Assessment of the Impact of Herbal Drugs Used in Neurodegenerative Disorders: A Preclinical Review

Article ID: e090522204503 Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

The use of herbal drugs may offer great potential opportunities in preventing and controlling neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease. Herbal drugs contain multiple pharmacologically active constituents. The relative amounts and nature of these constituents vary due to diverse factors, such as plant source and plant parts, extraction methods, local environmental conditions, storage conditions, adulterations, and accidental or intentional contamination. After administration, they are put through the processes of absorption, distribution, metabolism, and excretion of the same as modern medicines. When handled by the body, they can show a combined effect and interact with modern drugs due to various factors, including similar transport protein interaction, metabolizing cytochrome P450 enzyme, and different transporter mechanisms. Herbal medicine can either induce or inhibit CYP450 enzymes. When herbs are combined with the drugs, either they mimic or oppose the effect of drugs. Many studies worldwide indicate the favorable properties of plant extracts or their bioactive compounds against neurodegenerative disorders, but several clinical concerns have appeared regarding the use of these combinations, which could be due to lack of evidence and scientific support for their effectiveness and safety of the patient.

Keywords: Alzheimer’s, cytochrome P450, neurodegenerative disorders, Parkinson’s, herbal drugs, Huntington’s, memory.

Graphical Abstract

[1]
Di Paolo M, Papi L, Gori F, Turillazzi E. Natural products in neurodegenerative diseases: A great promise but an ethical challenge. Int J Mol Sci 2019; 20: 5170.
[http://dx.doi.org/10.3390/ijms20205170]
[2]
Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature 2016; 539(7628): 180-6.
[http://dx.doi.org/10.1038/nature20411] [PMID: 27830812]
[3]
Bak T. What wires together dies together: Verbs, actions and neurodegeneration in motor neuron disease. Cortex 2012; 48(7): 936-44.
[4]
Lange KW, Sahakian J, Quinn NP, Marsden CD, Robbins TW. Comparison of executive and visuospatial memory function in Hunting-ton’s disease and dementia of Alzheimer type matched for degree of dementia. Neurosurgery, and Psychiatry 1995; 58: 606.
[http://dx.doi.org/10.1136/jnnp.58.5.598]
[5]
Sonne J, Reddy V, Beato MR. Neuroanatomy, Substantia Nigra. Treasure Island, (FL): StatPearls Publishing 2019.
[6]
Beaulieu J-M, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011; 63(1): 182-217.
[7]
Li SH, Li XJ. Huntingtin-protein interactions and the pathogenesis of Huntington’s disease. Trends Genet 2004; 20(3): 146-54.
[http://dx.doi.org/10.1016/j.tig.2004.01.008] [PMID: 15036808]
[8]
Berman T, Bayati A. What are neurodegenerative diseases and how do they affect the brain? Front Young Minds 2018; 6: 6.
[http://dx.doi.org/10.3389/frym.2018.00070]
[9]
Shyur LF, Lau ASY. Recent Trends in Medicinal Plants Research Cambridge, Massachussetts: Academic Press 2012.
[10]
Jungbauer A, Medjakovic S. Anti-inflammatory properties of culinary herbs and spices that ameliorate the effects of metabolic syndrome. Maturitas 2012; 71(3): 227-39.
[http://dx.doi.org/10.1016/j.maturitas.2011.12.009] [PMID: 22226987]
[11]
Agarwal P, Alok S, Fatima A, Singh PP. Herbal remedies for neurodegenerative disorder (Alzheimer’s disease): A review. Int J Pharm Sci Res 2013; 4(9): 3328-40.
[12]
Zhang L, Reynolds KS, Zhao P, Huang SM. Drug interactions evaluation: An integrated part of risk assessment of therapeutics. Toxicol Appl Pharmacol 2010; 243(2): 134-45.
[http://dx.doi.org/10.1016/j.taap.2009.12.016] [PMID: 20045016]
[13]
Sharma KK, Sangraula H, Das BP, Badyal DK, Dadhich AP. Cytochrome P450 and drug interactions. Indian J Pharmacol 2002; 34(5): 289-91.
