Eco-friendly Synthesis of Zinc Oxide Nanoparticles and Assessment of their Activities as Efficient Antioxidant Agents

Page: [132 - 146] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: The biosynthesis of zinc oxide nanoparticles (ZnO NPs) has received increasing attention in the field of nanotechnology due to their biomedical applications. With this aim, the present study was performed to synthesize biocompatible ZnO NPs using stems, leaves, and inflorescences extracts of the Tephrosia purpurea (T. purpurea) and Heliotropium indicum (H. indicum) medicinal plants.

Objective: The objective of this study was to synthesize ZnO NPs from T. purpurea and H. indicum and determine their ability as an alternative for toxic synthetic antioxidants.

Methods: The preliminary phytochemical screening of T. purpurea and H. indicum and quantitative determination of phenols and flavonoids were carried out by using spectrophotometric methods. The antioxidant potential of ZnO NPs was assessed through 2,2–diphenyl-1-picrylhydrazyl (DPPH) and phosphomolybdenum assays against butylated hydroxytoluene standard.

Results: Qualitative phytochemical analysis of plant extracts confirmed the presence of terpenoids, alkaloids, carbohydrates, tannins, phenols, flavonoids, and proteins. The highest percentage of phenolics (88.3 ± 1.7 mg GAE/g) and flavonoids (727.1 ± 103.5 mg QE/g) was recorded for H. indicum inflorescences and T. purpurea stems. The T. purpurea stems mediated ZnO NPs showed the most potent DPPH radical scavenging capacity of 81.53 ± 0.14% with an IC50 value of 152.38 ± 0.70 μg/mL, while ZnO NPs synthesized using H. indicum inflorescences and T. purpurea stems indicated the highest total antioxidant capacity of 94.71 ± 2.50 and 91.34 ± 1.07%, respectively.

Conclusion: The obtained results revealed the significance of T. purpurea and H. indicum as effective stabilizing agents to develop surface protective ZnO NPs, which can be used as promising antioxidants in the biological systems.

Keywords: Green synthesis, Tephrosia purpurea, Heliotropium indicum, Secondary metabolites, Zinc oxide nanoparticles, Antioxidant activity, Medicinal applications.

Graphical Abstract

[1]
Khan, H.; Sakharkar, M.; Nayak, A.; Kishore, U.; Khan, A. Nanoparticles for biomedical applications: An overview. Nanobiomaterials, 2018, 357-384.
[2]
Bharathala, S.; Sharma, P. Biomedical applications of nanoparticles. In: Nanotechnology in modern animal biotechnology; Elsevier, 2019; pp. 113-132.
[http://dx.doi.org/10.1016/B978-0-12-818823-1.00008-9]
[3]
Hassanisaadi, M.; Bonjar, G.H.S.; Rahdar, A.; Pandey, S.; Hosseinipour, A.; Abdolshahi, R. Environmentally safe biosynthesis of gold nanoparticles using plant water extracts. Nanomaterials (Basel), 2021, 11(8), 2033.
[http://dx.doi.org/10.3390/nano11082033] [PMID: 34443864]
[4]
Andra, S.; Balu, S.K.; Jeevanandham, J.; Muthalagu, M.; Vidyavathy, M.; Chan, Y.S.; Danquah, M.K. Phytosynthesized metal oxide nanoparticles for pharmaceutical applications. Naunyn Schmiedebergs Arch. Pharmacol., 2019, 392(7), 755-771.
[http://dx.doi.org/10.1007/s00210-019-01666-7] [PMID: 31098696]
[5]
Acharya, K. Simplified methods for microtiter based analysis of in vitro antioxidant activity. Asian J. Pharm., 2017, 11(2), 1272.
[6]
Murthy, S.; Effiong, P.; Fei, C.C. Metal oxide nanoparticles in biomedical applications. In: Metal Oxide Powder Technologies; Elsevier, 2020; pp. 233-251.
