Cervical Cancer and Novel Therapeutic and Diagnostic Approaches using Chitosan as a Carrier: A Review

Page: [1966 - 1974] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

In our knowledge, using appropriate carriers in the delivery of chemotherapeutic drugs, would result in better targeting and therefore it would increase the effectiveness and decrease the side effects of drugs. Chitosan, a natural polymer derived from chitin, has attracted the attention of pharmaceutical industries recently. New research works show that chitosan can not only be used in drug delivery but it can also have some usages in the prevention and diagnosis of cancer. This means that using chitosan Nanoformulations can be a promising approach for prevention, diagnosis, and specially treatment of cervical cancer, the fourth common cancer among the women of the world. We aim to investigate the related papers to find a novel method and preventing more women from suffering.

Keywords: Chitosan, cervical cancer, nanoparticle, liposome, nanoformulation, chitin.

[1]
Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature 2001; 411: 342.
[2]
Hosseini ES, Meryet-Figuiere M, Sabzalipoor H, Kashani HH, Nikzad H, Asemi Z. Dysregulated expression of long noncoding RNAs in gynecologic cancers. Mol Cancer 2017; 16(1): 107.
[http://dx.doi.org/10.1186/s12943-017-0671-2] [PMID: 28637507]
[3]
Bosch FX, Lorincz A, Muñoz N, Meijer CJ, Shah KV. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 2002; 55(4): 244-65.
[http://dx.doi.org/10.1136/jcp.55.4.244] [PMID: 11919208]
[4]
Ta HT, Dass CR, Dunstan DE. Injectable chitosan hydrogels for localised cancer therapy. J Control Release 2008; 126(3): 205-16.
[http://dx.doi.org/10.1016/j.jconrel.2007.11.018] [PMID: 18258328]
[5]
Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev 2007; 59(6): 491-504.
[http://dx.doi.org/10.1016/j.addr.2007.04.008] [PMID: 17532091]
[6]
Kumar MNR. A review of chitin and chitosan applications. React Funct Polym 2000; 46(1): 1-27.
[http://dx.doi.org/10.1016/S1381-5148(00)00038-9]
[7]
Alizadeh L, Zarebkohan A, Salehi R, Ajjoolabady A, Rahmati-Yamchi M. Chitosan-based nanotherapeutics for ovarian cancer treatment. J Drug Target 2019; 27(8): 839-52.
[http://dx.doi.org/10.1080/1061186X.2018.1564923] [PMID: 30596291]
[8]
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014; 66: 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[9]
Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: Focus on cancer. Int J Nanomedicine 2014; 9: 467-83.
[PMID: 24531078]
[10]
Rinaudo M. Chitin and chitosan: Properties and applications. Prog Polym Sci 2006; 31(7): 603-32.
[http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001]
[11]
Dutta PK, Dutta J, Tripathi V. Chitin and chitosan: Chemistry, properties and applications. J Sci Indus Res 2004; 63: 20-31.
[12]
Givan AL, White HD, Stern JE, et al. Flow cytometric analysis of leukocytes in the human female reproductive tract: Comparison of fallopian tube, uterus, cervix, and vagina. Am J Reprod Immunol 1997; 38(5): 350-9.
[http://dx.doi.org/10.1111/j.1600-0897.1997.tb00311.x] [PMID: 9352027]
[13]
Gasparini R, Panatto D. Cervical cancer: From Hippocrates through Rigoni-Stern to zur Hausen. Vaccine 2009; 27: A4-5.
[http://dx.doi.org/10.1016/j.vaccine.2008.11.069]
[14]
Mak R, Van Renterghem L, Cuvelier C. Cervical smears and human papillomavirus typing in sex workers. Sex Transm Infect 2004; 80(2): 118-20.
[http://dx.doi.org/10.1136/sti.2002.003749] [PMID: 15054172]
[15]
Menczer J. The low incidence of cervical cancer in Jewish women: Has the puzzle finally been solved? Isr Med Assoc J 2003; 5(2): 120-3.
[PMID: 12674663]
[16]
Rigoni-Stern D. Fatti statistici relativi alle malattie cancerose. Giorn Prog Patol Terap 1842; 2: 507-17.
