Verapamil Regulates the Macrophage Immunity to Mycobacterium tuberculosis through NF-κB Signaling

Page: [536 - 549] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Verapamil enhances the sensitivity of Mycobacterium tuberculosis to anti-tuberculosis (TB) drugs, promotes the macrophage anti-TB ability, and reduces drug resistance, but its mechanism is unclear. Herein, we have investigated the effect of verapamil on cytokine expression in mouse peritoneal macrophages.

Methods: Macrophages from mice infected with M. tuberculosis or S. aureus were cultured with verapamil, the cytokines were detected by enzyme-linked immunosorbent assay, and the RNA was measured with quantitative real-time polymerase chain reaction and agarose gel electrophoresis. The intracellular calcium signaling was measured by confocal microscopy.

Results: Significantly higher levels of NF-κB, IL-12, TNF-α, and IL-1β were observed after TB infection. The levels of NF-κB and IL-12 increased when verapamil concentration was less than 50 μg/ml, but decreased when verapamil concentration was greater than 50μg/ml. With the increase in verapamil concentration, TNF-α and IL-1β expressed by macrophages decreased. The L-type calcium channel transcription significantly increased in M. tuberculosis rather than S. aureus-infected macrophages. Furthermore, during bacillus Calmette-Guerin (BCG) infection, verapamil stimulated a sharp peak in calcium concentration in macrophages, while calcium concentration increased mildly and decreased smoothly over time in the absence of verapamil.

Conclusion: Verapamil enhanced macrophage immunity via the NF-κB pathway, and its effects on cytokine expression may be achieved by its regulation of intracellular calcium signaling.

Keywords: Tuberculosis, verapamil, NF-ΚB, efflux pump, macrophage, intracellular.