[http://dx.doi.org/10.1016/B978-0-12-817505-7.00011-7]
[7]
Khalil, I.; Yehye, W.A.; Etxeberria, A.E.; Alhadi, A.A.; Dezfooli, S.M.; Julkapli, N.B.M.; Basirun, W.J.; Seyfoddin, A. Nanoantioxidants: Recent trends in antioxidant delivery applications. Antioxidants, 2019, 9(1), 24.
[http://dx.doi.org/10.3390/antiox9010024] [PMID: 31888023]
[8]
Konopko, A.; Kusio, J.; Litwinienko, G. Antioxidant activity of metal nanoparticles coated with tocopherol-like residues-the importance of studies in homo- and heterogeneous systems. Antioxidants, 2019, 9(1), 5.
[http://dx.doi.org/10.3390/antiox9010005] [PMID: 31861581]
[9]
Vimala, K.; Sundarraj, S.; Paulpandi, M.; Vengatesan, S.; Kannan, S. Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma. Process Biochem., 2014, 49(1), 160-172.
[http://dx.doi.org/10.1016/j.procbio.2013.10.007]
[10]
Agarwal, H.; Kumar, S.V.; Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles–An eco-friendly approach. Resource-Efficient Technol., 2017, 3(4), 406-413.
[http://dx.doi.org/10.1016/j.reffit.2017.03.002]
[11]
Kumar, M.A.; Ravikumar, C.; Nagaswarupa, H.; Purshotam, B.; Gonfa, B.; Murthy, H.A.; Sabir, F.K.; Tadesse, S. Evaluation of bi-functional applications of ZnO nanoparticles prepared by green and chemical methods. J. Environ. Chem. Eng., 2019, 7(6), 103468.
[http://dx.doi.org/10.1016/j.jece.2019.103468]
[12]
Sruthi, S.; Ashtami, J.; Mohanan, P. Biomedical application and hidden toxicity of Zinc oxide nanoparticles. Mater. Today Chem., 2018, 10, 175-186.
[http://dx.doi.org/10.1016/j.mtchem.2018.09.008]
[13]
Vinoy Jacob, P.; Dhanasekaran, S. Antioxidant and anticancerous activities of biologically synthesized zinc oxide nanoparticles (ZnO NPs) from the rhizomes of Curcuma longa. Int. J. Pharm. Res., 2020, 1, 2304-2313.
[14]
Es-Haghi, A.; Taghavizadeh Yazdi, M.E.; Sharifalhoseini, M.; Baghani, M.; Yousefi, E.; Rahdar, A.; Baino, F. Application of response surface methodology for optimizing the therapeutic activity of ZnO nanoparticles biosynthesized from Aspergillus niger. Biomimetics (Basel), 2021, 6(2), 34.
[http://dx.doi.org/10.3390/biomimetics6020034] [PMID: 34072135]
[15]
Pillai, A.M.; Sivasankarapillai, V.S.; Rahdar, A.; Joseph, J.; Sadeghfar, F.; Rajesh, K.; Kyzas, G.Z. Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J. Mol. Struct., 2020, 1211, 128107.
[http://dx.doi.org/10.1016/j.molstruc.2020.128107]
[16]
Zare, M.; Namratha, K.; Byrappa, K.; Surendra, D.; Yallappa, S.; Hungund, B. Surfactant assisted solvothermal synthesis of ZnO nanoparticles and study of their antimicrobial and antioxidant properties. J. Mater. Sci. Technol., 2018, 34(6), 1035-1043.
[http://dx.doi.org/10.1016/j.jmst.2017.09.014]
[17]
Yadav, S.; Mehrotra, G.K.; Dutta, P.K. Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging. Food Chem., 2021, 334, 127605.
[http://dx.doi.org/10.1016/j.foodchem.2020.127605] [PMID: 32738726]
[18]
Shobha, N.; Nanda, N.; Giresha, A.S.; Manjappa, P.P.S.; Dharmappa, K.K.; Nagabhushana, B.M. Synthesis and characterization of Zinc oxide nanoparticles utilizing seed source of Ricinus communis and study of its antioxidant, antifungal and anticancer activity. Mater. Sci. Eng. C, 2019, 97, 842-850.