[17]
Dürst M, Gissmann L, Ikenberg H, zur Hausen H. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci USA 1983; 80(12): 3812-5.
[http://dx.doi.org/10.1073/pnas.80.12.3812] [PMID: 6304740]
[18]
Schwarz E, Freese UK, Gissmann L, et al. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 1985; 314(6006): 111-4.
[http://dx.doi.org/10.1038/314111a0] [PMID: 2983228]
[19]
Castellsagué X. Natural history and epidemiology of HPV infection and cervical cancer. Gynecol Oncol 2008; 110(3)(Suppl. 2): S4-7.
[http://dx.doi.org/10.1016/j.ygyno.2008.07.045] [PMID: 18760711]
[20]
International Collaboration of Epidemiological Studies of Cervical Cancer. Cervical carcinoma and reproductive factors: Collaborative reanalysis of individual data on 16,563 women with cervical carcinoma and 33,542 women without cervical carcinoma from 25 epidemiological studies. Int J Cancer 2006; 119(5): 1108-24.
[http://dx.doi.org/10.1002/ijc.21953] [PMID: 16570271]
[21]
Appleby P, Beral V, Berrington de González A, et al. Carcinoma of the cervix and tobacco smoking: Collaborative reanalysis of individual data on 13,541 women with carcinoma of the cervix and 23,017 women without carcinoma of the cervix from 23 epidemiological studies. Int J Cancer 2006; 118(6): 1481-95.
[http://dx.doi.org/10.1002/ijc.21493] [PMID: 16206285]
[22]
Smith JS, Green J, Berrington de Gonzalez A, et al. Cervical cancer and use of hormonal contraceptives: A systematic review. Lancet 2003; 361(9364): 1159-67.
[http://dx.doi.org/10.1016/S0140-6736(03)12949-2] [PMID: 12686037]
[23]
Muñoz N, Castellsagué X, Berrington de González A, Gissmann L. Chapter 1: HPV in the etiology of human cancer. Vaccine In: 2006; p. 24(Suppl. 3): S3-, 1-10.
[http://dx.doi.org/10.1016/j.vaccine.2006.05.115] [PMID: 16949995]
[24]
Papanicolaou GN, Traut HF. The diagnostic value of vaginal smears in carcinoma of the uterus. Am J Obstet Gynecol 1941; 42(2): 193-206.
[http://dx.doi.org/10.1016/S0002-9378(16)40621-6]
[25]
Janicek MF, Averette HE. Cervical cancer: Prevention, diagnosis, and therapeutics. CA Cancer J Clin 2001; 51(2): 92-114.
[http://dx.doi.org/10.3322/canjclin.51.2.92] [PMID: 11577486]
[26]
Creasman WT. New gynecologic cancer staging. Gynecol Oncol 1995; 58(2): 157-8.
[http://dx.doi.org/10.1006/gyno.1995.1203] [PMID: 7622099]
[27]
Rose PG, Adler LP, Rodriguez M, Faulhaber PF, Abdul-Karim FW, Miraldi F. Positron emission tomography for evaluating para-aortic nodal metastasis in locally advanced cervical cancer before surgical staging: A surgicopathologic study. J Clin Oncol 1999; 17(1): 41-5.
[http://dx.doi.org/10.1200/JCO.1999.17.1.41] [PMID: 10458216]
[28]
Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 2017; 9(4): 9.
[http://dx.doi.org/10.3390/pharmaceutics9040053] [PMID: 29156634]
[29]
Roberts GA. Thirty years of progress in chitin and chitosan. Prog Chem Appl Chitin 2008; 13: 7-15.
[30]
Allan G, Fox J, Kong N. Eds. A critical evaluation of the potential sources of chitin and chitosan. In Proceedings of the first international conference on chitin/chitosan. Cambridge, MA: Massachusetts institute of technology 1978; pp. 64-78.
[31]
Chang KLB, Tsai G, Lee J, Fu W-R. Heterogeneous N-deacetylation of chitin in alkaline solution. Carbohydr Res 1997; 303(3): 327-32.
