Advances in Data Repositories for ncRNA-Protein Interaction Predictions Based on Machine Learning: A Mini-Review

Page: [354 - 371] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Background: This study aims at exploring the advances in data repositories for predicting interactions between non-coding RNAs (ncRNAs) and corresponding proteins. NcRNAs are a class of ribonucleic acid that lacks the potential for protein translation. A series of studies indicated that ncRNAs play critical roles in epigenetic regulations, chromatin remodeling, transcription process, and post-transcriptional processing. Since ncRNAs function with associated proteins during complex biological procedures, it is important to identify ncRNA-protein interactions, which will provide guidance for exploring the internal molecular mechanisms. Recently, a variety of machine learning methods have emerged, with the lower cost and time-saving advantages compared to experimental methods. In machine learning, the performance of classification models is often affected by the quality of input samples and their features.

Aims: Thus, the study intends to introduce the related data sources used in predicting ncRNAprotein interactions (ncRPIs) based on machine learning.

Methods: We searched related literature from different sources, including PubMed, Web of Science, and Scopus, using the search terms “machine learning”, “repository”, “non-coding RNA”, and “protein”. In this work, we described the databases applied to the dataset construction and feature representation in the ncRPIs prediction task.

Results: This study reviews the application of the benchmark dataset construction and conventional feature representation during ncRPI prediction processes. Furthermore, the source, main functions, and development status of each database are also discussed in this work.

Conclusion: With the development of high-throughput technologies for generating ncRPIs and constructing related databases, machine learning would become a necessary research means, enriching the prediction methods of ncRPIs. Due to an increase in improved databases, the resources of molecular structures, functions, and genetic information for data mining have increased, enhancing the credibility of ncRPI prediction based on machine learning. We believe that the databases will be more widely used in disease research, drug development, and many other fields.

Keywords: ncRNA-protein interaction, related databases of ncRNA-protein interaction, benchmark datasets, dataset construction, feature representation, machine learning.

Graphical Abstract

[1]
Kaikkonen, M.U.; Lam, M.T.; Glass, C.K. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc. Res., 2011, 90(3), 430-440.
[http://dx.doi.org/10.1093/cvr/cvr097] [PMID: 21558279]
[2]
Umlauf, D.; Fraser, P.; Nagano, T. The role of long non-coding RNAs in chromatin structure and gene regulation: Variations on a theme. Biol. Chem., 2008, 389(4), 323-331.
[http://dx.doi.org/10.1515/BC.2008.047] [PMID: 18225988]
[3]
Wang, X.; Arai, S.; Song, X.; Reichart, D.; Du, K.; Pascual, G.; Tempst, P.; Rosenfeld, M.G.; Glass, C.K.; Kurokawa, R. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature, 2008, 454(7200), 126-130.
[http://dx.doi.org/10.1038/nature06992] [PMID: 18509338]
[4]
Ogawa, Y.; Sun, B.K.; Lee, J.T. Intersection of the RNA interference and X-inactivation pathways. Science, 2008, 320(5881), 1336-1341.
[http://dx.doi.org/10.1126/science.1157676] [PMID: 18535243]
[5]
Taft, R.J.; Pang, K.C.; Mercer, T.R.; Dinger, M.; Mattick, J.S. Non-coding RNAs: regulators of disease. J. Pathol., 2010, 220(2), 126-139.
[http://dx.doi.org/10.1002/path.2638] [PMID: 19882673]
[6]
Alvarez-Dominguez, J.R.; Bai, Z.; Xu, D.; Yuan, B.; Lo, K.A.; Yoon, M.J.; Lim, Y.C.; Knoll, M.; Slavov, N.; Chen, S.; Peng, C.; Lodish, H.F.; Sun, L. De novo reconstruction of adipose tissue transcriptomes reveals long non-coding RNA regulators of brown adipocyte devel-opment. Cell Metab., 2015, 21(5), 764-776.
[http://dx.doi.org/10.1016/j.cmet.2015.04.003] [PMID: 25921091]
[7]
Schmidt, E.; Dhaouadi, I.; Gaziano, I.; Oliverio, M.; Klemm, P.; Awazawa, M.; Mitterer, G.; Fernandez-Rebollo, E.; Pradas-Juni, M.; Wag-ner, W.; Hammerschmidt, P.; Loureiro, R.; Kiefer, C.; Hansmeier, N.R.; Khani, S.; Bergami, M.; Heine, M.; Ntini, E.; Frommolt, P.; Zentis, P.; Ørom, U.A.; Heeren, J.; Blüher, M.; Bilban, M.; Kornfeld, J.W. LincRNA H19 protects from dietary obesity by constraining expression of monoallelic genes in brown fat. Nat. Commun., 2018, 9(1), 3622.
[http://dx.doi.org/10.1038/s41467-018-05933-8] [PMID: 30190464]
[8]
Schoeftner, S.; Sengupta, A.K.; Kubicek, S.; Mechtler, K.; Spahn, L.; Koseki, H.; Jenuwein, T.; Wutz, A. Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J., 2006, 25(13), 3110-3122.
[http://dx.doi.org/10.1038/sj.emboj.7601187] [PMID: 16763550]
[9]
Deogharia, M.; Gurha, P. The “guiding” principles of noncoding RNA function. Wiley Interdiscip. Rev. RNA, 2021, 2021, e1704.
[http://dx.doi.org/10.1002/wrna.1704] [PMID: 34856642]
[10]
Rinn, J.L.; Kertesz, M.; Wang, J.K.; Squazzo, S.L.; Xu, X.; Brugmann, S.A.; Goodnough, L.H.; Helms, J.A.; Farnham, P.J.; Segal, E.; Chang, H.Y. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 2007, 129(7), 1311-1323.
[http://dx.doi.org/10.1016/j.cell.2007.05.022] [PMID: 17604720]
[11]
Salta, E.; De Strooper, B. Noncoding RNAs in neurodegeneration. Nat. Rev. Neurosci., 2017, 18(10), 627-640.
[http://dx.doi.org/10.1038/nrn.2017.90] [PMID: 28855739]
[12]
Sun, L.; Lin, J.D. Function and mechanism of long noncoding RNAs in adipocyte biology. Diabetes, 2019, 68(5), 887-896.