[http://dx.doi.org/10.1016/j.msec.2018.12.023] [PMID: 30678976]
[19]
Nikolova, M.P.; Chavali, M.S. Metal oxide nanoparticles as biomedical materials. Biomimetics (Basel), 2020, 5(2), 27.
[http://dx.doi.org/10.3390/biomimetics5020027] [PMID: 32521669]
[20]
Arya, S.; Mahajan, P.; Mahajan, S.; Khosla, A.; Datt, R.; Gupta, V.; Young, S-J.; Oruganti, S.K. influence of processing parameters to control morphology and optical properties of Sol-Gel synthesized ZnO nanoparticles. ECS J. Solid State Sci. Technol., 2021, 10(2), 023002.
[http://dx.doi.org/10.1149/2162-8777/abe095]
[21]
Talam, S.; Karumuri, S.R.; Gunnam, N. Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. Int. Sch. Res. Notices, 2012, 2012, 372505.
[http://dx.doi.org/10.5402/2012/372505]
[22]
Mohammadzadeh, V.; Barani, M.; Amiri, M.S.; Yazdi, M.E.T.; Hassanisaadi, M.; Rahdar, A.; Varma, R.S. Applications of plant-based nanoparticles in nanomedicine: A review. Sustain. Chem. Pharm., 2022, 25, 100606.
[http://dx.doi.org/10.1016/j.scp.2022.100606]
[23]
Singh, J.; Dutta, T.; Kim, K-H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnology, 2018, 16(1), 84.
[http://dx.doi.org/10.1186/s12951-018-0408-4] [PMID: 30373622]
[24]
Wijesinghe, U.; Thiripuranathar, G.; Iqbal, H.; Menaa, F. Biomimetic synthesis, characterization, and evaluation of fluorescence resonance energy transfer, photoluminescence, and photocatalytic activity of zinc oxide nanoparticles. Sustainability (Basel), 2021, 13(4), 2004.
[http://dx.doi.org/10.3390/su13042004]
[25]
Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and benefits for human health. Oxid. Med. Cell. Longev., 2017, 2017, 8416763.
[http://dx.doi.org/10.1155/2017/8416763] [PMID: 28819546]
[26]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[27]
Faisal, S.; Jan, H.; Shah, S.A.; Shah, S.; Khan, A.; Akbar, M.T.; Rizwan, M.; Jan, F. Wajidullah; Akhtar, N.; Khattak, A.; Syed, S. Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans: Their characterizations and biological and environmental applications. ACS Omega, 2021, 6(14), 9709-9722.
[http://dx.doi.org/10.1021/acsomega.1c00310] [PMID: 33869951]
[28]
Goyal, N.; Sharma, S.K. Bioactive phytoconstituents and plant extracts from genus Heliotropium. Int. J. Green Pharm., 2014, 8, 217-225.
[29]
Jamdagni, P.; Khatri, P.; Rana, J. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J. King Saud Univ. Sci., 2018, 30(2), 168-175.
[http://dx.doi.org/10.1016/j.jksus.2016.10.002]
[30]
Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z.K.; Khamlich, S.; Maaza, M. Sageretia thea (Osbeck.) mediated synthesis of zinc oxide nanoparticles and its biological applications. Nanomedicine (Lond.), 2017, 12(15), 1767-1789.
[http://dx.doi.org/10.2217/nnm-2017-0124] [PMID: 28699838]
[31]
Rehana, D.; Mahendiran, D.; Kumar, R.S.; Rahiman, A.K. In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess Biosyst. Eng., 2017, 40(6), 943-957.
[http://dx.doi.org/10.1007/s00449-017-1758-2] [PMID: 28361361]
[32]
Kurian, A.; Thiripuranathar, G.; Paranagama, P. Determination of total phenolic content and antioxidant activity of Borassus flabeliffer Linn. fruit pulp collected from several parts of Sri Lanka. Int. J. Pharm. Sci. Res., 2017, 8, 2701-2705.