[http://dx.doi.org/10.1016/S0008-6215(97)00179-1]
[32]
Tsigos I, Martinou A, Kafetzopoulos D, Bouriotis V. Chitin deacetylases: New, versatile tools in biotechnology. Trends Biotechnol 2000; 18(7): 305-12.
[http://dx.doi.org/10.1016/S0167-7799(00)01462-1] [PMID: 10856926]
[33]
Dodane V, Vilivalam VD. Pharmaceutical applications of chitosan. Pharm Sci Technol Today 1998; 1(6): 246-53.
[http://dx.doi.org/10.1016/S1461-5347(98)00059-5]
[34]
Hirano S. Chitin biotechnology applications. Biotechnol Annu Rev 1996; 2: 237-58.
[35]
Shahidi F, Arachchi JKV, Jeon Y-J. Food applications of chitin and chitosans. Trends Food Sci Technol 1999; 10(2): 37-51.
[http://dx.doi.org/10.1016/S0924-2244(99)00017-5]
[36]
Dahri M, Akbarialiabad H, Jahromi AM, Maleki R. Loading and release of cancer chemotherapy drugs utilizing simultaneous temperature and pH-responsive nanohybrid. BMC Pharmacol Toxicol 2021; 22(1): 41.
[http://dx.doi.org/10.1186/s40360-021-00508-8] [PMID: 34261533]
[37]
Rizeq BR, Younes NN, Rasool K, Nasrallah GK. Synthesis, bioapplications, and toxicity evaluation of chitosan-based nanoparticles. Int J Mol Sci 2019; 20(22): 20.
[http://dx.doi.org/10.3390/ijms20225776] [PMID: 31744157]
[38]
Kim BY, Rutka JT, Chan WC. Nanomedicine. N Engl J Med 2010; 363(25): 2434-43.
[http://dx.doi.org/10.1056/NEJMra0912273] [PMID: 21158659]
[39]
Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T. Recent progress in nanomedicine: Therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol 2013; 24(6): 1159-66.
[http://dx.doi.org/10.1016/j.copbio.2013.02.020] [PMID: 23578464]
[40]
Saravanakumar K, Jeevithan E, Chelliah R, et al. Zinc-chitosan nanoparticles induced apoptosis in human acute T-lymphocyte leukemia through activation of tumor necrosis factor receptor CD95 and apoptosis-related genes. Int J Biol Macromol 2018; 119: 1144-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.017] [PMID: 30092310]
[41]
Zhao M, Gu L, Li Y, et al. Chitooligosaccharides display anti-tumor effects against human cervical cancer cells via the apoptotic and autophagic pathways. Carbohydr Polym 2019; 224115171
[http://dx.doi.org/10.1016/j.carbpol.2019.115171] [PMID: 31472834]
[42]
Aggarwal U, Goyal AK, Rath G. Development and characterization of the cisplatin loaded nanofibers for the treatment of cervical cancer. Mater Sci Eng C 2017; 75: 125-32.
[http://dx.doi.org/10.1016/j.msec.2017.02.013] [PMID: 28415413]
[43]
Borchard G, Lueßen HL, de Boer AG, Verhoef JC, Lehr C-M, Junginger HE. The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. III: Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro. J Control Release 1996; 39(2-3): 131-8.
[http://dx.doi.org/10.1016/0168-3659(95)00146-8]
[44]
Saesoo S, Bunthot S, Sajomsang W, et al. Phospholipid-chitosan hybrid nanoliposomes promoting cell entry for drug delivery against cervical cancer. J Colloid Interface Sci 2016; 480: 240-8.
[http://dx.doi.org/10.1016/j.jcis.2016.06.071] [PMID: 27442151]
[45]
Wang M, Zhao T, Liu Y, et al. Ursolic acid liposomes with chitosan modification: Promising antitumor drug delivery and efficacy. Mater Sci Eng C 2017; 71: 1231-40.
[http://dx.doi.org/10.1016/j.msec.2016.11.014] [PMID: 27987679]
[46]
Wang JY, Wang Y, Meng X. Chitosan nanolayered cisplatin-loaded lipid nanoparticles for enhanced anticancer efficacy in cervical cancer. Nanoscale Res Lett 2016; 11(1): 524.
