 2025-33.
[http://dx.doi.org/10.2337/dc20-0408] [PMID: 32661107]
[52]
Heuvel-Borsboom H, de Valk HW, Losekoot M, Westerink J. Maturity onset diabetes of the young: Seek and you will find. Neth J Med 2016; 74(5): 193-200.
[PMID: 27323672]
[53]
Shepherd M, Brook AJ, Chakera AJ, Hattersley AT. Management of sulfonylurea-treated monogenic diabetes in pregnancy: Implications of placental glibenclamide transfer. Diabet Med 2017; 34(10): 1332-9.
[http://dx.doi.org/10.1111/dme.13388] [PMID: 28556992]
[54]
Colom C, Corcoy R. Maturity onset diabetes of the young and pregnancy. Best Pract Res Clin Endocrinol Metab 2010; 24(4): 605-15.
[http://dx.doi.org/10.1016/j.beem.2010.05.008] [PMID: 20832739]
[55]
Bitterman O, Iafusco D, Torcia F, Tinto N, Napoli A. A dizygotic twin pregnancy in a MODY 3-affected woman. Acta Diabetol 2016; 53(5): 849-52.
[http://dx.doi.org/10.1007/s00592-016-0848-y] [PMID: 26997508]
[56]
Stride A, Shepherd M, Frayling TM, Bulman MP, Ellard S, Hattersley AT. Intrauterine hyperglycemia is associated with an earlier diagnosis of diabetes in HNF-1α gene mutation carriers. Diabetes Care 2002; 25(12): 2287 LP-91.
[http://dx.doi.org/10.2337/diacare.25.12.2287]
[57]
Balsells M, García-Patterson A, Solà I, Roqué M, Gich I, Corcoy R. Glibenclamide, metformin, and insulin for the treatment of gestational diabetes: A systematic review and meta-analysis BMJ 2015; 350(jan21 14): h102.
[http://dx.doi.org/10.1136/bmj.h102] [PMID: 25609400]
[58]
Shepherd M, Shields B, Ellard S, Rubio-Cabezas O, Hattersley AT. A genetic diagnosis of HNF1A diabetes alters treatment and improves glycaemic control in the majority of insulin-treated patients. Diabet Med 2009; 26(4): 437-41.
[http://dx.doi.org/10.1111/j.1464-5491.2009.02690.x] [PMID: 19388975]
[59]
Pace NP, Rizzo C, Abela A, et al. Identification of an HNF1A p.Gly292fs frameshift mutation presenting as diabetes during pregnancy in a maltese family. Clin Med Insights Case Rep 2019; 121179547619831034
[http://dx.doi.org/10.1177/1179547619831034] [PMID: 30814848]
[60]
Delvecchio M, Pastore C, Giordano P. Treatment options for MODY patients: A systematic review of literature. Diabetes Ther 2020; 11(8): 1667-85.
[http://dx.doi.org/10.1007/s13300-020-00864-4] [PMID: 32583173]
[61]
Feig DS, Briggs GG, Kraemer JM, et al. Transfer of glyburide and glipizide into breast milk. Diabetes Care 2005; 28(8): 1851-5.
[http://dx.doi.org/10.2337/diacare.28.8.1851] [PMID: 16043722]
[62]
Shepherd M, Hattersley AT. ‘I don’t feel like a diabetic any more’: The impact of stopping insulin in patients with maturity onset diabetes of the young following genetic testing. Clin Med 2004; 4(2): 144 LP-7.
[http://dx.doi.org/10.7861/clinmedicine.4-2-144]
[63]
Stoffel M, Duncan SA. The maturity-onset diabetes of the young (MODY1) transcription factor HNF4Alpha regulates expression of genes required for glucose transport and metabolism. Proc Natl Acad Sci USA 1997; 94(24): 13209-14.
[http://dx.doi.org/10.1073/pnas.94.24.13209] [PMID: 9371825]
[64]
Fajans SS, Bell GI, Polonsky KS. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med 2001; 345(13): 971-80.
[http://dx.doi.org/10.1056/NEJMra002168] [PMID: 11575290]
[65]
Dickens LT, Naylor RN. Clinical management of women with monogenic diabetes during pregnancy. Curr Diab Rep 2018; 18(3): 12.