[33]
Das, D.; Nath, B.C.; Phukon, P.; Kalita, A.; Dolui, S.K. Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloids Surf. B Biointerfaces, 2013, 111, 556-560.
[http://dx.doi.org/10.1016/j.colsurfb.2013.06.041] [PMID: 23891844]
[34]
Moghaddam, A.B.; Moniri, M.; Azizi, S.; Rahim, R.A.; Ariff, A.B.; Saad, W.Z.; Namvar, F.; Navaderi, M.; Mohamad, R. Biosynthesis of ZnO nanoparticles by a new Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities. Molecules, 2017, 22(6), 872.
[http://dx.doi.org/10.3390/molecules22060872] [PMID: 28538674]
[35]
Patel, A.; Patel, A.; Patel, A.; Patel, N.M. Determination of polyphenols and free radical scavenging activity of Tephrosia purpurea Linn. leaves (Leguminosae). Pharmacognosy Res., 2010, 2(3), 152-158.
[http://dx.doi.org/10.4103/0974-8490.65509] [PMID: 21808558]
[36]
Padmapriya, R.; Ashwini, S.; Raveendran, R. In vitro antioxidant and cytotoxic potential of different parts of Tephrosia purpurea. Res. Pharm. Sci., 2017, 12(1), 31-37.
[http://dx.doi.org/10.4103/1735-5362.199044] [PMID: 28255311]
[37]
Mourin, N.A.; Sharmin, T.; Chowdhury, S.R.; Islam, F.; Rahman, M.S.; Rashid, M.A. Evaluation of bioactivities of Heliotropium indicum, a medicinal plant of Bangladesh. Pharma Innov., 2013, 2, 217.
[38]
Mohammad, S.A.; Nabi, S.A.; Marella, S.; Thandaiah, K.T.; Kumar, M.; Rao, C. Phytochemical screening and antihyperglycemic activity of Heliotropium indicum whole plant in Streptozotocin induced diabetic rats. J. Appl. Pharmaceut. Sci., 2014, 4, 065-071.
[39]
Lodhi, S.; Jain, A.; Jain, A.P.; Pawar, R.S.; Singhai, A.K. Effects of flavonoids from Martynia annua and Tephrosia purpurea on cutaneous wound healing. Avicenna J. Phytomed., 2016, 6(5), 578-591.
[PMID: 27761428]
[40]
Sarkar, C.; Mondal, M.; Khanom, B.; Hossain, M.; Sureda, A.; Islam, M.T.; Martorell, M.; Kumar, M.; Sharifi-Rad, J.; Al-Harrasi, A. Heliotropium indicum L.: From farm to a source of bioactive compounds with therapeutic activity. Evid.-. Based Complement. Altern. Med, 2021, 2021, 9965481.
[41]
Wijesinghe, U.; Thiripuranathar, G.; Menaa, F.; Iqbal, H.; Razzaq, A.; Almukhlifi, H. Green synthesis, structural characterization and photocatalytic applications of ZnO nanoconjugates using Heliotropium indicum. Catalysts, 2021, 11(7), 831.
[http://dx.doi.org/10.3390/catal11070831]
[42]
Sultana, M.; Verma, P.K.; Raina, R.; Prawez, S.; Dar, M. Quantitative analysis of total phenolic, flavonoids and tannin contents in acetone and n-hexane extracts of Ageratum conyzoides. Int. J. Chemtech Res., 2012, 3, 996-999.
[43]
Patel, A.; Patel, A.; Patel, A.; Patel, N. Estimation of flavonoid, polyphenolic content and in vitro antioxidant capacity of leaves of Tephrosia purpurea Linn.(Leguminosae). Int. J. Pharm. Sci. Res., 2010, 1, 66-77.
[44]
Suresh, D.; Nethravathi, P.; Rajanaika, H.; Nagabhushana, H.; Sharma, S. Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater. Sci. Semicond. Process., 2015, 31, 446-454.