[http://dx.doi.org/10.1186/s11671-016-1698-9] [PMID: 27888498]
[47]
Chen MX, Li BK, Yin DK, Liang J, Li SS, Peng DY. Layer-by-layer assembly of chitosan stabilized multilayered liposomes for paclitaxel delivery. Carbohydr Polym 2014; 111: 298-304.
[http://dx.doi.org/10.1016/j.carbpol.2014.04.038] [PMID: 25037355]
[48]
Ji J, Zuo P, Wang YL. Enhanced antiproliferative effect of carboplatin in cervical cancer cells utilizing folate-grafted polymeric nanoparticles. Nanoscale Res Lett 2015; 10(1): 453.
[http://dx.doi.org/10.1186/s11671-015-1162-2] [PMID: 26608536]
[49]
Banerjee SL, Khamrai M, Sarkar K, Singha NK, Kundu PP. Modified chitosan encapsulated core-shell Ag Nps for superior antimicrobial and anticancer activity. Int J Biol Macromol 2016; 85: 157-67.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.068] [PMID: 26724687]
[50]
Kaur H, Mishra N, Khurana B, Kaur S, Arora D. DoE based optimization and development of spray-dried chitosan-coated alginate microparticles loaded with cisplatin for the treatment of cervical cancer. Curr Mol Pharmacol 2021; 14(3): 381-98.
[http://dx.doi.org/10.2174/1874467213666200517120337] [PMID: 32416684]
[51]
Chen J, Huang L, Lai H, et al. Methotrexate-loaded PEGylated chitosan nanoparticles: Synthesis, characterization, and in vitro and in vivo antitumoral activity. Mol Pharm 2014; 11(7): 2213-23.
[http://dx.doi.org/10.1021/mp400269z] [PMID: 24164427]
[52]
Cai L, Yu R, Hao X, Ding X. Folate receptor-targeted bioflavonoid genistein-loaded chitosan nanoparticles for enhanced anticancer effect in cervical cancers. Nanoscale Res Lett 2017; 12(1): 509.
[http://dx.doi.org/10.1186/s11671-017-2253-z] [PMID: 28853026]
[53]
Topete A, Alatorre-Meda M, Villar-Alvarez EM, et al. Polymeric-gold nanohybrids for combined imaging and cancer therapy. Adv Healthc Mater 2014; 3(8): 1309-25.
[http://dx.doi.org/10.1002/adhm.201400023] [PMID: 24764284]
[54]
Seo SH, Han HD, Noh KH, Kim TW, Son SW. Chitosan hydrogel containing GMCSF and a cancer drug exerts synergistic anti-tumor effects via the induction of CD8+ T cell-mediated anti-tumor immunity. Clin Exp Metastasis 2009; 26(3): 179-87.
[http://dx.doi.org/10.1007/s10585-008-9228-5] [PMID: 19082918]
[55]
Salahuddin N, Galal A. Improving chemotherapy drug delivery by nanoprecision tools. Nanostruct Cancer Ther 2017; pp. 87-128.
[56]
Wu H, Zhang J. Chitosan-based zinc oxide nanoparticle for enhanced anticancer effect in cervical cancer: A physicochemical and biological perspective. Saudi Pharm J 2018; 26(2): 205-10.
[http://dx.doi.org/10.1016/j.jsps.2017.12.010] [PMID: 30166917]
[57]
Zhang S, Zhao L, Qiu N, Liu Y, Xu B, Zhu H. On the hypoxic tumor targeting ability of two chitosan micelles loaded with oil-soluble CdSe quantum dots. Pharm Dev Technol 2018; 23(1): 87-95.
[http://dx.doi.org/10.1080/10837450.2017.1365082] [PMID: 28782455]
[58]
Wang X, Wang L, Zong S, Qiu R, Liu S. Use of multifunctional composite nanofibers for photothermalchemotherapy to treat cervical cancer in mice. Biomater Sci 2019; 7(9): 3846-54.