[http://dx.doi.org/10.1007/s11892-018-0982-8] [PMID: 29450745]
[66]
Pearson ER, Boj SF, Steele AM, et al. Macrosomia and hyperinsulinaemic hypoglycaemia in patients with heterozygous mutations in the HNF4A gene. PLoS Med 2007; 4(4)e118
[http://dx.doi.org/10.1371/journal.pmed.0040118] [PMID: 17407387]
[67]
Edensor S, Chakera AJ. Clinical care and other categories posters: Maturity onset diabetes of the young (MODY). DIABETIC MED 2021; 38(S1)e40_14556
[http://dx.doi.org/10.1111/dme.40_14556]
[68]
Boulet SL, Alexander GR, Salihu HM, Pass M. Macrosomic births in the United States: Determinants, outcomes, and proposed grades of risk. Am J Obstet Gynecol 2003; 188(5): 1372-8.
[http://dx.doi.org/10.1067/mob.2003.302] [PMID: 12748514]
[69]
Conn JJ, Simm PJ, Oats JJ, et al. Neonatal hyperinsulinaemic hypoglycaemia and monogenic diabetes due to a heterozygous mutation of the HNF4A gene. Aust N Z J Obstet Gynaecol 2009; 49(3): 328-30.
[http://dx.doi.org/10.1111/j.1479-828X.2009.01009.x] [PMID: 19566570]
[70]
Baldacchino I, Pace NP, Vassallo J. Screening for monogenic diabetes in primary care. Prim Care Diabetes 2020; 14(1): 1-11.
[http://dx.doi.org/10.1016/j.pcd.2019.06.001] [PMID: 31253563]
[71]
De Bortoli J, Amir LH. Is onset of lactation delayed in women with diabetes in pregnancy? A systematic review. Diabet Med 2016; 33(1): 17-24.
[http://dx.doi.org/10.1111/dme.12846] [PMID: 26113051]
[72]
Faguer S, Chassaing N, Bandin F, et al. The HNF1B score is a simple tool to select patients for HNF1B gene analysis. Kidney Int 2014; 86(5): 1007-15.
[http://dx.doi.org/10.1038/ki.2014.202] [PMID: 24897035]
[73]
Edghill EL, Bingham C, Slingerland AS, et al. Hepatocyte nuclear factor-1 beta mutations cause neonatal diabetes and intrauterine growth retardation: Support for a critical role of HNF-1beta in human pancreatic development. Diabet Med 2006; 23(12): 1301-6.
[http://dx.doi.org/10.1111/j.1464-5491.2006.01999.x] [PMID: 17116179]
[74]
Clissold RL, Hamilton AJ, Hattersley AT, Ellard S, Bingham C. HNF1B-associated renal and extra-renal disease-an expanding clinical spectrum. Nat Rev Nephrol 2015; 11(2): 102-12.
[http://dx.doi.org/10.1038/nrneph.2014.232] [PMID: 25536396]
[75]
Haldorsen IS, Vesterhus M, Raeder H, et al. Lack of pancreatic body and tail in HNF1B mutation carriers. Diabet Med 2008; 25(7): 782-7.
[http://dx.doi.org/10.1111/j.1464-5491.2008.02460.x] [PMID: 18644064]
[76]
Edghill EL, Bingham C, Ellard S, Hattersley AT. Mutations in hepatocyte nuclear factor-1beta and their related phenotypes. J Med Genet 2006; 43(1): 84-90.
[http://dx.doi.org/10.1136/jmg.2005.032854] [PMID: 15930087]
[77]
Bellanné-Chantelot C, Chauveau D, Gautier JF, et al. Clinical spectrum associated with hepatocyte nuclear factor-1β mutations. Ann Intern Med 2004; 140(7): 510-7.
[http://dx.doi.org/10.7326/0003-4819-140-7-200404060-00009] [PMID: 15068978]
[78]
Roehlen N, Hilger H, Stock F, et al. 17q12 deletion syndrome as a rare cause for diabetes mellitus type mody5. J Clin Endocrinol Metab 2018; 103(10): 3601-10.
[http://dx.doi.org/10.1210/jc.2018-00955] [PMID: 30032214]
[79]
Dubois-Laforgue D, Cornu E, Saint-Martin C, Coste J, Bellanné-Chantelot C, Timsit J. Diabetes, associated clinical spectrum, long-term prognosis, and genotype/phenotype correlations in 201 adult patients with Hepatocyte Nuclear Factor 1B (HNF1B) molecular defects. Diabetes Care 2017; 40(11): 1436-43.
[http://dx.doi.org/10.2337/dc16-2462] [PMID: 28420700]
[80]
Faguer S, Decramer S, Chassaing N, et al. Diagnosis, management, and prognosis of HNF1B nephropathy in adulthood. Kidney Int 2011; 80(7): 768-76.