[14]
Lin JH, Lu AY. Interindividual variability in inhibition and induction of cytochrome p450 enzymes. Annu Rev Pharmacol Toxicol 2001; 41: 535-67.
[http://dx.doi.org/10.1146/annurev.pharmtox.41.1.535]
[15]
Singhal AK, Naithani V, Bangar OP. Medicinal plants with a potential to treat Alzheimer and associated symptoms. Int J Nutr Pharmacol Neurol Dis 2012; 2(2): 84.
[http://dx.doi.org/10.4103/2231-0738.95927]
[16]
Iriti M, Vitalini S, Fico G, Faoro F. Neuroprotective herbs and foods from different traditional medicines and diets. Molecules 2010; 15(5): 3517-55.
[http://dx.doi.org/10.3390/molecules15053517] [PMID: 20657497]
[17]
Wagner H. Phytomedicine research in Germany. Environ Health Perspect 1999; 107(10): 779-81.
[http://dx.doi.org/10.1289/ehp.99107779]
[18]
Nash KM, Shah ZA. Current perspectives on the beneficial role of Ginkgo biloba in neurological and cerebrovascular disorders. Integr Med Insights 2015; 10: 1-9.
[http://dx.doi.org/10.4137/IMI.S25054] [PMID: 26604665]
[19]
Birks J, Evans GJ. Ginkgo biloba for cognitive impairment and dementia. (Review). Cochrane Database Syst Rev 2009; 1: CD003120. Available from: http://www.thecochranelibrary.com (Accessed 2022 Mar 9).
[20]
Rao RV, Descamps O, John V, Bredesen DE. Ayurvedic medicinal plants for Alzheimer’s disease: A review. Alzheimers Res Ther 2012; 43(3): 1-9.
[http://dx.doi.org/10.1186/alzrt125]
[21]
Sharma K, Bhatnagar M, Kulkarni SK. Effect of Convolvulus pluricaulis Choisy and Asparagus racemosus Willd on learning and memory in young and old mice: A comparative evaluation. Indian J Exp Biol 2010; 48(5): 479-85.
[PMID: 20795365]
[22]
Kumar S, Harris RJ, Seal CJ, Okello EJ. An aqueous extract of Withania somnifera root inhibits amyloid β fibril formation in vitro. Phytother Res 2012; 26(1): 113-7.
[http://dx.doi.org/10.1002/ptr.3512] [PMID: 21567509]
[23]
Jayaprakasam B, Padmanabhan K, Nair MG. Withanamides in Withania somnifera fruit protect PC-12 cells from β-amyloid responsible for Alzheimer’s disease. Phytother Res 2010; 24(6): 859-63.
[24]
Bhattachajya SK. Kalkunte, Satyan S, Ghosal S. Antioxidant activity of glycowithano lides from Withania somnifera. IBdian J Exp Biol 1997; 35: 236-9.
[25]
Russo A, Borrelli F. Bacopa monniera, a reputed nootropic plant: An overview. Phytomedicine 2005; 12(4): 305-17.
[http://dx.doi.org/10.1016/j.phymed.2003.12.008] [PMID: 15898709]
[26]
Limpeanchob N, Jaipan S, Rattanakaruna S, Phrompittayarat W, Ingkaninan K. Neuroprotective effect of Bacopa monnieri on beta-amyloid-induced cell death in primary cortical culture. J Ethnopharmacol 2008; 120(1): 112-7.
[http://dx.doi.org/10.1016/j.jep.2008.07.039] [PMID: 18755259]
[27]
Şener B, Orhan I. Discovery of drug candidates from some Turkish plants and conservation of biodiversity. Pure Appl Chem 2005; 77(1): 53-64.