[1]
WHO. Global tuberculosis report 2021 2021.
[2]
Gong W, Liang Y, Mi J, et al. Peptides-based vaccine MP3RT induced protective immunity against Mycobacterium Tuberculosis infection in a humanized mouse model. Front Immunol 2021; 12: 666290.
[http://dx.doi.org/10.3389/fimmu.2021.666290] [PMID: 33981313]
[3]
Gupta S, Cohen KA, Winglee K, Maiga M, Diarra B, Bishai WR. Efflux inhibition with verapamil potentiates bedaquiline in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2014; 58(1): 574-6.
[http://dx.doi.org/10.1128/AAC.01462-13] [PMID: 24126586]
[4]
Xu J, Tasneen R, Peloquin CA, et al. Verapamil increases the bioavailability and efficacy of bedaquiline but not clofazimine in a murine model of tuberculosis. Antimicrob Agents Chemother 2017; 62(1): e01692-17.
[PMID: 29038265]
[5]
Canezin PH, Caleffi-Ferracioli KR, Scodro RBL, et al. Intramacrophage Mycobacterium tuberculosis efflux pump gene regulation after rifampicin and verapamil exposure. J Antimicrob Chemother 2018; 73(7): 1770-6.
[http://dx.doi.org/10.1093/jac/dky091] [PMID: 29579201]
[6]
Pieterman ED, Te Brake LHM, de Knegt GJ, et al. Assessment of the additional value of verapamil to a moxifloxacin and linezolid combination regimen in a murine tuberculosis model. Antimicrob Agents Chemother 2018; 62(9): e01354-18.
[http://dx.doi.org/10.1128/AAC.01354-18] [PMID: 29987154]
[7]
Ghajavand H, Kargarpour Kamakoli M, Khanipour S, et al. High prevalence of bedaquiline resistance in treatment-naive tuberculosis patients and verapamil effectiveness. Antimicrob Agents Chemother 2019; 63(3): e02530-18.
[http://dx.doi.org/10.1128/AAC.02530-18] [PMID: 30602521]
[8]
Louw GE, Warren RM, Gey van Pittius NC, et al. Rifampicin reduces susceptibility to ofloxacin in rifampicin-resistant Mycobacterium tuberculosis through efflux. Am J Respir Crit Care Med 2011; 184(2): 269-76.
[http://dx.doi.org/10.1164/rccm.201011-1924OC] [PMID: 21512166]
[9]
Gupta S, Tyagi S, Almeida DV, Maiga MC, Ammerman NC, Bishai WR. Acceleration of tuberculosis treatment by adjunctive therapy with verapamil as an efflux inhibitor. Am J Respir Crit Care Med 2013; 188(5): 600-7.
[http://dx.doi.org/10.1164/rccm.201304-0650OC] [PMID: 23805786]
[10]
Adams KN, Takaki K, Connolly LE, et al. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 2011; 145(1): 39-53.
[http://dx.doi.org/10.1016/j.cell.2011.02.022] [PMID: 21376383]
[11]
Adams KN, Szumowski JD, Ramakrishnan L. Verapamil, and its metabolite norverapamil, inhibit macrophage-induced, bacterial efflux pump-mediated tolerance to multiple anti-tubercular drugs. J Infect Dis 2014; 210(3): 456-66.
[http://dx.doi.org/10.1093/infdis/jiu095] [PMID: 24532601]
[12]
Machado D, Couto I, Perdigão J, et al. Contribution of efflux to the emergence of isoniazid and multidrug resistance in Mycobacterium tuberculosis. PLoS One 2012; 7(4): e34538-8.
[http://dx.doi.org/10.1371/journal.pone.0034538] [PMID: 22493700]
[13]
Rayasam GV, Balganesh TS. Exploring the potential of adjunct therapy in tuberculosis. Trends Pharmacol Sci 2015; 36(8): 506-13.
[http://dx.doi.org/10.1016/j.tips.2015.05.005] [PMID: 26073420]
[14]
Ordonez AA, Maiga M, Gupta S, Weinstein EA, Bishai WR, Jain SK. Novel adjunctive therapies for the treatment of tuberculosis. Curr Mol Med 2014; 14(3): 385-95.
[http://dx.doi.org/10.2174/1566524013666131118112431] [PMID: 24236454]
[15]
Meena LS. Interrelation of Ca2+ and PE_PGRS proteins during Mycobacterium tuberculosis pathogenesis. J Biosci 2019; 44(1): 24.
[http://dx.doi.org/10.1007/s12038-018-9828-4] [PMID: 30837375]
[16]
Sharma S, Meena LS. Potential of Ca2+ in Mycobacterium tuberculosis H37Rv Pathogenesis and Survival. Appl Biochem Biotechnol 2017; 181(2): 762-71.
[http://dx.doi.org/10.1007/s12010-016-2247-9] [PMID: 27660000]
[17]
Gupta S, Salam N, Srivastava V, et al. Voltage gated calcium channels negatively regulate protective immunity to Mycobacterium tuberculosis. PLoS One 2009; 4(4): e5305-5.
[http://dx.doi.org/10.1371/journal.pone.0005305] [PMID: 19390594]
[18]
Song L, Cui R, Yang Y, Wu X. Role of calcium channels in cellular antituberculosis effects: Potential of voltage-gated calcium-channel blockers in tuberculosis therapy. J Microbiol Immunol Infect 2015; 48(5): 471-6.
[http://dx.doi.org/10.1016/j.jmii.2014.08.026] [PMID: 25442874]
[19]
Danelishvili L, McGarvey J, Li YJ, Bermudez LE. Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells. Cell Microbiol 2003; 5(9): 649-60.
[http://dx.doi.org/10.1046/j.1462-5822.2003.00312.x] [PMID: 12925134]
[20]
Giridharan S, Srinivasan M. Mechanisms of NF-κB p65 and strategies for therapeutic manipulation. J Inflamm Res 2018; 11: 407-19.
[http://dx.doi.org/10.2147/JIR.S140188] [PMID: 30464573]
[21]
Ma Z, Chalkley RJ, Vosseller K. Hyper-O-GlcNAcylation activates nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling through interplay with phosphorylation and acetylation. J Biol Chem 2017; 292(22): 9150-63.