[http://dx.doi.org/10.2337/dbi18-0009] [PMID: 31010880]
[13]
Lee, N.S.; Evgrafov, O.V.; Souaiaia, T.; Bonyad, A.; Herstein, J.; Lee, J.Y.; Kim, J.; Ning, Y.; Sixto, M.; Weitz, A.C.; Lenz, H.J.; Wang, K.; Knowles, J.A.; Press, M.F.; Salvaterra, P.M.; Shung, K.K.; Chow, R.H. Non-coding RNAs derived from an alternatively spliced REST tran-script (REST-003) regulate breast cancer invasiveness. Sci. Rep., 2015, 5(1), 11207.
[http://dx.doi.org/10.1038/srep11207] [PMID: 26053433]
[14]
Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.C.; Hung, T.; Argani, P.; Rinn, J.L.; Wang, Y.; Brzoska, P.; Kong, B.; Li, R.; West, R.B.; van de Vijver, M.J.; Sukumar, S.; Chang, H.Y. Long non-coding RNA hotair reprograms chromatin state to promote cancer metastasis. Nature, 2010, 464(7291), 1071-1076.
[http://dx.doi.org/10.1038/nature08975] [PMID: 20393566]
[15]
Ankö, M.L.; Neugebauer, K.M. RNA-protein interactions in vivo: Global gets specific. Trends Biochem. Sci., 2012, 37(7), 255-262.
[http://dx.doi.org/10.1016/j.tibs.2012.02.005] [PMID: 22425269]
[16]
Marchese, D.; de Groot, N.S.; Lorenzo Gotor, N.; Livi, C.M.; Tartaglia, G.G. Advances in the characterization of RNA-binding proteins. Wiley Interdiscip. Rev. RNA, 2016, 7(6), 793-810.
[http://dx.doi.org/10.1002/wrna.1378] [PMID: 27503141]
[17]
Ramanathan, M.; Porter, D.F.; Khavari, P.A. Methods to study RNA-protein interactions. Nat. Methods, 2019, 16(3), 225-234.
[http://dx.doi.org/10.1038/s41592-019-0330-1] [PMID: 30804549]
[18]
Asim, M.N.; Ibrahim, M.A.; Imran Malik, M.; Dengel, A.; Ahmed, S. Advances in computational methodologies for classification and sub-cellular locality prediction of non-coding RNAs. Int. J. Mol. Sci., 2021, 22(16), 8719.
[http://dx.doi.org/10.3390/ijms22168719] [PMID: 34445436]
[19]
Chen, X.; Yan, C.C.; Zhang, X.; You, Z.H. Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief. Bioinform., 2017, 18(4), 558-576.
[http://dx.doi.org/10.1093/bib/bbw060] [PMID: 27345524]
[20]
Liu, Y.; Fu, Q.; Peng, X.; Zhu, C.; Liu, G.; Liu, L. Attention-based deep multiple-instance learning for classifying circular rna and other long non-coding RNA. Genes (Basel), 2021, 12(12), 2018.
[http://dx.doi.org/10.3390/genes12122018] [PMID: 34946967]
[21]
Teng, X.; Chen, X.; Xue, H.; Tang, Y.; Zhang, P.; Kang, Q.; Hao, Y.; Chen, R.; Zhao, Y.; He, S. NPInter v4.0: an integrated database of ncRNA interactions. Nucleic Acids Res., 2020, 48(D1), D160-D165.
[http://dx.doi.org/10.1093/nar/gkz969] [PMID: 31670377]
[22]
Li, A.; Ge, M.; Zhang, Y.; Peng, C.; Wang, M. Predicting long noncoding RNA and protein interactions using heterogeneous network mod-el. BioMed Res. Int., 2015, 2015, 671950.
[http://dx.doi.org/10.1155/2015/671950] [PMID: 26839884]
[23]
Xiao, Y.; Zhang, J.; Deng, L. Prediction of lncRNA-protein interactions using HeteSim scores based on heterogeneous networks. Sci. Rep., 2017, 7(1), 3664.
[http://dx.doi.org/10.1038/s41598-017-03986-1] [PMID: 28623317]
[24]
Zhang, H.; Ming, Z.; Fan, C.; Zhao, Q.; Liu, H. A path-based computational model for long non-coding RNA-protein interaction predic-tion. Genomics, 2020, 112(2), 1754-1760.
[http://dx.doi.org/10.1016/j.ygeno.2019.09.018] [PMID: 31639442]
[25]
Wang, J.; Zhao, Y.; Huang, X.; Shi, Y.; Tan, J. Recent advances in predicting ncRNA-protein interactions based on machine learning. Curr. Chinese Sci., 2021, 1(5), 513-522.
[http://dx.doi.org/10.2174/2210298101666210713120933]
[26]
Muppirala, U.K.; Honavar, V.G.; Dobbs, D. Predicting RNA-protein interactions using only sequence information. BMC Bioinformatics, 2011, 12(1), 489.
[http://dx.doi.org/10.1186/1471-2105-12-489] [PMID: 22192482]
[27]
Wang, Y.; Chen, X.; Liu, Z.P.; Huang, Q.; Wang, Y.; Xu, D.; Zhang, X.S.; Chen, R.; Chen, L. De novo prediction of RNA-protein interac-tions from sequence information. Mol. Biosyst., 2013, 9(1), 133-142.
[http://dx.doi.org/10.1039/C2MB25292A] [PMID: 23138266]
[28]
Lu, Q.; Ren, S.; Lu, M.; Zhang, Y.; Zhu, D.; Zhang, X.; Li, T. Computational prediction of associations between long non-coding RNAs and proteins. BMC Genomics, 2013, 14(1), 651.
[http://dx.doi.org/10.1186/1471-2164-14-651] [PMID: 24063787]
[29]
Suresh, V.; Liu, L.; Adjeroh, D.; Zhou, X. RPI-Pred: predicting ncRNA-protein interaction using sequence and structural information. Nucleic Acids Res., 2015, 43(3), 1370-1379.
[http://dx.doi.org/10.1093/nar/gkv020] [PMID: 25609700]
[30]
Akbaripour-Elahabad, M.; Zahiri, J.; Rafeh, R.; Eslami, M.; Azari, M. rpiCOOL: A tool for in silico RNA-protein interaction detection using random forest. J. Theor. Biol., 2016, 402, 1-8.