[http://dx.doi.org/10.1038/ki.2011.225] [PMID: 21775974]
[81]
Brackenridge A, Pearson ER, Shojaee-Moradie F, Hattersley AT, Russell-Jones D, Umpleby AM. Contrasting insulin sensitivity of endogenous glucose production rate in subjects with hepatocyte nuclear factor-1beta and -1alpha mutations. Diabetes 2006; 55(2): 405-11.
[http://dx.doi.org/10.2337/diabetes.55.02.06.db05-1019] [PMID: 16443774]
[82]
Pearson ER, Badman MK, Lockwood CR, et al. Contrasting diabetes phenotypes associated with hepatocyte nuclear factor-1alpha and -1beta mutations. Diabetes Care 2004; 27(5): 1102-7.
[http://dx.doi.org/10.2337/diacare.27.5.1102] [PMID: 15111528]
[83]
Mikuscheva A, McKenzie E, Mekhail A. 21-Year-old pregnant woman with MODY-5 diabetes. Case Rep Obstet Gynecol 2017; 20176431531
[http://dx.doi.org/10.1155/2017/6431531] [PMID: 29163993]
[84]
Deng M, Wang X, Xiao X, Ping F. Maturity-onset diabetes of the young type 5 uncovered during pregnancy with a long-term diagnosis of type 1 diabetes. J Diabetes Investig 2019; 10(6): 1590-2.
[http://dx.doi.org/10.1111/jdi.13036] [PMID: 30860651]
[85]
Chen Y-Z, Gao Q, Zhao X-Z, et al. Systematic review of TCF2 anomalies in renal cysts and diabetes syndrome/maturity onset diabetes of the young type 5. Chin Med J (Engl) 2010; 123(22): 3326-33.
[PMID: 21163139]
[86]
Gondra L, Décramer S, Chalouhi GE, Muller F, Salomon R, Heidet L. Hyperechogenic kidneys and polyhydramnios associated with HNF1B gene mutation. Pediatr Nephrol 2016; 31(10): 1705-8.
[http://dx.doi.org/10.1007/s00467-016-3421-6] [PMID: 27286685]
[87]
Gimpel C, Avni FE, Bergmann C, et al. Perinatal diagnosis, management, and follow-up of cystic renal diseases: A clinical practice recommendation with systematic literature reviews. JAMA Pediatr 2018; 172(1): 74-86.
[http://dx.doi.org/10.1001/jamapediatrics.2017.3938] [PMID: 29181500]
[88]
Digby EL, Liauw J, Dionne J, Langlois S, Nikkel SM. Etiologies and outcomes of prenatally diagnosed hyperechogenic kidneys. Prenat Diagn 2021; 41(4): 465-77.
[http://dx.doi.org/10.1002/pd.5883] [PMID: 33337554]
[89]
Jing XY, Huang LY, Zhen L, Han J, Li DZ. Prenatal diagnosis of 17q12 deletion syndrome: A retrospective case series. J Obstet Gynaecol 2019; 39(3): 323-7.
[http://dx.doi.org/10.1080/01443615.2018.1519693] [PMID: 30634886]
[90]
Madariaga L, Morinière V, Jeanpierre C, et al. Severe prenatal renal anomalies associated with mutations in HNF1B or PAX2 genes. Clin J Am Soc Nephrol 2013; 8(7): 1179-87.
[http://dx.doi.org/10.2215/CJN.10221012] [PMID: 23539225]
[91]
Heidet L, Decramer S, Pawtowski A, et al. Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin J Am Soc Nephrol 2010; 5(6): 1079-90.
[http://dx.doi.org/10.2215/CJN.06810909] [PMID: 20378641]
[92]
Iafusco F, Meola S, Pecoraro C, Iafusco D, Tinto N. An unexpected prenatal diagnosis In: 51 Congresso Nazionale Della Societa Italiana Di Biochimica Clinica e Biologia Molecolare Clinica, SIBioC. Biochimica Clinica 2018.
[93]
Brown RJ, Araujo-Vilar D, Cheung PT, et al. The diagnosis and management of lipodystrophy syndromes: A multi-society practice guideline. J Clin Endocrinol Metab 2016; 101(12): 4500-11.
[http://dx.doi.org/10.1210/jc.2016-2466] [PMID: 27710244]
[94]
Vantyghem MC, Vincent-Desplanques D, Defrance-Faivre F, et al. Fertility and obstetrical complications in women with LMNA-related familial partial lipodystrophy. J Clin Endocrinol Metab 2008; 93(6): 2223-9.