[http://dx.doi.org/10.1074/jbc.M116.766568] [PMID: 28416608]
[22]
Napetschnig J, Wu H. Molecular basis of NF-κB signaling. Annu Rev Biophys 2013; 42(1): 443-68.
[http://dx.doi.org/10.1146/annurev-biophys-083012-130338] [PMID: 23495970]
[23]
Niu W, Sun B, Li M, Cui J, Huang J, Zhang L. TLR-4/microRNA-125a/NF-κB signaling modulates the immune response to Mycobacterium tuberculosis infection. Cell Cycle 2018; 17(15): 1931-45.
[http://dx.doi.org/10.1080/15384101.2018.1509636] [PMID: 30153074]
[24]
Fallahi-Sichani M, Kirschner DE, Linderman JJ. NF-κB Signaling dynamics play a key role in infection control in tuberculosis. Front Physiol 2012; 3: 170-0.
[http://dx.doi.org/10.3389/fphys.2012.00170] [PMID: 22685435]
[25]
Yu Z, Zhang C, Zhou M, et al. Mycobacterium tuberculosis PPE44 (Rv2770c) is involved in response to multiple stresses and promotes the macrophage expression of IL-12 p40 and IL-6 via the p38, ERK, and NF-κB signaling axis. Int Immunopharmacol 2017; 50: 319-29.
[http://dx.doi.org/10.1016/j.intimp.2017.06.028] [PMID: 28743081]
[26]
Eickelberg O, Roth M, Mussmann R, et al. Calcium channel blockers activate the interleukin-6 gene via the transcription factors NF-IL6 and NF-kappaB in primary human vascular smooth muscle cells. Circulation 1999; 99(17): 2276-82.
[http://dx.doi.org/10.1161/01.CIR.99.17.2276] [PMID: 10226093]
[27]
Ikeda S, Matsushima S, Okabe K, et al. Blockade of L-type Ca2+ channel attenuates doxorubicin-induced cardiomyopathy via suppression of CaMKII-NF-κB pathway. Sci Rep 2019; 9(1): 9850.
[http://dx.doi.org/10.1038/s41598-019-46367-6] [PMID: 31285514]
[28]
Gong Z, Kuang Z, Li H, et al. Regulation of host cell pyroptosis and cytokines production by Mycobacterium tuberculosis effector PPE60 requires LUBAC mediated NF-κB signaling. Cell Immunol 2019; 335: 41-50.
[http://dx.doi.org/10.1016/j.cellimm.2018.10.009] [PMID: 30415762]
[29]
Hayashi M, Yamaji Y, Nakazato Y, Saruta T. The effects of calcium channel blockers on nuclear factor kappa B activation in the mesangium cells. Hypertens Res 2000; 23(5): 521-5.
[http://dx.doi.org/10.1291/hypres.23.521] [PMID: 11016808]
[30]
Cuschieri J, Gourlay D, Garcia I, Jelacic S, Maier RV. Slow channel calcium inhibition blocks proinflammatory gene signaling and reduces macrophage responsiveness. J Trauma 2002; 52(3): 434-42.
[http://dx.doi.org/10.1097/00005373-200203000-00004] [PMID: 11901316]
[31]
Abate G, Ruminiski PG, Kumar M, et al. New verapamil analogs inhibit intracellular mycobacteria without affecting the functions of mycobacterium-specific T cells. Antimicrob Agents Chemother 2015; 60(3): 1216-25.
[http://dx.doi.org/10.1128/AAC.01567-15] [PMID: 26643325]
[32]
Matsumori A, Nishio R, Nose Y. Calcium channel blockers differentially modulate cytokine production by peripheral blood mononuclear cells. Circ J 2010; 74(3): 567-71.
[http://dx.doi.org/10.1253/circj.CJ-09-0467] [PMID: 20118567]
[33]
Zamora Chimal CG, De Schutter E. Ca2+ requirements for long-term depression are frequency sensitive in purkinje cells. Front Mol Neurosci 2018; 11: 438.
[http://dx.doi.org/10.3389/fnmol.2018.00438] [PMID: 30564097]
[34]
Clapham DE. Calcium signaling. Cell 2007; 131(6): 1047-58.
[http://dx.doi.org/10.1016/j.cell.2007.11.028] [PMID: 18083096]
[35]
Verhasselt V, Vanden Berghe W, Vanderheyde N, Willems F, Haegeman G, Goldman M. N-acetyl-L-cysteine inhibits primary human T cell responses at the dendritic cell level: Association with NF-kappaB inhibition. J Immunol 1999; 162: 2569-74.
[36]
Keane J, Remold H G, Kornfeld H. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol 2000; 164: 2016-20.
[37]
Duan L, Gan H, Golan DE, Remold HG. Critical role of mitochondrial damage in determining outcome of macrophage infection with Mycobacterium tuberculosis. J Immunol 2002; 169: 5181-7.
[38]
Vergne I, Chua J, Deretic V. Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. J Exp Med 2003; 198(4): 653-9.
[http://dx.doi.org/10.1084/jem.20030527] [PMID: 12925680]
[39]
Gyimesi E, Bankovich AJ, Schuman TA, Goldberg JB, Lindorfer MA, Taylor RP. Staphylococcus aureus bound to complement receptor 1 on human erythrocytes by bispecific monoclonal antibodies is phagocytosed by acceptor macrophages. Immunol Lett 2004; 95(2): 185-92.
[http://dx.doi.org/10.1016/j.imlet.2004.07.007] [PMID: 15388259]
[40]
Ordway D, Viveiros M, Leandro C, Arroz MJ, Amaral L. Intracellular activity of clinical concentrations of phenothiazines including thioridiazine against phagocytosed Staphylococcus aureus. Int J Antimicrob Agents 2002; 20(1): 34-43.
[http://dx.doi.org/10.1016/S0924-8579(02)00110-3] [PMID: 12127709]
[41]
Nishimura H, Gogami A, Miyagawa Y, et al. Bactericidal/permeability-increasing protein promotes complement activation for neutrophil-mediated phagocytosis on bacterial surface. Immunology 2001; 103(4): 519-25.
[http://dx.doi.org/10.1046/j.1365-2567.2001.01263.x] [PMID: 11529944]