[http://dx.doi.org/10.1351/pac200577010053]
[28]
Cho MJ, Kim JH, Park CH, et al. Comparison of the effect of three licorice varieties on cognitive improvement via an amelioration of neu-roinflammation in lipopolysaccharide-induced mice. Nutr Res Pract 2018; 12(3): 191-8.
[http://dx.doi.org/10.4162/nrp.2018.12.3.191] [PMID: 29854324]
[29]
Toldy A, Atalay M, Stadler K, et al. The beneficial effects of nettle supplementation and exercise on brain lesion and memory in rat. J Nutr Biochem 2009; 20(12): 974-81.
[http://dx.doi.org/10.1016/j.jnutbio.2008.09.001]
[30]
Brooks NA, Wilcox G, Walker KZ, Ashton JF, Cox MB, Stojanovska L. Beneficial effects of Lepidium meyenii (Maca) on psychological symptoms and measures of sexual dysfunction in postmenopausal women are not related to estrogen or androgen content. Menopause J North Am Menopause Soc 2008; 15(6): 1157-62.
[31]
Pino-Figueroa A, Nguyen D, Maher TJ. Neuroprotective effects of Lepidium meyenii (Maca). Ann N Y Acad Sci 2010; 1199(1): 77-85.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05174.x] [PMID: 20633111]
[32]
Guo SS, Gao XF, Gu YR, et al. Preservation of cognitive function by Lepidium meyenii (Maca) is associated with improvement of mito-chondrial activity and upregulation of autophagy-related proteins in middle-aged mouse cortex. Evidence-based Complement Altern Med 2016; 2016: 4394261.
[33]
Kartika B, Muralidharan P, Rahman H. Herbal treatment of parkinsonism a review Int J Pharm Sci Rev Res 2010; 5(3): 034.
[34]
Manivasagam T, Venkatachalam S, Seppan P, et al. Withania somnifera root extract improves catecholamines and physiological abnor-malities seen in a Parkinson’s disease model mouse. Artic J Ethnopharmacol 2009; 125: 369-73.
[35]
Kasture S, Pontis S, Pinna A, et al. Assessment of symptomatic and neuroprotective efficacy of Mucuna pruriens seed extract in rodent model of Parkinson’s disease. Neurotox Res 2009; 1592: 111-22.
[36]
Ahmad M, Saleem S, Ahmad AS, et al. Ginkgo biloba affords dose-dependent protection against 6-hydroxydopamine-induced parkinson-ism in rats: Neurobehavioural, neurochemical and immunohistochemical evidences. J Neurochem 2005; 93(1): 94-104.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03000.x] [PMID: 15773909]
[37]
Jyoti A, Sethi P, Sharma D. Bacopa monniera prevents from aluminium neurotoxicity in the cerebral cortex of rat brain. J Ethnopharmacol 2007; 111(1): 56-62.
[http://dx.doi.org/10.1016/j.jep.2006.10.037] [PMID: 17189676]
[38]
Chtourou Y, Trabelsi K, Fetoui H, Mkannez G, Kallel H, Zeghal N. Manganese induces oxidative stress, redox state unbalance and dis-rupts membrane bound ATPases on murine neuroblastoma cells in vitro: Protective role of silymarin. Neurochem Res 2011; 36(8): 1546-57.
[http://dx.doi.org/10.1007/s11064-011-0483-5] [PMID: 21533646]
[39]
Morais LCSL, Quintans-Júnior LJ, Franco CIF, Almeida JRGS, Almeida RN. Antiparkinsonian-like effects of Plumbago scandens on tremorine-induced tremors methodology. Pharmacol Biochem Behav 2004; 79(4): 745-9.
[http://dx.doi.org/10.1016/j.pbb.2004.10.004] [PMID: 15582683]
[40]
Fujikawa T, Miguchi S, Kanada N, et al. Acanthopanax senticosus Harms as a prophylactic for MPTP-induced Parkinson’s disease in rats. J Ethnopharmacol 2005; 97(2): 375-81.