[http://dx.doi.org/10.1016/j.jtbi.2016.04.025] [PMID: 27134008]
[31]
Pan, X.; Fan, Y.X.; Yan, J.; Shen, H.B. IPMiner: hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction. BMC Genomics, 2016, 17(1), 582.
[http://dx.doi.org/10.1186/s12864-016-2931-8] [PMID: 27506469]
[32]
Yi, H.C.; You, Z.H.; Huang, D.S.; Li, X.; Jiang, T.H.; Li, L.P. A deep learning framework for robust and accurate prediction of ncRNA-Protein interactions using evolutionary information. Mol. Ther. Nucleic Acids, 2018, 11, 337-344.
[http://dx.doi.org/10.1016/j.omtn.2018.03.001] [PMID: 29858068]
[33]
Wang, J.; Zhao, Y.; Gong, W.; Liu, Y.; Wang, M.; Huang, X.; Tan, J. EDLMFC: an ensemble deep learning framework with multi-scale features combination for ncRNA-protein interaction prediction. BMC Bioinformatics, 2021, 22(1), 133.
[http://dx.doi.org/10.1186/s12859-021-04069-9] [PMID: 33740884]
[34]
Fan, X.; Zhang, S. LPI-BLS: Predicting lncRNA-protein interactions with a broad learning system-based stacked ensemble classifier. Neurocomputing, 2019, 370, 88-93.
[http://dx.doi.org/10.1016/j.neucom.2019.08.084]
[35]
Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; Dut-ta, S.; Feng, Z.; Ganesan, S.; Goodsell, D.S.; Ghosh, S.; Green, R.K.; Guranović, V.; Guzenko, D.; Hudson, B.P.; Lawson, C.L.; Liang, Y.; Lowe, R.; Namkoong, H.; Peisach, E.; Persikova, I.; Randle, C.; Rose, A.; Rose, Y.; Sali, A.; Segura, J.; Sekharan, M.; Shao, C.; Tao, Y.P.; Voigt, M.; Westbrook, J.D.; Young, J.Y.; Zardecki, C.; Zhuravleva, M. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res., 2021, 49(D1), D437-D451.
[http://dx.doi.org/10.1093/nar/gkaa1038] [PMID: 33211854]
[36]
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[37]
Coimbatore Narayanan, B.; Westbrook, J.; Ghosh, S.; Petrov, A.I.; Sweeney, B.; Zirbel, C.L.; Leontis, N.B.; Berman, H.M. The nucleic acid database: New features and capabilities. Nucleic Acids Res., 2014, 42, D114-D122.
[http://dx.doi.org/10.1093/nar/gkt980] [PMID: 24185695]
[38]
Lewis, B.A.; Walia, R.R.; Terribilini, M.; Ferguson, J.; Zheng, C.; Honavar, V.; Dobbs, D. PRIDB: A protein-RNA interface database. Nucleic Acids Res., 2011, 39, D277-D282.
[http://dx.doi.org/10.1093/nar/gkq1108] [PMID: 21071426]
[39]
Wu, T.; Wang, J.; Liu, C.; Zhang, Y.; Shi, B.; Zhu, X.; Zhang, Z.; Skogerbø, G.; Chen, L.; Lu, H.; Zhao, Y.; Chen, R. NPInter: The noncod-ing RNAs and protein related biomacromolecules interaction database. Nucleic Acids Res., 2006, 34, D150-D152.
[http://dx.doi.org/10.1093/nar/gkj025] [PMID: 16381834]
[40]
Betel, D.; Koppal, A.; Agius, P.; Sander, C.; Leslie, C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol., 2010, 11(8), R90.
[http://dx.doi.org/10.1186/gb-2010-11-8-r90] [PMID: 20799968]
[41]
Gong, J.; Shao, D.; Xu, K.; Lu, Z.; Lu, Z.J.; Yang, Y.T.; Zhang, Q.C. RISE: A database of RNA interactome from sequencing experiments. Nucleic Acids Res., 2018, 46(D1), D194-D201.
[http://dx.doi.org/10.1093/nar/gkx864] [PMID: 29040625]
[42]
Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; Yefanov, A.; Lee, H.; Zhang, N.; Robertson, C.L.; Serova, N.; Davis, S.; Soboleva, A. NCBI GEO: archive for functional genomics da-ta sets-update. Nucleic Acids Res., 2013, 41(Database issue), D991-D995.
[http://dx.doi.org/10.1093/nar/gks1193] [PMID: 23193258]
[43]
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489(7414), 57-74.
[http://dx.doi.org/10.1038/nature11247] [PMID: 22955616]
[44]
Zhao, L.; Wang, J.; Li, Y.; Song, T.; Wu, Y.; Fang, S.; Bu, D.; Li, H.; Sun, L.; Pei, D.; Zheng, Y.; Huang, J.; Xu, M.; Chen, R.; Zhao, Y.; He, S. NONCODEV6: an updated database dedicated to long non-coding RNA annotation in both animals and plants. Nucleic Acids Res., 2021, 49(D1), D165-D171.
[http://dx.doi.org/10.1093/nar/gkaa1046] [PMID: 33196801]
[45]
Lin, Y.; Liu, T.; Cui, T.; Wang, Z.; Zhang, Y.; Tan, P.; Huang, Y.; Yu, J.; Wang, D. RNAInter in 2020: RNA interactome repository with increased coverage and annotation. Nucleic Acids Res., 2020, 48(D1), D189-D197.
[http://dx.doi.org/10.1093/nar/gkz804] [PMID: 31906603]
[46]
Yi, Y.; Zhao, Y.; Li, C.; Zhang, L.; Huang, H.; Li, Y.; Liu, L.; Hou, P.; Cui, T.; Tan, P.; Hu, Y.; Zhang, T.; Huang, Y.; Li, X.; Yu, J.; Wang, D. RAID v2.0: An updated resource of RNA-associated interactions across organisms. Nucleic Acids Res., 2017, 45(D1), D115-D118.
[http://dx.doi.org/10.1093/nar/gkw1052] [PMID: 27899615]
[47]
Ramaswami, G.; Li, J.B. RADAR: A rigorously annotated database of A-to-I RNA editing. Nucleic Acids Res., 2014, 42, D109-D113.
[http://dx.doi.org/10.1093/nar/gkt996] [PMID: 24163250]
[48]
Cui, T.; Dou, Y.; Tan, P.; Ni, Z.; Liu, T.; Wang, D.; Huang, Y.; Cai, K.; Zhao, X.; Xu, D.; Lin, H.; Wang, D. RNALocate v2.0: an updated resource for RNA subcellular localization with increased coverage and annotation. Nucleic Acids Res., 2021, 2021, b825.