[http://dx.doi.org/10.1039/C9BM00756C] [PMID: 31290862]
[59]
Beidokhti HRN, Ghaffarzadegan R, Mirzakhanlouei S, Ghazizadeh L, Dorkoosh FA. Preparation, characterization, and optimization of folic acid-chitosan-methotrexate core-shell nanoparticles by box-behnken design for tumor-targeted drug delivery. AAPS PharmSciTech 2017; 18(1): 115-29.
[http://dx.doi.org/10.1208/s12249-015-0445-3] [PMID: 26896317]
[60]
Liang N, Sun S, Li X, et al. α-Tocopherol succinate-modified chitosan as a micellar delivery system for paclitaxel: Preparation, characterization and in vitro/in vivo evaluations. Int J Pharm 2012; 423(2): 480-8.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.004] [PMID: 22183133]
[61]
Narayanan S, Dutta D, Arora N, Sahoo L, Ghosh SS. Phytaspase-loaded, Mn-doped ZnS quantum dots when embedded into chitosan nanoparticles leads to improved chemotherapy of HeLa cells using in cisplatin. Biotechnol Lett 2017; 39(10): 1591-8.
[http://dx.doi.org/10.1007/s10529-017-2395-1] [PMID: 28730426]
[62]
Sami H, Kumar A. Tunable hybrid cryogels functionalized with microparticles as supermacroporous multifunctional biomaterial scaffolds. J Biomater Sci Polym Ed 2013; 24(10): 1165-84.
[http://dx.doi.org/10.1080/09205063.2012.743062] [PMID: 23713421]
[63]
Jaiswal MK, Pradhan A, Banerjee R, Bahadur D. Dual pH and temperature stimuli-responsive magnetic nanohydrogels for thermo-chemotherapy. J Nanosci Nanotechnol 2014; 14(6): 4082-9.
[http://dx.doi.org/10.1166/jnn.2014.8662] [PMID: 24738355]
[64]
Wu S, Yang X, Lu Y, et al. A green approach to dual-drug nanoformulations with targeting and synergistic effects for cancer therapy. Drug Deliv 2017; 24(1): 51-60.
[http://dx.doi.org/10.1080/10717544.2016.1228716] [PMID: 28155539]
[65]
Jalalvandi E, Shavandi A. In situ-forming and pH-responsive hydrogel based on chitosan for vaginal delivery of therapeutic agents. J Mater Sci Mater Med 2018; 29(11): 158.
[http://dx.doi.org/10.1007/s10856-018-6166-x] [PMID: 30349982]
[66]
Hussein-Al-Ali SH, Arulselvan P, Fakurazi S, Hussein MZ, Dorniani D. Arginine-chitosan- and arginine-polyethylene glycol-conjugated superparamagnetic nanoparticles: Preparation, cytotoxicity and controlled-release. J Biomater Appl 2014; 29(2): 186-98.
[http://dx.doi.org/10.1177/0885328213519691] [PMID: 24445774]
[67]
Sharma A, Jyoti K, Bansal V, Jain UK, Bhushan B, Madan J. Soluble telmisartan bearing poly (ethylene glycol) conjugated chitosan nanoparticles augmented drug delivery, cytotoxicity, apoptosis and cellular uptake in human cervical cancer cells. Mater Sci Eng C 2017; 72: 69-76.
[http://dx.doi.org/10.1016/j.msec.2016.11.048] [PMID: 28024639]
[68]
Jamal A, Shahzadi L, Ahtzaz S, et al. Identification of anti-cancer potential of doxazocin: Loading into chitosan based biodegradable hydrogels for on-site delivery to treat cervical cancer. Mater Sci Eng C 2018; 82: 102-9.
[http://dx.doi.org/10.1016/j.msec.2017.08.054] [PMID: 29025638]
[69]
Khan MA, Zafaryab M, Mehdi SH, Ahmad I, Rizvi MM. Characterization and anti-proliferative activity of curcumin loaded chitosan nanoparticles in cervical cancer Int J Biol Macromol 2016; 93(Pt A): 242-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.08.050] [PMID: 27565296]
[70]
Khan MA, Zafaryab M, Mehdi SH, Ahmad I, Rizvi MMA. Physicochemical characterization of curcumin loaded chitosan nanoparticles: Implications in cervical cancer. Anticancer Agents Med Chem 2018; 18(8): 1131-7.