[http://dx.doi.org/10.1016/j.jep.2004.11.031] [PMID: 15707778]
[41]
Ju MS, Lee P, Kim HG, et al. Protective effects of standardized Thuja orientalis leaves against 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Toxicol Vitr 2010; 24(3): 759-65.
[http://dx.doi.org/10.1016/j.tiv.2009.12.026] [PMID: 20040370]
[42]
Lin CM, Lin RD, Chen ST, et al. Neurocytoprotective effects of the bioactive constituents of Pueraria thomsonii in 6-hydroxydopamine (6-OHDA)-treated nerve growth factor (NGF)-differentiated PC12 cells. Phytochemistry 2010; 71(17-18): 2147-56.
[http://dx.doi.org/10.1016/j.phytochem.2010.08.015] [PMID: 20832831]
[43]
Shim JS, Kim HG, Ju MS, Choi JG, Jeong SY, Oh MS. Effects of the hook of Uncaria rhynchophylla on neurotoxicity in the 6-hydroxydopamine model of Parkinson’s disease. J Ethnopharmacol 2009; 126(2): 361-5.
[http://dx.doi.org/10.1016/j.jep.2009.08.023] [PMID: 19703534]
[44]
Ren W, Qiao Z, Wang H, Zhu L, Zhang L. Flavonoids: promising anticancer agents. Med Res Rev 2003; 23(4): 519-34.
[45]
Schroeter H, Boyd C, Spencer JPE, Williams RJ, Cadenas E, Rice-Evans C. MAPK signaling in neurodegeneration: Influences of flavo-noids and of nitric oxide. Neurobiol Aging 2002; 23(5): 861-80.
[http://dx.doi.org/10.1016/S0197-4580(02)00075-1] [PMID: 12392791]
[46]
Rausch W-D, Liu S, Gille G, Radad K. Neuroprotective effects of ginsenosides. Acta Neurobiol Exp (Warsz) 2006; 66(4): 369-75.
[PMID: 17265697]
[47]
Wanwimolruk S, Phopin K, Prachayasittikul V. Cytochrome P450 enzyme mediated herbal drug interactions (Part 2). EXCLI J 2014; 13: 869-96.
[48]
Kim S, Ahn K, Oh TH, Nah SY, Rhim H. Inhibitory effect of ginsenosides on NMDA receptor-mediated signals in rat hippocampal neu-rons. Biochem Biophys Res Commun 2002; 296(2): 247-54.
[http://dx.doi.org/10.1016/S0006-291X(02)00870-7] [PMID: 12163009]
[49]
Choudhary S, Kumar P, Malik J. Plants and phytochemicals for Huntington’s disease. Pharmacogn Rev 2013; 7(14): 81-91.
[50]
Calabrese C, Gregory WL, Leo M, Kraemer D, Bone K, Oken B. Effects of a standardized bacopa monnieri extract on cognitive perfor-mance, anxiety, and depression in the elderly: a randomized, double-blind, placebo-controlled trial. J Altern Complement Med 2008; 14(6): 707.
[51]
Kar Chowdhuri D, Parmar D, Kakkar P, Shukla R, Seth PK, Srimal RC. Antistress effects of bacosides of Bacopa monnieri: Modulation of Hsp70 expression, superoxide dismutase and cytochrome P450 activity in rat brain. Phytother Res 2002; 16(7): 639-45.
[http://dx.doi.org/10.1002/ptr.1023]
[52]
Singh R, Panduri J, Kumar D, et al. Evaluation of memory enhancing clinically available standardized extract of Bacopa monniera on P-glycoprotein and cytochrome P450 3A in Sprague-Dawley rats. PLoS One 2013; 8(8): e72517.
[http://dx.doi.org/10.1371/journal.pone.0072517] [PMID: 24015255]
[53]
Efficacy, safety, and use of Ginkgo biloba in clinical and preclinical applications - ProQuest. Available from: https://www. proquest.com/openview/7a27773d0094456d47e0f4ace442ec04/1?pq-origsite=gscholar&cbl=32528 (Accessed on 2022 Mar 10).