[http://dx.doi.org/10.1093/nar/gkab825] [PMID: 34551440]
[49]
Xuan, J.J.; Sun, W.J.; Lin, P.H.; Zhou, K.R.; Liu, S.; Zheng, L.L.; Qu, L.H.; Yang, J.H. RMBase v2.0: deciphering the map of RNA modifi-cations from epitranscriptome sequencing data. Nucleic Acids Res., 2018, 46(D1), D327-D334.
[http://dx.doi.org/10.1093/nar/gkx934] [PMID: 29040692]
[50]
Li, J.H.; Liu, S.; Zheng, L.L.; Wu, J.; Sun, W.J.; Wang, Z.L.; Zhou, H.; Qu, L.H.; Yang, J.H. Discovery of protein-lncRNA interactions by integrating large-scale CLIP-Seq and RNA-Seq datasets. Front. Bioeng. Biotechnol., 2015, 2, 88.
[http://dx.doi.org/10.3389/fbioe.2014.00088] [PMID: 25642422]
[51]
Bellucci, M.; Agostini, F.; Masin, M.; Tartaglia, G.G. Predicting protein associations with long noncoding RNAs. Nat. Methods, 2011, 8(6), 444-445.
[http://dx.doi.org/10.1038/nmeth.1611] [PMID: 21623348]
[52]
Zhou, Y.K.; Shen, Z.A.; Yu, H.; Luo, T.; Gao, Y.; Du, P.F. Predicting lncRNA-Protein interactions with miRNAs as mediators in a hetero-geneous network model. Front. Genet., 2020, 10, 1341.
[http://dx.doi.org/10.3389/fgene.2019.01341] [PMID: 32038709]
[53]
Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res., 2019, 47(D1), D155-D162.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[54]
Licatalosi, D.D.; Mele, A.; Fak, J.J.; Ule, J.; Kayikci, M.; Chi, S.W.; Clark, T.A.; Schweitzer, A.C.; Blume, J.E.; Wang, X.; Darnell, J.C.; Darnell, R.B. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature, 2008, 456(7221), 464-469.
[http://dx.doi.org/10.1038/nature07488] [PMID: 18978773]
[55]
Van Nostrand, E.L.; Pratt, G.A.; Shishkin, A.A.; Gelboin-Burkhart, C.; Fang, M.Y.; Sundararaman, B.; Blue, S.M.; Nguyen, T.B.; Surka, C.; Elkins, K.; Stanton, R.; Rigo, F.; Guttman, M.; Yeo, G.W. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods, 2016, 13(6), 508-514.
[http://dx.doi.org/10.1038/nmeth.3810] [PMID: 27018577]
[56]
Cheng, Z.; Huang, K.; Wang, Y.; Liu, H.; Guan, J.; Zhou, S. Selecting high-quality negative samples for effectively predicting protein-RNA interactions. BMC Syst. Biol., 2017, 11(S2), 9.
[http://dx.doi.org/10.1186/s12918-017-0390-8] [PMID: 28361676]
[57]
Bateman, A.; Martin, M.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bursteinas, B.; Bye-A-Jee, H.; Coetzee, R.; Cukura, A.; Da Silva, A.; Denny, P.; Dogan, T.; Ebenezer, T.; Fan, J.; Castro, L.G.; Garmiri, P.; Georghiou, G.; Gonzales, L.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Jokinen, P.; Joshi, V.; Jyothi, D.; Lock, A.; Lopez, R.; Luciani, A.; Luo, J.; Lussi, Y.; Mac-Dougall, A.; Madeira, F.; Mahmoudy, M.; Menchi, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Oliveira, C.S.; Pundir, S.; Qi, G.; Raj, S.; Rice, D.; Lopez, M.R.; Saidi, R.; Sampson, J.; Sawford, T.; Speretta, E.; Turner, E.; Tyagi, N.; Vasudev, P.; Volynkin, V.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Bridge, A.; Poux, S.; Redaschi, N.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.; Axelsen, K.; Bansal, P.; Baratin, D.; Blatter, M-C.; Bolleman, J.; Boutet, E.; Breuza, L.; Casals-Casas, C.; de Castro, E.; Echioukh, K.C.; Coudert, E.; Cuche, B.; Doche, M.; Dornevil, D.; Estreicher, A.; Famiglietti, M.L.; Feuermann, M.; Gasteiger, E.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz-Gumowski, N.; Hinz, U.; Hulo, C.; Hyka-Nouspikel, N.; Jungo, F.; Keller, G.; Kerhornou, A.; Lara, V.; Le Mercier, P.; Lieberherr, D.; Lombardot, T.; Martin, X.; Masson, P.; Morgat, A.; Neto, T.B.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pour-cel, L.; Pozzato, M.; Pruess, M.; Rivoire, C.; Sigrist, C.; Sonesson, K.; Stutz, A.; Sundaram, S.; Tognolli, M.; Verbregue, L.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Garavelli, J.S.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y.; Yeh, L-S.; Zhang, J.; Ruch, P.; Teodoro, D. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res., 2021, 49(D1), D480-D489.