[http://dx.doi.org/10.1210/jc.2007-2521] [PMID: 18364375]
[95]
Araújo-Vilar D, Santini F. Diagnosis and treatment of lipodystrophy: A step-by-step approach. J Endocrinol Invest 2019; 42(1): 61-73.
[http://dx.doi.org/10.1007/s40618-018-0887-z] [PMID: 29704234]
[96]
Sperling MA, Garg A. Monogenic Forms of Diabetes. In: Cowie CC, Casagrande SS, Menke A, Eds. Diabetes in America. 3rd ed. Bethesda (MS): National Institute of Diabetes and Digestive and Kidney Diseases 2018.
[97]
Bagias C, Xiarchou A, Bargiota A, Tigas S. Familial Partial Lipodystrophy (FPLD): Recent Insights. Diabetes Metab Syndr Obes 2020; 13: 1531-44.
[http://dx.doi.org/10.2147/DMSO.S206053] [PMID: 32440182]
[98]
Belo SPM, Magalhães ÂC, Freitas P, Carvalho DM. Familial partial lipodystrophy, Dunnigan variety - challenges for patient care during pregnancy: A case report. BMC Res Notes 2015; 8(1): 140.
[http://dx.doi.org/10.1186/s13104-015-1065-4] [PMID: 25885670]
[99]
Grupp C, Beckermann J, Köster E, et al. Relapsing and progressive complications of severe hypertriglyceridemia: Effective long-term treatment with double filtration plasmapheresis. Blood Purif 2020; 49(4): 457-67.
[http://dx.doi.org/10.1159/000506506] [PMID: 32191938]
[100]
Luedtke A, Boschmann M, Colpe C, et al. Thiazolidinedione response in familial lipodystrophy patients with LMNA mutations: A case series. Horm Metab Res 2012; 44(4): 306-11.
[http://dx.doi.org/10.1055/s-0031-1301284] [PMID: 22274718]
[101]
Oliveira J, Lau E, Carvalho D, Freitas P. Glucagon-like peptide-1 analogues - an efficient therapeutic option for the severe insulin resistance of lipodystrophic syndromes: Two case reports. J Med Case Reports 2017; 11(1): 12.
[http://dx.doi.org/10.1186/s13256-016-1175-1] [PMID: 28086952]
[102]
Banning F, Rottenkolber M, Freibothe I, Seissler J, Lechner A. Insulin secretory defect in familial partial lipodystrophy Type 2 and successful long-term treatment with a glucagon-like peptide 1 receptor agonist. Diabet Med 2017; 34(12): 1792-4.
[http://dx.doi.org/10.1111/dme.13527] [PMID: 29044799]
[103]
Valerio CM, de Almeida JS, Moreira RO, et al. Dipeptidyl peptidase-4 levels are increased and partially related to body fat distribution in patients with familial partial lipodystrophy type 2. Diabetol Metab Syndr 2017; 9(1): 26.
[http://dx.doi.org/10.1186/s13098-017-0226-0] [PMID: 28450900]
[104]
Nijjar S, Laji K, Stone S. A woman with familial partial lipodystrophy and the complications of her four pregnancies. Obstet Med 2014; 7(3): 121-2.
[http://dx.doi.org/10.1177/1753495X13516441] [PMID: 27512436]
[105]
Knopp RH, Warth MR, Charles D, et al. Lipoprotein metabolism in pregnancy, fat transport to the fetus, and the effects of diabetes. Biol Neonate 1986; 50(6): 297-317.
[http://dx.doi.org/10.1159/000242614] [PMID: 3542067]
[106]
Belo S, Magalhaes A, Freitas P, Gamboa C, Carvalho D. Dunnigan-type familial partial lipodystrophy - Case report. Endocr Rev 2012; 33(Suppl.).
[http://dx.doi.org/10.1093/edrv/33.supp.1]
[107]
Morse AN, Whitaker MD. Successful pregnancy in a woman with lipoatrophic diabetes mellitus. A case report. J Reprod Med 2000; 45(10): 850-2.
[PMID: 11077638]
[108]
Haque WA, Oral EA, Dietz K, Bowcock AM, Agarwal AK, Garg A. Risk factors for diabetes in familial partial lipodystrophy, Dunnigan variety. Diabetes Care 2003; 26(5): 1350-5.