[http://dx.doi.org/10.2174/1871520618666180412114352] [PMID: 29651963]
[71]
Sajomsang W, Gonil P, Saesoo S, Ruktanonchai UR, Srinuanchai W, Puttipipatkhachorn S. Synthesis and anticervical cancer activity of novel pH responsive micelles for oral curcumin delivery. Int J Pharm 2014; 477(1-2): 261-72.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.042] [PMID: 25455774]
[72]
Justin C, Samrot AV. P DS, Sahithya CS, Bhavya KS, Saipriya C. Preparation, characterization and utilization of coreshell super paramagnetic iron oxide nanoparticles for curcumin delivery. PLoS One 2018; 13(7)e0200440
[http://dx.doi.org/10.1371/journal.pone.0200440] [PMID: 30021002]
[73]
Yang J, Li S, Guo F, Zhang W, Wang Y, Pan Y. Induction of apoptosis by chitosan/HPV16 E7 siRNA complexes in cervical cancer cells. Mol Med Rep 2013; 7(3): 998-1002.
[http://dx.doi.org/10.3892/mmr.2012.1246] [PMID: 23258711]
[74]
Nagapoosanam AL, Ganesan N, Umapathy D, Moorthy RK, Arockiam AJV. Knockdown of human telomerase reverse transcriptase induces apoptosis in cervical cancer cell line. Indian J Med Res 2019; 149(3): 345-53.
[http://dx.doi.org/10.4103/ijmr.IJMR_1676_16] [PMID: 31249199]
[75]
Saengkrit N, Sanitrum P, Woramongkolchai N, et al. The PEI-introduced CS shell/PMMA core nanoparticle for silencing the expression of E6/E7 oncogenes in human cervical cells. Carbohydr Polym 2012; 90(3): 1323-9.
[http://dx.doi.org/10.1016/j.carbpol.2012.06.079] [PMID: 22939347]
[76]
Anbu AS, Velmurugan P, Lee JH, Oh BT, Venkatachalam P. Biomolecule-loaded chitosan nanoparticles induce apoptosis and molecular changes in cancer cell line (SiHa). Int J Biol Macromol 2016; 88: 18-26.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.03.042] [PMID: 27016087]
[77]
Chokradjaroen C, Rujiravanit R, Watthanaphanit A, et al. Enhanced degradation of chitosan by applying plasma treatment in combination with oxidizing agents for potential use as an anticancer agent. Carbohydr Polym 2017; 167: 1-11.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.006] [PMID: 28433142]
[78]
Martínez-Torres AC, Zarate-Triviño DG, Lorenzo-Anota HY, Ávila-Ávila A, Rodríguez-Abrego C, Rodríguez-Padilla C. Chitosan gold nanoparticles induce cell death in HeLa and MCF-7 cells through reactive oxygen species production. Int J Nanomedicine 2018; 13: 3235-50.
[http://dx.doi.org/10.2147/IJN.S165289] [PMID: 29910612]
[79]
Venkatesan J, Singh SK, Anil S, Kim SK, Shim MS. Preparation, characterization and biological applications of biosynthesized silver nanoparticles with chitosan-fucoidan coating. Molecules 2018; 23(6): 23.
[http://dx.doi.org/10.3390/molecules23061429] [PMID: 29895803]
[80]
Madhusudhan A, Reddy GB, Venkatesham M, et al. Efficient pH dependent drug delivery to target cancer cells by gold nanoparticles capped with carboxymethyl chitosan. Int J Mol Sci 2014; 15(5): 8216-34.
[http://dx.doi.org/10.3390/ijms15058216] [PMID: 24821542]
[81]
Bakhru SH, Altiok E, Highley C, et al. Enhanced cellular uptake and long-term retention of chitosan-modified iron-oxide nanoparticles for MRI-based cell tracking. Int J Nanomedicine 2012; 7: 4613-23.
[http://dx.doi.org/10.2147/IJN.S28294] [PMID: 22942643]
[82]
Sahoo AK, Banerjee S, Ghosh SS, Chattopadhyay A. Simultaneous RGB emitting Au nanoclusters in chitosan nanoparticles for anticancer gene theranostics. ACS Appl Mater Interfaces 2014; 6(1): 712-24.