[http://dx.doi.org/10.1093/nar/gkaa1100] [PMID: 33237286]
[58]
Blake, J.A.; Dolan, M.; Drabkin, H.; Hill, D.P.; Li, N.; Sitnikov, D.; Bridges, S.; Burgess, S.; Buza, T.; McCarthy, F.; Peddinti, D.; Pillai, L.; Carbon, S.; Dietze, H.; Ireland, A.; Lewis, S.E.; Mungall, C.J.; Gaudet, P.; Chrisholm, R.L.; Fey, P.; Kibbe, W.A.; Basu, S.; Siegele, D.A.; McIntosh, B.K.; Renfro, D.P.; Zweifel, A.E.; Hu, J.C.; Brown, N.H.; Tweedie, S.; Alam-Faruque, Y.; Apweiler, R.; Auchinchloss, A.; Axel-sen, K.; Bely, B.; Blatter, M.; Bonilla, C.; Bouguerleret, L.; Boutet, E.; Breuza, L.; Bridge, A.; Chan, W.M.; Chavali, G.; Coudert, E.; Dim-mer, E.; Estreicher, A.; Famiglietti, L.; Feuermann, M.; Gos, A.; Gruaz-Gumowski, N.; Hieta, R.; Hinz, C.; Hulo, C.; Huntley, R.; James, J.; Jungo, F.; Keller, G.; Laiho, K.; Legge, D.; Lemercier, P.; Lieberherr, D.; Magrane, M.; Martin, M.J.; Masson, P.; Mutowo-Muellenet, P.; O’Donovan, C.; Pedruzzi, I.; Pichler, K.; Poggioli, D.; Porras Millán, P.; Poux, S.; Rivoire, C.; Roechert, B.; Sawford, T.; Schneider, M.; Stutz, A.; Sundaram, S.; Tognolli, M.; Xenarios, I.; Foulgar, R.; Lomax, J.; Roncaglia, P.; Khodiyar, V.K.; Lovering, R.C.; Talmud, P.J.; Chibucos, M.; Giglio, M.G.; Chang, H. -; Hunter, S.; McAnulla, C.; Mitchell, A.; Sangrador, A.; Stephan, R.; Harris, M.A.; Oliver, S.G.; Rutherford, K.; Wood, V.; Bahler, J.; Lock, A.; Kersey, P.J.; McDowall, D.M.; Staines, D.M.; Dwinell, M.; Shimoyama, M.; Laulederkind, S.; Hayman, T.; Wang, S-; Petri, V.; Lowry, T.; D’Eustachio, P.; Matthews, L.; Balakrishnan, R.; Binkley, G.; Cherry, J.M.; Costanzo, M.C.; Dwight, S.S.; Engel, S.R.; Fisk, D.G.; Hitz, B.C.; Hong, E.L.; Karra, K.; Miyasato, S.R.; Nash, R.S.; Park, J.; Skrzypek, M.S.; Weng, S.; Wong, E.D.; Berardini, T.Z.; Huala, E.; Mi, H.; Thomas, P.D.; Chan, J.; Kishore, R.; Sternberg, P.; Van Auken, K.; Howe, D.; Wester-field, M. Gene Ontology annotations and resources. Nucleic Acids Res., 2013, 41, D530-D535.
[http://dx.doi.org/10.1093/nar/gks1050] [PMID: 23161678]
[59]
Pundir, S.; Martin, M.J.; O’Donovan, C. UniProt Tools. Curr. Protoc. Bioinf., 2016, 53(1), 29.1-, 15.
[http://dx.doi.org/10.1002/0471250953.bi0129s53] [PMID: 27010333]
[60]
Sayers, E.W.; Beck, J.; Brister, J.R.; Bolton, E.E.; Canese, K.; Comeau, D.C.; Funk, K.; Ketter, A.; Kim, S.; Kimchi, A.; Kitts, P.A.; Kuz-netsov, A.; Lathrop, S.; Lu, Z.; McGarvey, K.; Madden, T.L.; Murphy, T.D.; O’Leary, N.; Phan, L.; Schneider, V.A.; Thibaud-Nissen, F.; Trawick, B.W.; Pruitt, K.D.; Ostell, J. Database resources of the national center for biotechnology information. Nucleic Acids Res., 2020, 48(D1), D9-D16.
[http://dx.doi.org/10.1093/nar/gkz899] [PMID: 31602479]
[61]
Yates, A.D.; Achuthan, P.; Akanni, W.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; Bhai, J.; Billis, K.; Boddu, S.; Marugán, J.C.; Cummins, C.; Davidson, C.; Dodiya, K.; Fatima, R.; Gall, A.; Giron, C.G.; Gil, L.; Grego, T.; Haggerty, L.; Haskell, E.; Hourlier, T.; Izuogu, O.G.; Janacek, S.H.; Juettemann, T.; Kay, M.; Lavidas, I.; Le, T.; Lemos, D.; Martinez, J.G.; Maurel, T.; McDowall, M.; McMahon, A.; Mohanan, S.; Moore, B.; Nuhn, M.; Oheh, D.N.; Parker, A.; Parton, A.; Patricio, M.; Sakthivel, M.P.; Abdul Salam, A.I.; Schmitt, B.M.; Schuilenburg, H.; Sheppard, D.; Sycheva, M.; Szuba, M.; Taylor, K.; Thormann, A.; Threadgold, G.; Vullo, A.; Walts, B.; Winterbottom, A.; Zadissa, A.; Chakiachvili, M.; Flint, B.; Frankish, A.; Hunt, S.E. IIsley, G.; Kostadima, M.; Langridge, N.; Loveland, J.E.; Martin, F.J.; Morales, J.; Mudge, J.M.; Muffato, M.; Perry, E.; Ruffier, M.; Trevanion, S.J.; Cunningham, F.; Howe, K.L.; Zerbino, D.R.; Flicek, P. Ensembl 2020. Nucleic Acids Res., 2020, 48(D1), D682-D688.
[http://dx.doi.org/10.1093/nar/gkz966] [PMID: 31691826]
[62]
Lecca, D.; Marangon, D.; Coppolino, G.T.; Méndez, A.M.; Finardi, A.; Costa, G.D.; Martinelli, V.; Furlan, R.; Abbracchio, M.P. MiR-125a-3p timely inhibits oligodendroglial maturation and is pathologically up-regulated in human multiple sclerosis. Sci. Rep., 2016, 6(1), 34503.
[http://dx.doi.org/10.1038/srep34503] [PMID: 27698367]
[63]
Vallejo, A.; Perurena, N.; Guruceaga, E.; Mazur, P.K.; Martinez-Canarias, S.; Zandueta, C.; Valencia, K.; Arricibita, A.; Gwinn, D.; Sayles, L.C.; Chuang, C.H.; Guembe, L.; Bailey, P.; Chang, D.K.; Biankin, A.; Ponz-Sarvise, M.; Andersen, J.B.; Khatri, P.; Bozec, A.; Sweet-Cordero, E.A.; Sage, J.; Lecanda, F.; Vicent, S. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. Nat. Commun., 2017, 8(1), 14294.
[http://dx.doi.org/10.1038/ncomms14294] [PMID: 28220783]
[64]
Dadi, H.; Jones, T.A.; Merico, D.; Sharfe, N.; Ovadia, A.; Schejter, Y.; Reid, B.; Sun, M.; Vong, L.; Atkinson, A.; Lavi, S.; Pomerantz, J.L.; Roifman, C.M. Combined immunodeficiency and atopy caused by a dominant negative mutation in caspase activation and recruitment domain family member 11 (CARD11). J. Allergy Clin. Immunol., 2018, 141(5), 1818-1830.e2.