[http://dx.doi.org/10.2337/diacare.26.5.1350] [PMID: 12716787]
[109]
Slingerland AS, Shields BM, Flanagan SE, et al. Referral rates for diagnostic testing support an incidence of permanent neonatal diabetes in three European countries of at least 1 in 260,000 live births. Diabetologia 2009; 52(8): 1683-5.
[http://dx.doi.org/10.1007/s00125-009-1416-6] [PMID: 19499210]
[110]
Busiah K, Drunat S, Vaivre-Douret L, et al. Neuropsychological dysfunction and developmental defects associated with genetic changes in infants with neonatal diabetes mellitus: A prospective cohort study. [corrected]. Lancet Diabetes Endocrinol 2013; 1(3): 199-207.
[http://dx.doi.org/10.1016/S2213-8587(13)70059-7] [PMID: 24622368]
[111]
Iafusco D, Massa O, Pasquino B, et al. Minimal incidence of neonatal/infancy onset diabetes in Italy is 1:90,000 live births. Acta Diabetol 2012; 49(5): 405-8.
[http://dx.doi.org/10.1007/s00592-011-0331-8] [PMID: 21953423]
[112]
Lemelman MB, Letourneau L, Greeley SAW. Neonatal diabetes mellitus: An update on diagnosis and management. Clin Perinatol 2018; 45(1): 41-59.
[http://dx.doi.org/10.1016/j.clp.2017.10.006] [PMID: 29406006]
[113]
Beltrand J, Busiah K, Vaivre-Douret L, et al. Neonatal diabetes mellitus. Front Pediatr 2020; 8540718
[http://dx.doi.org/10.3389/fped.2020.540718] [PMID: 33102403]
[114]
Edghill EL, Dix RJ, Flanagan SE, et al. HLA genotyping supports a nonautoimmune etiology in patients diagnosed with diabetes under the age of 6 months. Diabetes 2006; 55(6): 1895-8.
[http://dx.doi.org/10.2337/db06-0094] [PMID: 16731860]
[115]
Iafusco D, Stazi MA, Cotichini R, et al. Permanent diabetes mellitus in the first year of life. Diabetologia 2002; 45(6): 798-804.
[http://dx.doi.org/10.1007/s00125-002-0837-2] [PMID: 12107723]
[116]
De Franco E, Flanagan SE, Houghton JAL, et al. The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: An international cohort study. Lancet 2015; 386(9997): 957-63.
[http://dx.doi.org/10.1016/S0140-6736(15)60098-8] [PMID: 26231457]
[117]
Dahl A, Kumar S. Recent Advances in Neonatal Diabetes. Diabetes Metab Syndr Obes 2020; 13: 355-64.
[http://dx.doi.org/10.2147/DMSO.S198932] [PMID: 32104032]
[118]
Docherty LE, Kabwama S, Lehmann A, et al. Clinical presentation of 6q24 transient neonatal diabetes mellitus (6q24 TNDM) and genotype-phenotype correlation in an international cohort of patients. Diabetologia 2013; 56(4): 758-62.
[http://dx.doi.org/10.1007/s00125-013-2832-1] [PMID: 23385738]
[119]
Temple IK, Mackay DJG. Diabetes mellitus, 6q24-related transient neonatal. 2005. Available from: https://www.ncbi.nlm.nih.gov/books/
[120]
Pearson ER, Flechtner I, Njølstad PR, et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med 2006; 355(5): 467-77.
[http://dx.doi.org/10.1056/NEJMoa061759] [PMID: 16885550]
[121]
Novak A, Bowman P, Kraljevic I, et al. Transient neonatal diabetes: An etiologic clue for the adult diabetologist. Can J Diabetes 2020; 44(2): 128-30.
[http://dx.doi.org/10.1016/j.jcjd.2019.05.002] [PMID: 31255515]
[122]
Klupa T, Kozek E, Nowak N, et al. The first case report of sulfonylurea use in a woman with permanent neonatal diabetes mellitus due to KCNJ11 mutation during a high-risk pregnancy. J Clin Endocrinol Metab 2010; 95(8): 3599-604.
[http://dx.doi.org/10.1210/jc.2010-0096] [PMID: 20466780]
[123]
Gaal Z, Klupa T, Kantor I, et al. Sulfonylurea use during entire pregnancy in diabetes because of KCNJ11 mutation: A report of two cases. Diabetes Care 2012; 35(6)e40
[http://dx.doi.org/10.2337/dc12-0163] [PMID: 22619292]
[124]
Stanik J, Barak L, Dankovcikova A, Valkovicova T, Skopkova M, Gasperikova D. Diabetes treatment in two pregnant women with permanent neonatal diabetes mellitus due to a KCNJ11 mutation. Diabet Med 2020; 37(11): 1956-8.