[http://dx.doi.org/10.1021/am4051266] [PMID: 24281656]
[83]
Senthilkumar R, Karaman DS, Paul P, et al. Targeted delivery of a novel anticancer compound anisomelic acid using chitosan-coated porous silica nanorods for enhancing the apoptotic effect. Biomater Sci 2015; 3(1): 103-11.
[http://dx.doi.org/10.1039/C4BM00278D] [PMID: 26214194]
[84]
Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer 2003; 3(5): 380-7.
[http://dx.doi.org/10.1038/nrc1071] [PMID: 12724736]
[85]
Ferreira DP, Conceição DS, Fernandes F, et al. Characterization of a Squaraine/Chitosan System for Photodynamic Therapy of Cancer. J Phys Chem B 2016; 120(7): 1212-20.
[http://dx.doi.org/10.1021/acs.jpcb.5b11604] [PMID: 26829502]
[86]
Ferreira DP, Conceição DS, Calhelha RC, et al. Porphyrin dye into biopolymeric chitosan films for localized photodynamic therapy of cancer. Carbohydr Polym 2016; 151: 160-71.
[http://dx.doi.org/10.1016/j.carbpol.2016.05.060] [PMID: 27474555]
[87]
Almada M, Burboa MG, Robles E, Gutiérrez LE, Valdés MA, Juárez J. Interaction and cytotoxic effects of hydrophobized chitosan nanoparticles on MDA-MB-231, HeLa and Arpe-19 cell lines. Curr Top Med Chem 2014; 14(6): 692-701.
[http://dx.doi.org/10.2174/1568026614666140118214802] [PMID: 24444157]
[88]
Yan M, Zhang Y, Chang S. Chitosan nanoparticles loaded with TGF-β1 inhibit cervical cancer cell progression through down-regulation of MicroRNA-155 and activation of tim-3 pathway. J Biomed Nanotechnol 2021; 17(9): 1850-7.
[http://dx.doi.org/10.1166/jbn.2021.3146] [PMID: 34688330]
[89]
Hajdu I, Bodnár M, Trencsényi G, et al. Cancer cell targeting and imaging with biopolymer-based nanodevices. Int J Pharm 2013; 441(1-2): 234-41.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.038] [PMID: 23246780]
[90]
Zhang X, Ren X, Cao W, Li Y, Du B, Wei Q. Simultaneous electrochemical immunosensor based on water-soluble polythiophene derivative and functionalized magnetic material. Anal Chim Acta 2014; 845: 85-91.
[http://dx.doi.org/10.1016/j.aca.2014.05.025] [PMID: 25201276]
[91]
Xu H, Wang Y, Wang L, Song Y, Luo J, Cai X. A label-free microelectrode array based on one-step synthesis of chitosan-multi-walled carbon nanotube-thionine for ultrasensitive detection of carcinoembryonic antigen. Nanomaterials (Basel) 2016; 6(7): 6.
[http://dx.doi.org/10.3390/nano6070132] [PMID: 28335260]
[92]
Jampasa S, Wonsawat W, Rodthongkum N, et al. Electrochemical detection of human papillomavirus DNA type 16 using a pyrrolidinyl peptide nucleic acid probe immobilized on screen-printed carbon electrodes. Biosens Bioelectron 2014; 54: 428-34.
[http://dx.doi.org/10.1016/j.bios.2013.11.023] [PMID: 24300785]
[93]
Frank LA, Chaves PS, D’Amore CM, et al. The use of chitosan as cationic coating or gel vehicle for polymeric nanocapsules: Increasing penetration and adhesion of imiquimod in vaginal tissue. Eur J Pharm Biopharm 2017; 114: 202-12.
[http://dx.doi.org/10.1016/j.ejpb.2017.01.021] [PMID: 28161547]
[94]
Tahamtan A, Ghaemi A, Gorji A, et al. Antitumor effect of therapeutic HPV DNA vaccines with chitosan-based nanodelivery systems. J Biomed Sci 2014; 21(1): 69.
[http://dx.doi.org/10.1186/s12929-014-0069-z] [PMID: 25077570]