[http://dx.doi.org/10.1016/j.jaci.2017.06.047] [PMID: 28826773]
[65]
Zeng, T.; Zhang, W.; Yu, X.; Liu, X.; Li, M.; Chen, L. Big-data-based edge biomarkers: study on dynamical drug sensitivity and resistance in individuals. Brief. Bioinform., 2016, 17(4), 576-592.
[http://dx.doi.org/10.1093/bib/bbv078] [PMID: 26411472]
[66]
Tassy, O.; Pourquié, O. Manteia, a predictive data mining system for vertebrate genes and its applications to human genetic diseases. Nucleic Acids Res., 2014, 42, D882-D891.
[http://dx.doi.org/10.1093/nar/gkt807] [PMID: 24038354]
[67]
Zhang, W.; Yue, X.; Tang, G.; Wu, W.; Huang, F.; Zhang, X. SFPEL-LPI: Sequence-based feature projection ensemble learning for predict-ing LncRNA-protein interactions. PLOS Comput. Biol., 2018, 14(12), e1006616.
[http://dx.doi.org/10.1371/journal.pcbi.1006616] [PMID: 30533006]
[68]
Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richard-son, L.J.; Finn, R.D.; Bateman, A. Pfam: The protein families database in 2021. Nucleic Acids Res., 2021, 49(D1), D412-D419.
[http://dx.doi.org/10.1093/nar/gkaa913] [PMID: 33125078]
[69]
Mitchell, A.L.; Attwood, T.K.; Babbitt, P.C.; Blum, M.; Bork, P.; Bridge, A.; Brown, S.D.; Chang, H.Y.; El-Gebali, S.; Fraser, M.I.; Gough, J.; Haft, D.R.; Huang, H.; Letunic, I.; Lopez, R.; Luciani, A.; Madeira, F.; Marchler-Bauer, A.; Mi, H.; Natale, D.A.; Necci, M.; Nuka, G.; Orengo, C.; Pandurangan, A.P.; Paysan-Lafosse, T.; Pesseat, S.; Potter, S.C.; Qureshi, M.A.; Rawlings, N.D.; Redaschi, N.; Richardson, L.J.; Rivoire, C.; Salazar, G.A.; Sangrador-Vegas, A.; Sigrist, C.J.A.; Sillitoe, I.; Sutton, G.G.; Thanki, N.; Thomas, P.D.; Tosatto, S.C.E.; Yong, S.Y.; Finn, R.D. InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res., 2019, 47(D1), D351-D360.
[http://dx.doi.org/10.1093/nar/gky1100] [PMID: 30398656]
[70]
Wekesa, J.S.; Meng, J.; Luan, Y. Multi-feature fusion for deep learning to predict plant lncRNA-protein interaction. Genomics, 2020, 112(5), 2928-2936.
[http://dx.doi.org/10.1016/j.ygeno.2020.05.005] [PMID: 32437848]
[71]
Zhang, S.W.; Zhang, X.X.; Fan, X.N.; Li, W.N. LPI-CNNCP: Prediction of lncRNA-protein interactions by using convolutional neural net-work with the copy-padding trick. Anal. Biochem., 2020, 601, 113767.
[http://dx.doi.org/10.1016/j.ab.2020.113767] [PMID: 32454029]
[72]
Cheng, S.; Zhang, L.; Tan, J.; Gong, W.; Li, C.; Zhang, X. DM-RPIs: Predicting ncRNA-protein interactions using stacked ensembling strat-egy. Comput. Biol. Chem., 2019, 83, 107088.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.107088] [PMID: 31330489]
[73]
Peng, C.; Han, S.; Zhang, H.; Li, Y. RPITER: A hierarchical deep learning framework for ncRNA-Protein interaction prediction. Int. J. Mol. Sci., 2019, 20(5), 1070.
[http://dx.doi.org/10.3390/ijms20051070] [PMID: 30832218]
[74]
Hu, H.; Zhang, L.; Ai, H.; Zhang, H.; Fan, Y.; Zhao, Q.; Liu, H. HLPI-Ensemble: Prediction of human lncRNA-protein interactions based on ensemble strategy. RNA Biol., 2018, 15(6), 797-806.
[http://dx.doi.org/10.1080/15476286.2018.1457935] [PMID: 29583068]
[75]
Liu, Z.P.; Wu, L.Y.; Wang, Y.; Zhang, X.S.; Chen, L. Prediction of protein-RNA binding sites by a random forest method with combined features. Bioinformatics, 2010, 26(13), 1616-1622.
[http://dx.doi.org/10.1093/bioinformatics/btq253] [PMID: 20483814]
[76]
Magnan, C.N.; Baldi, P. SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity. Bioinformatics, 2014, 30(18), 2592-2597.
[http://dx.doi.org/10.1093/bioinformatics/btu352] [PMID: 24860169]
[77]
Heffernan, R.; Yang, Y.; Paliwal, K.; Zhou, Y. Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility. Bioinformatics, 2017, 33(18), 2842-2849.
[http://dx.doi.org/10.1093/bioinformatics/btx218] [PMID: 28430949]
[78]
Singh, J.; Hanson, J.; Paliwal, K.; Zhou, Y. RNA secondary structure prediction using an ensemble of two-dimensional deep neural net-works and transfer learning. Nat. Commun., 2019, 10(1), 5407.
[http://dx.doi.org/10.1038/s41467-019-13395-9] [PMID: 31776342]
[79]
Lorenz, R.; Bernhart, S.H.; Höner Zu Siederdissen, C.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA package 2.0. Algorithms Mol. Biol., 2011, 6(1), 26.
[http://dx.doi.org/10.1186/1748-7188-6-26] [PMID: 22115189]
[80]
Kawashima, S.; Pokarowski, P.; Pokarowska, M.; Kolinski, A.; Katayama, T.; Kanehisa, M. AAindex: Amino acid index database, pro-gress report 2008. Nucleic Acids Res., 2007, 36, D202-D205.
[http://dx.doi.org/10.1093/nar/gkm998] [PMID: 17998252]
[81]
Goto, S. DBGET/LinkDB: An integrated database retrieval system for molecular biology. Trends Glycosci. Glycotechnol., 2000, 12(63), 51-58.