[http://dx.doi.org/10.1111/dme.14363] [PMID: 32634858]
[125]
Myngheer N, Allegaert K, Hattersley A, et al. Fetal macrosomia and neonatal hyperinsulinemic hypoglycemia associated with transplacental transfer of sulfonylurea in a mother with KCNJ11-related neonatal diabetes. Diabetes Care 2014; 37(12): 3333-5.
[http://dx.doi.org/10.2337/dc14-1247] [PMID: 25231897]
[126]
De Franco E, Shaw-Smith C, Flanagan SE, Shepherd MH, Hattersley AT, Ellard S. GATA6 mutations cause a broad phenotypic spectrum of diabetes from pancreatic agenesis to adult-onset diabetes without exocrine insufficiency. Diabetes 2013; 62(3): 993-7.
[http://dx.doi.org/10.2337/db12-0885] [PMID: 23223019]
[127]
Grady JP, Pickett SJ, Ng YS, et al. mtDNA heteroplasmy level and copy number indicate disease burden in m.3243A>G mitochondrial disease. EMBO Mol Med 2018; 10(6)e8262
[http://dx.doi.org/10.15252/emmm.201708262] [PMID: 29735722]
[128]
Whittaker RG, Schaefer AM, McFarland R, Taylor RW, Walker M, Turnbull DM. Prevalence and progression of diabetes in mitochondrial disease. Diabetologia 2007; 50(10): 2085-9.
[http://dx.doi.org/10.1007/s00125-007-0779-9] [PMID: 17653689]
[129]
Murphy R, Turnbull DM, Walker M, Hattersley AT. Clinical features, diagnosis and management of Maternally Inherited Diabetes and Deafness (MIDD) associated with the 3243A>G mitochondrial point mutation. Diabet Med 2008; 25(4): 383-99.
[http://dx.doi.org/10.1111/j.1464-5491.2008.02359.x] [PMID: 18294221]
[130]
Nesbitt V, Pitceathly RDS, Turnbull DM, et al. The UK MRC Mitochondrial Disease Patient Cohort Study: Clinical phenotypes associated with the m.3243A>G mutation--implications for diagnosis and management. J Neurol Neurosurg Psychiatry 2013; 84(8): 936-8.
[http://dx.doi.org/10.1136/jnnp-2012-303528] [PMID: 23355809]
[131]
Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF. Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet 2008; 83(2): 254-60.
[http://dx.doi.org/10.1016/j.ajhg.2008.07.004] [PMID: 18674747]
[132]
Gorman GS, Schaefer AM, Ng Y, et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol 2015; 77(5): 753-9.
[http://dx.doi.org/10.1002/ana.24362] [PMID: 25652200]
[133]
Maassen JA. T Hart LM, Van Essen E, et al. Mitochondrial diabetes: Molecular mechanisms and clinical presentation. Diabetes 2004; 53 (Suppl. 1): S103-9.
[http://dx.doi.org/10.2337/diabetes.53.2007.S103] [PMID: 14749274]
[134]
Say RE, Whittaker RG, Turnbull HE, McFarland R, Taylor RW, Turnbull DM. Mitochondrial disease in pregnancy: A systematic review. Obstet Med 2011; 4(3): 90-4.
[http://dx.doi.org/10.1258/om.2011.110008] [PMID: 27579099]
[135]
de Laat P, Fleuren LHJ, Bekker MN, Smeitink JAM, Janssen MCH. Obstetric complications in carriers of the m.3243A>G mutation, a retrospective cohort study on maternal and fetal outcome. Mitochondrion 2015; 25: 98-103.
[http://dx.doi.org/10.1016/j.mito.2015.10.005] [PMID: 26455484]
[136]
Feeney CL, Lim AZ, Fagan E, et al. A case-comparison study of pregnant women with mitochondrial disease - what to expect? BJOG 2019; 126(11): 1380-9.
[http://dx.doi.org/10.1111/1471-0528.15667] [PMID: 30801962]
[137]
Bouchet C, Steffann J, Corcos J, et al. Prenatal diagnosis of myopathy, encephalopathy, lactic acidosis, and stroke-like syndrome: Contribution to understanding mitochondrial DNA segregation during human embryofetal development. J Med Genet 2006; 43(10): 788-92.
[http://dx.doi.org/10.1136/jmg.2005.034140] [PMID: 16690729]