[54]
Mahdy HM, Tadros MG, Mohamed MR, Karim AM, Khalifa AE. The effect of Ginkgo biloba extract on 3-nitropropionic acid-induced neurotoxicity in rats. Neurochem Int 2011; 59(6): 770-8.
[http://dx.doi.org/10.1016/j.neuint.2011.07.012] [PMID: 21827809]
[55]
Cleren C, Calingasan NY, Chen J, Beal MF. Celastrol protects against MPTP- and 3-nitropropionic acid-induced neurotoxicity. J Neurochem 2005; 94(4): 995-1004.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03253.x] [PMID: 16092942]
[56]
Zhang YQ, Sarge KD. Celastrol inhibits polyglutamine aggregation and toxicity though induction of the heat shock response. J Mol Med (Berl) 2007; 85(12): 1421-8.
[http://dx.doi.org/10.1007/s00109-007-0251-9] [PMID: 17943263]
[57]
Jin C, He X, Zhang F, et al. Inhibitory mechanisms of celastrol on human liver cytochrome P450 1A2, 2C19, 2D6, 2E1 and 3A4. Xenobiotica 2015; 45(7): 571-7.
[http://dx.doi.org/10.3109/00498254.2014.1003113] [PMID: 25811791]
[58]
Kunchandy E, Rao MNA. Oxygen radical scavenging activity of curcumin. Int J Pharm 1990; 58(3): 237-40.
[http://dx.doi.org/10.1016/0378-5173(90)90201-E]
[59]
Kumar P, Padi SSV, Naidu PS, Kumar A. Possible neuroprotective mechanisms of curcumin in attenuating 3-nitropropionic acid-induced neurotoxicity. Methods Find Exp Clin Pharmacol 2007; 29(1): 19-25.
[http://dx.doi.org/10.1358/mf.2007.29.1.1063492] [PMID: 17344940]
[60]
Appiah-Opong R, Commandeur JN, van Vugt-Lussenburg B, Vermeulen NP, Vermeulen NP. Inhibition of human recombinant cyto-chrome P450s by curcumin and curcumin decomposition products. Toxicology 2007; 235(1-2): 83-91.
[http://dx.doi.org/10.1016/j.tox.2007.03.007] [PMID: 17433521]
[61]
Nand Rai S, Birendra Singh D, Pratap Singh S, Singh SP. Anti-parkinsonian activity of ursolic acid and chlorogenic acid view project drug delivery system for cns disorders view project 2015. Available from: https://www.researchgate.net/publication/300045546 (Accessed on 2022 Mar 10).
[62]
Costa S, Diogenes V, Silva A, Souza C, et al. Impact of plant-derived flavonoids on neurodegenerative diseases. Neurotox Res 2016; 30: 41-52.
[63]
Dey A, Bhattacharya R, Mukherjee A, Pandey DK. Natural products against Alzheimer’s disease: Pharmaco-therapeutics and biotechno-logical interventions. Biotechnol Adv 2017; 35(2): 178-216.
[http://dx.doi.org/10.1016/j.biotechadv.2016.12.005] [PMID: 28043897]
[64]
Larit F, Elokely KM, Chaurasiya ND, et al. Inhibition of human monoamine oxidase A and B by flavonoids isolated from 1 two Algerian medicinal plants 2 3 Farida Larit. Phytomedicine 2018; 40: 27-36.
[65]
Pirzada AM, Ali HH, Naeem M, Latif M, Bukhari AH, Tanveer A. Cyperus rotundus L.: Traditional uses, phytochemistry, and pharmaco-logical activities. J Ethnopharmacol 2015; 174: 540-60.
[http://dx.doi.org/10.1016/j.jep.2015.08.012] [PMID: 26297840]
[66]
Zhang H, Bai L, He J, et al. Recent advances in discovery and development of natural products as source for anti-Parkinson’s disease lead compounds. Eur J Med Chem 2017; 141: 257-72.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.068] [PMID: 29031072]
[67]
Nabavi SF, Sureda A, Habtemariam S, Nabavi SM. Ginsenoside Rd and ischemic stroke; a short review of literatures. J Ginseng Res 2015; 39(4): 299-303.