[http://dx.doi.org/10.4052/tigg.12.51]
[82]
Liu, B.; Liu, F.; Wang, X.; Chen, J.; Fang, L.; Chou, K.C. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res., 2015, 43(W1), W65-71.
[http://dx.doi.org/10.1093/nar/gkv458] [PMID: 25958395]
[83]
Sun, X.; Jin, T.; Chen, C.; Cui, X.; Ma, Q.; Yu, B. RBPro-RF: Use Chou’s 5-steps rule to predict RNA-binding proteins via random forest with elastic net. Chemom. Intell. Lab. Syst., 2020, 197, 103919.
[http://dx.doi.org/10.1016/j.chemolab.2019.103919]
[84]
Pan, X.; Shen, H.B. Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural net-works. Bioinformatics, 2018, 34(20), 3427-3436.
[http://dx.doi.org/10.1093/bioinformatics/bty364] [PMID: 29722865]
[85]
Pandurangan, A.P.; Stahlhacke, J.; Oates, M.E.; Smithers, B.; Gough, J. The SUPERFAMILY 2.0 database: A significant proteome update and a new webserver. Nucleic Acids Res., 2019, 47(D1), D490-D494.
[http://dx.doi.org/10.1093/nar/gky1130] [PMID: 30445555]
[86]
Fox, N.K.; Brenner, S.E.; Chandonia, J.M. SCOPe: Structural Classification of Proteins--extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res., 2014, 42, D304-D309.
[http://dx.doi.org/10.1093/nar/gkt1240] [PMID: 24304899]
[87]
Dawson, N.L.; Lewis, T.E.; Das, S.; Lees, J.G.; Lee, D.; Ashford, P.; Orengo, C.A.; Sillitoe, I. CATH: an expanded resource to predict protein function through structure and sequence. Nucleic Acids Res., 2017, 45(D1), D289-D295.
[http://dx.doi.org/10.1093/nar/gkw1098] [PMID: 27899584]
[88]
Cheng, H.; Schaeffer, R.D.; Liao, Y.; Kinch, L.N.; Pei, J.; Shi, S.; Kim, B.H.; Grishin, N.V. ECOD: An evolutionary classification of pro-tein domains. PLOS Comput. Biol., 2014, 10(12), e1003926.
[http://dx.doi.org/10.1371/journal.pcbi.1003926] [PMID: 25474468]
[89]
Zhou, Y.K.; Hu, J.; Shen, Z.A.; Zhang, W.Y.; Du, P.F. LPI-SKF: Predicting lncRNA-protein interactions using similarity Kernel Fusions. Front. Genet., 2020, 11, 615144.
[http://dx.doi.org/10.3389/fgene.2020.615144] [PMID: 33362868]
[90]
Bairoch, A.; Apweiler, R. The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1998. Nucleic Acids Res., 1998, 26(1), 38-42.
[http://dx.doi.org/10.1093/nar/26.1.38] [PMID: 9399796]
[91]
Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new gen-eration of protein database search programs. Nucleic Acids Res., 1997, 25(17), 3389-3402.
[http://dx.doi.org/10.1093/nar/25.17.3389] [PMID: 9254694]
[92]
Wang, L.; Brown, S.J. BindN: a web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences. Nucleic Acids Res., 2006, 34, W243-W248.
[http://dx.doi.org/10.1093/nar/gkl298] [PMID: 16845003]
[93]
Cheng, C.; Su, E.C.; Hwang, J.; Sung, T.; Hsu, W. Predicting RNA-binding sites of proteins using support vector machines and evolution-ary information. BMC Bioinformatics, 2008, 9(Suppl. 12), S6.
[http://dx.doi.org/10.1186/1471-2105-9-S12-S6] [PMID: 19091029]
[94]
Zhan, Z.H.; You, Z.H.; Li, L.P.; Zhou, Y.; Yi, H.C. Accurate prediction of ncRNA-Protein interactions from the integration of sequence and evolutionary information. Front. Genet., 2018, 9, 458.
[http://dx.doi.org/10.3389/fgene.2018.00458] [PMID: 30349558]
[95]
Wang, L.; Yan, X.; Liu, M.L.; Song, K.J.; Sun, X.F.; Pan, W.W. Prediction of RNA-protein interactions by combining deep convolutional neural network with feature selection ensemble method. J. Theor. Biol., 2019, 461, 230-238.
[http://dx.doi.org/10.1016/j.jtbi.2018.10.029] [PMID: 30321541]
[96]
Zhan, Z.H.; Jia, L.N.; Zhou, Y.; Li, L.P.; Yi, H.C. BGFE: A deep learning model for ncRNA-Protein interaction predictions based on im-proved sequence information. Int. J. Mol. Sci., 2019, 20(4), 978.
[http://dx.doi.org/10.3390/ijms20040978] [PMID: 30813451]
[97]
Karuppasamy, M.P.; Venkateswaran, S.; Subbiah, P. PDB-2-PBv3.0: An updated protein block database. J. Bioinform. Comput. Biol., 2020, 18(2), 2050009.
[http://dx.doi.org/10.1142/S0219720020500092] [PMID: 32404014]
[98]
Offmann, B.; Tyagi, M.; de Brevern, A.G. Local protein structures. Curr. Bioinform., 2007, 2(3), 165-202.
[http://dx.doi.org/10.2174/157489307781662105]
[99]
Frankish, A.; Diekhans, M.; Jungreis, I.; Lagarde, J.; Loveland, J.E.; Mudge, J.M.; Sisu, C.; Wright, J.C.; Armstrong, J.; Barnes, I.; Berry, A.; Bignell, A.; Boix, C.; Carbonell Sala, S.; Cunningham, F.; Di Domenico, T.; Donaldson, S.; Fiddes, I.T.; García Girón, C.; Gonzalez, J.M.; Grego, T.; Hardy, M.; Hourlier, T.; Howe, K.L.; Hunt, T.; Izuogu, O.G.; Johnson, R.; Martin, F.J.; Martínez, L.; Mohanan, S.; Muir, P.; Navarro, F.C.P.; Parker, A.; Pei, B.; Pozo, F.; Riera, F.C.; Ruffier, M.; Schmitt, B.M.; Stapleton, E.; Suner, M.M.; Sycheva, I. Uszczyn-ska-Ratajczak, B.; Wolf, M.Y.; Xu, J.; Yang, Y.T.; Yates, A.; Zerbino, D.; Zhang, Y.; Choudhary, J.S.; Gerstein, M.; Guigó, R.; Hubbard, T.J.P.; Kellis, M.; Paten, B.; Tress, M.L.; Flicek, P. GENCODE 2021. Nucleic Acids Res., 2021, 49(D1), D916-D923.
