[2]
Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. arXiv 2016; 2016: 1609.02907.
[3]
Zhou J, Cui G, Zhang Z, et al. Graph neural networks: A review of methods and applications. arXiv 2018; 2018: 1812.08434.
[7]
Beck D, Haffari G, Cohn T. Graph-to-sequence learning using gated graph neural networks. arXiv 2018; 2018: 1806.09835.
[9]
Li Y, Yu R, Shahabi C, Liu Y. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv 2017; 2017: 1707.01926.
[10]
Yu B, Yin H, Zhu Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv 2017; 2017: 1709.04875.
[11]
Jain A, Zamir AR, Savarese S, Saxena A. Structural-rnn: Deep learning on spatio-temporal graphs. arXiv 2017; 2017: 1511.05298.
[12]
Yan S, Xiong Y, Lin D. Spatial temporal graph convolutional networks for skeleton-based action recognition. arXiv 2018; 2018: 1801.07455.
[13]
Hamilton WL, Ying R, Leskovec J. Inductive representation learning on large graphs. arXiv 2017; 2017: 1706.02216.
[14]
Chen J, Ma T, Xiao C. Fastgcn: fast learning with graph convolutional networks via importance sampling. arXiv 2018; 2018: 1801.10247.
[15]
Li R, Wang S, Zhu F, Huang J. Adaptive graph convolutional neural networks. arXiv 2018; 2018: 1801.03226.
[17]
Dai H, Kozareva Z, Dai B, Smola A, Song L. Learning steady-states of iterative algorithms over graphs. PMLR 2018; 80: 1106-14.
[18]
Chen J, Zhu J, Song L. Stochastic training of graph convolutional networks with variance reduction. arXiv 2017; 2017: 1710.10568.
[19]
Li Q, Han Z, Wu X-M. Deeper insights into graph convolutional networks for semi-supervised learning. arXiv 2018; 2018: 1801.07606.
[21]
Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. The graph neural network model. JItonn 2008; 20(1): 61-80.
[23]
Bruna J, Zaremba W, Szlam A, LeCun Y. Spectral networks and locally connected networks on graphs. arXiv 2013; 2013: 1312.6203.
[24]
Micheli A. Neural network for graphs: A contextual constructive approach. IEEE Trans Neural Networks 2009; 20(3): 498-511.
[25]
Cao S, Lu W, Xu Q. Deep neural networks for learning graph representations. Proc AAAI Conf Artif Intell 2016 2016; 1145-52.
[27]
Li Y, Vinyals O, Dyer C, Pascanu R, Battaglia P. Learning deep generative models of graphs. arXiv 2018; 2018: 1803.03324.
[29]
Zhang Z, Cui P, Zhu W, Engineering D. Deep learning on graphs. Survey (Lond) 2020; 14(8): 1-24.
[32]
Sato R. A survey on the expressive power of graph neural networks arXiv 2020; 2020: 2003.04078.
[33]
Kinderkhedia M. Learning representations of graph data. arXiv 2019; 2019: 1906.0298.
[37]
Atwood J, Towsley D. Diffusion-convolutional neural networks. In: Advances in neural information processing systems NeurIPS Proc. 2016; 2016: p. 1993-2001.
[38]
Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized spectral filtering. arXiv 2016; 2016: 1606.09375.
[39]
Xu K, Hu W, Leskovec J, Jegelka S. How powerful are graph neural networks? arXiv 2018; 2018: 1810.00826.
[41]
Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y. Graph attention networks. arXiv 2017; 2017: 1710.10903.
[42]
Li Y, Tarlow D, Brockschmidt M, Zemel R. Gated graph sequence neural networks. arXiv 2015; 2015: 1511.05493.
[43]
Kipf TN, Welling M. Variational graph auto-encoders. arXiv 2016; 2016: 1611.07308.
[44]
Pan S, Hu R, Long G, Jiang J, Yao L, Zhang C. Adversarially regularized graph autoencoder for graph embedding. arXiv 2018; 2018: 1802.04407.
[47]
Wu F, Souza A, Zhang T, Fifty C, Yu T, Weinberger K. Simplifying graph convolutional networks. PMLR 2019; 97: 6861-71.
[48]
Tai KS, Socher R, Manning CD. Improved semantic representations from tree-structured long short-term memory networks. arXiv 2015; 2015: 1503.00075.
[49]
Sabour S, Frosst N, Hinton GE. Dynamic routing between capsules. arXiv 2017; 2017: 1710.09829.
[50]
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. arXiv 2017; 2017: 1706.03762.
[51]
Fey M, Lenssen JE. Fast graph representation learning with PyTorch Geometric. arXiv 2019; 2019: 1903.02428.
[52]
Guan C, Zhang Z, Li H, et al. AutoGL: A Library for Automated Graph Learning. arXiv 2021; 2021: 2104.04987.
[53]
Wang M, Zheng D, Ye Z, et al. Deep graph library: A graphcentric, highly-performant package for graph neural networks. arXiv 2019; 2019: 1909.01315.
[54]
Li J, Xu K, Chen L, Zheng Z, Liu X. GraphGallery: A Platform for Fast Benchmarking and Easy Development of Graph Neural Networks Based Intelligent Software. arXiv 2021; 2021: 2102.07933.
[55]
Shin SY, Lee S, Yun ID, Lee KM. Deep vessel segmentation by learning graphical connectivity. JMIA 2019; 58: 101556.
[71]
Singh V, Lio P. Towards probabilistic generative models harnessing graph neural networks for disease-gene prediction. arXiv 2019; 2019: 1907.05628.
[75]
Sun M, Zhao S, Gilvary C, Elemento O, Zhou J, Wang F. Graph convolutional networks for computational drug development and discovery. JBib 2020; 21(3): 919-35.
[77]
Zhao D, Wang J, Lin H, Yang Z, Zhang Y. Extracting drug–drug interactions with hybrid bidirectional gated recurrent unit and graph convolutional network. IEEE J Biomed Health Inform 2019; 99: 103295.
[78]
Park C, Park J. AGCN: Attention-based graph convolutional networks for drug-drug interaction extraction. JESwA 2020; 113538.
[79]
Feng Y-H, Zhang S-W, Shi J-Y. DPDDI: A deep predictor for drug-drug interactions. BMC Bioinform 2020; 21(1): 419.
[80]
Zhao T, Hu Y, Valsdottir LR, Zang T, Peng J. Identifying drug–target interactions based on graph convolutional network and deep neural network. Brief Bioinform 2021; 22(2): 2141-50.
[81]
Nguyen T, Le H, Venkatesh SJB. GraphDTA: Prediction of drug–target binding affinity using graph convolutional networks. Bioinformatics 2021; 37(8): 1140-7.
[86]
Long Y, Wu M, Kwoh CK, Luo J, Li X. Predicting human microbe–drug associations via graph convolutional network with conditional random field. Bioinformatics 2020; 36(19): 4918-27.