[http://dx.doi.org/10.1016/j.jgr.2015.02.002] [PMID: 26869821]
[68]
Dar NJ, Hamid A, Ahmad M. Pharmacologic overview of Withania somnifera, the Indian Ginseng. Cell Mol Life Sci 2015; 72(23): 4445-60.
[http://dx.doi.org/10.1007/s00018-015-2012-1]
[69]
Näslund J, Haroutunian V, Mohs R, et al. Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline. JAMA 2000; 283(12): 1571-7.
[http://dx.doi.org/10.1001/jama.283.12.1571] [PMID: 10735393]
[70]
Sharifi-Rad M, Lankatillake C, Dias DA, et al. Clinical medicine impact of natural compounds on neurodegenerative disorders: From pre-clinical to pharmacotherapeutics. J Clin Med 2020; 1061(4): 1061.
[http://dx.doi.org/10.3390/jcm9041061]
[71]
Reddy PH, Manczak M, Yin X, et al. Protective effects of Indian spice curcumin against amyloid-β in alzheimer’s disease. J Alzheimers Dis 2018; 61(3): 843-66.
[http://dx.doi.org/10.3233/JAD-170512] [PMID: 29332042]
[72]
Carmona V, Martín-Aragón S, Goldberg J, Schubert D, Bermejo-Bescós P. Several targets involved in Alzheimer’s disease amyloidogene-sis are affected by morin and isoquercitrin 2018; 23(8): 575-90.
[73]
Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol 2003; 53 (Suppl. 3): S26-38.
[74]
Bertram E. The relevance of kindling for human epilepsy. Epilepsia 2007; 48(s2) (Suppl. 2): 65-74.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01068.x] [PMID: 17571354]
[75]
Kumar GP, Khanum F. Neuroprotective potential of phytochemicals. Pharmacogn Rev 2012; 6(12): 81-90.
[http://dx.doi.org/10.4103/0973-7847.99898] [PMID: 23055633]
[76]
Sowndhararajan K, Deepa P, Kim M, Park SJ, Kim S. Baicalein as a potent neuroprotective agent: A review. Biomed Pharmacother 2017; 95: 1021-32.
[http://dx.doi.org/10.1016/j.biopha.2017.08.135] [PMID: 28922719]
[77]
Akinmoladun AC, Akinrinola BL, Olaleye MT, Farombi EO. Kolaviron, a garcinia kola biflavonoid complex, protects against ische-mia/reperfusion injury: Pertinent mechanistic insights from biochemical and physical evaluations in rat brain. Neurochem Res 2015; 40(4): 777-87.
[78]
Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol Dis 2018; 109(Pt B): 249-57.
[http://dx.doi.org/10.1016/j.nbd.2017.04.004]
[79]
Salehi B, Shivaprasad Shetty M. V Anil Kumar N, et al Veronica plants-drifting from farm to traditional healing, food application, and phytopharmacology. Molecules 2019; 24(13): E2454.
[http://dx.doi.org/10.3390/molecules24132454] [PMID: 31277407]
[80]
Angélica Maria S-G, Edison O, Gloria Patricia C-G. Linalool reverses neuropathological and behavioral impairments in old triple transgen-ic Alzheimer’s mice. Neuropharmacology 2016; 102: 111-20.
[81]
Wojciechowski VV, Calina D, Tsarouhas K, et al. A guide to acquired vitamin K coagulophathy diagnosis and treatment: The Russian perspective. Daru 2017; 25(1): 10.
[http://dx.doi.org/10.1186/s40199-017-0175-z] [PMID: 28416008]
[82]
Huang L, Wang S, Ma F, et al. From stroke to neurodegenerative diseases: The multi-target neuroprotective effects of 3-n-butylphthalide and its derivatives. Pharmacol Res 2018; 135: 201-11.