[http://dx.doi.org/10.1016/j.mssp.2014.12.023]
[45]
Marka, R.; Talari, S.; Penchala, S.; Rudroju, S.; Nanna, R.S. Preliminary phytochemical analysis of leaf, stem, root and seed extracts of Arachis hypogaea L. Int. J. Pharm. Sci. Rev. Res., 2013, 20, 134-139.
[46]
Jayachitra, J.; Bharathi, M. In vitro studies on phytoche mical analysis and antioxidant activity of Heliotropium indicum linn. IJRPP, 2016, 5, 108-114.
[47]
Safawo, T.; Sandeep, B.; Pola, S.; Tadesse, A. Synthesis and characterization of zinc oxide nanoparticles using tuber extract of anchote (Coccinia abyssinica (Lam.) Cong.) for antimicrobial and antioxidant activity assessment. OpenNano, 2018, 3, 56-63.
[http://dx.doi.org/10.1016/j.onano.2018.08.001]
[48]
Ogunmefun, O.T. Phytochemicals—God’s Endowment of Curative Power in Plants. In: Phytochemicals-Source of Antioxidants and Role in Disease Prevention; IntechOpen, 2018.
[http://dx.doi.org/10.5772/intechopen.77423]
[49]
Gunawardana, S.; Jayasuriya, W. Medicinally important herbal flowers in Sri Lanka. Evid.-. Based Complement. Altern. Med., 2019, 2019, 2321961.
[http://dx.doi.org/10.1155/2019/2321961]
[50]
Napagoda, M.T.; Sundarapperuma, T.; Fonseka, D.; Amarasiri, S.; Gunaratna, P. Traditional uses of medicinal plants in Polonnaruwa district in North Central Province of Sri Lanka. Scientifica, 2019, 2019, 9737302.
[http://dx.doi.org/10.1155/2019/9737302]
[51]
Zhang, Y-J.; Gan, R-Y.; Li, S.; Zhou, Y.; Li, A-N.; Xu, D-P.; Li, H-B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules, 2015, 20(12), 21138-21156.
[http://dx.doi.org/10.3390/molecules201219753] [PMID: 26633317]
[52]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[53]
Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; D’Arcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res. Int., 2019, 2019, 8748253.
[http://dx.doi.org/10.1155/2019/8748253]
[54]
Hassanisaadi, M.; Barani, M.; Rahdar, A.; Heidary, M.; Thysiadou, A.; Kyzas, G.Z. Role of agrochemical-based nanomaterials in plants: Biotic and abiotic stress with germination improvement of seeds. Plant Growth Regul., 2022, 1-44.
[http://dx.doi.org/10.1007/s10725-021-00782-w]
[55]
Güneş Bayir, A.; Aksoy, A.N.; Koçyiğit, A. The importance of polyphenols as functional food in health. Bezmialem Sci., 2019, 7(2), 157-163.
[56]
Genwali, G.R.; Acharya, P.P.; Rajbhandari, M. Isolation of gallic acid and estimation of total phenolic content in some medicinal plants and their antioxidant activity. Nepal J. Sci. Technol., 2013, 14(1), 95-102.
[http://dx.doi.org/10.3126/njst.v14i1.8928]
[57]
Kamtekar, S.; Keer, V.; Patil, V. Estimation of phenolic content, flavonoid content, antioxidant and alpha amylase inhibitory activity of marketed polyherbal formulation. J. Appl. Pharm. Sci., 2014, 4, 61.
[58]
Pugachevskii, M.A.; Mamontov, V.A.; Syuy, A.V.; Kuzmenko, A.P. Effect of pH on antioxidant properties of ablated CeO2 nanoparticles in photocatalytic process. J. Ind. Eng. Chem., 2022, 106, 74-76.
[http://dx.doi.org/10.1016/j.jiec.2021.10.036]
[59]
Shahzadi, T.; Rehman, S.; Riaz, T.; Zaib, M. Eco-friendly synthesis of ZnO nanoparticles using Cannabis sativa and assessment of its activities as efficient dyes removal and antioxidant agent. Int. J. Environ. Anal. Chem., 2020, 2020, 1789610.
[http://dx.doi.org/10.1080/03067319.2020.1789610]