[http://dx.doi.org/10.1016/j.phrs.2018.08.007] [PMID: 30103000]
[83]
Chen C, Yang FQ, Zhang Q, Wang FQ, Hu YJ, Xia ZN. Natural products for antithrombosis. Evidence-based Complement Altern Med 2015; 2015: 876426.
[http://dx.doi.org/10.1155/2015/876426]
[84]
Finberg JPM, Rabey JM. Inhibitors of MAO-A and MAO-B in psychiatry and neurology. Front Pharmacol 2016; 7: 340.
[http://dx.doi.org/10.3389/fphar.2016.00340] [PMID: 27803666]
[85]
Vina D, Serra S, Lamela M, Delogu GL. Herbal natural products as a source of monoamine oxidase inhibitors: A review. Curr Top Med Chem 2012; 12(20): 2131-44.
[86]
Carradori S, Petzer JP. Novel monoamine oxidase inhibitors: A patent review (2012-2014). Expert Opin Ther Pat 2015; 25(1): 91-110.
[87]
Zanforlin E, Zagotto G, Ribaudo G. The medicinal chemistry of natural and semisynthetic compounds against Parkinson’s and Hunting-ton’s diseases. ACS Chem Neurosci 2017; 8(11): 2356-68.
[http://dx.doi.org/10.1021/acschemneuro.7b00283] [PMID: 28862431]
[88]
Yang Y, Liang X, Jin P, et al. Screening and determination for potential acetylcholinesterase inhibitory constituents from ginseng stem-leaf saponins using ultrafiltration (UF)-LC-ESI-MS2. Phytochem Anal 2019; 30(1): 26-33.
[http://dx.doi.org/10.1002/pca.2787] [PMID: 30159954]
[89]
Shin SJ, Nam Y, Park YH, et al. Therapeutic effects of non-saponin fraction with rich polysaccharide from Korean red ginseng on aging and Alzheimer’s disease. Free Radic Biol Med 2021; 164: 233-48.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.12.454] [PMID: 33422674]
[90]
Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. 8-hydroxyquinolines: A review of their metal chelating proper-ties and medicinal applications. Drug Des Devel Ther 2013; 7: 1157-78.
[91]
Ganguly R, Hazra R, Ray K, Guha D. Effect of Moringa oleifera in EXPERIMENTAL Model of Alzheimer’s disease: Role of antioxidants. Ann Neurosci 2010; 12(3): 33-6.
[http://dx.doi.org/10.5214/ans.0972.7531.2005.120301]
[92]
Mahaman YAR, Huang F, Wu M, et al. Moringa oleifera alleviates homocysteine-induced alzheimer’s disease-like pathology and cognitive impairments. J Alzheimers Dis 2018; 63(3): 1141-59.
[http://dx.doi.org/10.3233/JAD-180091] [PMID: 29710724]
[93]
Golchin L, Shabani M, Harandi S, Razavinasab M. Pistachio supplementation attenuates motor and cognition impairments induced by cisplatin or vincristine in rats. Adv Biomed Res 2015; 4(1): 92.
[94]
Pak-Hashemi M, Hassanipour M, Mohammadinasab M, et al. A study of the effects of Pista ciavera (pistachio) seed oil on working memory as well as spatial learning and memory. Pist Heal J 2019; 1(3): 1-7.
[95]
Uddin MS, Al Mamun A, Hossain MS, et al. Neuroprotective effect of Phyllanthus acidus L. on learning and memory impairment in sco-polamine-induced animal model of dementia and oxidative stress: Natural wonder for regulating the development and progression of Alz-heimer’s disease. Adv Alzheimer Dis 2016; 5(2): 53-72.
[96]
Zool TJ. Türkoğlu S, Çelik S, Keser S, Türkoğlu İ, Yilmaz Ö. The effect of Pistacia terebinthus extract on lipid peroxidation, glutathione, protein, and some enzyme activities in tissues of rats undergoing oxidative stress. Turk J Zool 2017; 41: 82-8.