[http://dx.doi.org/10.1093/nar/gkaa1087] [PMID: 33270111]
[100]
Lee, C.M.; Barber, G.P.; Casper, J.; Clawson, H.; Diekhans, M.; Gonzalez, J.N.; Hinrichs, A.S.; Lee, B.T.; Nassar, L.R.; Powell, C.C.; Raney, B.J.; Rosenbloom, K.R.; Schmelter, D.; Speir, M.L.; Zweig, A.S.; Haussler, D.; Haeussler, M.; Kuhn, R.M.; Kent, W.J. UCSC ge-nome browser enters 20th year. Nucleic Acids Res., 2020, 48(D1), D756-D761.
[http://dx.doi.org/10.1093/nar/gkz1012] [PMID: 31691824]
[101]
Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Hüttenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Meyer, B.; Roesch, F.; Vallet, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C.J.P.; Peri-ca, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Rakesh, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X.P.; Liu, Y.; Wankowicz, S.A.; Bohn, M.; Safari, M.; Ugur, F.S.; Koh, C.; Savar, N.S.; Tran, Q.D.; Shengjuler, D.; Fletch-er, S.J.; O’Neal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S.; Sharp, P.P.; Wenzell, N.A.; Kuzuoglu-Ozturk, D.; Wang, H.Y.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R.M.; Frankel, A.D.; Rosenberg, O.S.; Verba, K.A.; Agard, D.A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; d’Enfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fujimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.N.; Fraser, J.S.; Gross, J.D.; Sali, A.; Roth, B.L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; García-Sastre, A.; Shokat, K.M.; Shoichet, B.K.; Krogan, N.J.A. SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583(7816), 459-468.
[http://dx.doi.org/10.1038/s41586-020-2286-9] [PMID: 32353859]
[102]
Yi, H.C.; You, Z.H.; Cheng, L.; Zhou, X.; Jiang, T.H.; Li, X.; Wang, Y.B. Learning distributed representations of RNA and protein se-quences and its application for predicting lncRNA-protein interactions. Comput. Struct. Biotechnol. J., 2019, 18, 20-26.
[http://dx.doi.org/10.1016/j.csbj.2019.11.004] [PMID: 31890140]
[103]
Pan, X.; Rijnbeek, P.; Yan, J.; Shen, H.B. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks. BMC Genomics, 2018, 19(1), 511.
[http://dx.doi.org/10.1186/s12864-018-4889-1] [PMID: 29970003]
[104]
Pan, X.; Shen, H.B. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration ap-proach. BMC Bioinformatics, 2017, 18(1), 136.
[http://dx.doi.org/10.1186/s12859-017-1561-8] [PMID: 28245811]
[105]
Armaos, A.; Colantoni, A.; Proietti, G.; Rupert, J.; Tartaglia, G.G. catRAPID omics v2.0: going deeper and wider in the prediction of pro-tein-RNA interactions. Nucleic Acids Res., 2021, 49(W1), W72-W79.
[http://dx.doi.org/10.1093/nar/gkab393] [PMID: 34086933]
[106]
Zhao, W.; Zhang, S.; Zhu, Y.; Xi, X.; Bao, P.; Ma, Z.; Kapral, T.H.; Chen, S.; Zagrovic, B.; Yang, Y.T.; Lu, Z.J. POSTAR3: An updated platform for exploring post-transcriptional regulation coordinated by RNA-binding proteins. Nucleic Acids Res., 2021, 2021, gkab702.
[http://dx.doi.org/10.1093/nar/gkab702] [PMID: 34403477]
[107]
Ray, D.; Kazan, H.; Cook, K.B.; Weirauch, M.T.; Najafabadi, H.S.; Li, X.; Gueroussov, S.; Albu, M.; Zheng, H.; Yang, A.; Na, H.; Irimia, M.; Matzat, L.H.; Dale, R.K.; Smith, S.A.; Yarosh, C.A.; Kelly, S.M.; Nabet, B.; Mecenas, D.; Li, W.; Laishram, R.S.; Qiao, M.; Lipshitz, H.D.; Piano, F.; Corbett, A.H.; Carstens, R.P.; Frey, B.J.; Anderson, R.A.; Lynch, K.W.; Penalva, L.O.F.; Lei, E.P.; Fraser, A.G.; Blencowe, B.J.; Morris, Q.D.; Hughes, T.R. A compendium of RNA-binding motifs for decoding gene regulation. Nature, 2013, 499(7457), 172-177.
[http://dx.doi.org/10.1038/nature12311] [PMID: 23846655]
[108]
Li, J.H.; Liu, S.; Zhou, H.; Qu, L.H.; Yang, J.H. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res., 2014, 42, D92-D97.
[http://dx.doi.org/10.1093/nar/gkt1248] [PMID: 24297251]
[109]
Liu, H.; Ren, G.; Hu, H.; Zhang, L.; Ai, H.; Zhang, W.; Zhao, Q. LPI-NRLMF: lncRNA-protein interaction prediction by neighborhood regularized logistic matrix factorization. Oncotarget, 2017, 8(61), 103975-103984.
[http://dx.doi.org/10.18632/oncotarget.21934] [PMID: 29262614]
[110]
Zhao, Q.; Zhang, Y.; Hu, H.; Ren, G.; Zhang, W.; Liu, H. IRWNRLPI: Integrating random walk and neighborhood regularized logistic ma-trix factorization for lncRNA-protein interaction prediction. Front. Genet., 2018, 9, 239.
[http://dx.doi.org/10.3389/fgene.2018.00239] [PMID: 30023002]
[111]
Zhang, T.; Wang, M.; Xi, J.; Li, A. LPGNMF: Predicting long non-coding RNA and protein interaction using graph regularized nonnegative matrix factorization. IEEE/ACM Trans. Comput. Biol. Bioinf., 2020, 17(1), 189-197.
[http://dx.doi.org/10.1109/TCBB.2018.2861009] [PMID: 30059315]
[112]
Yu, H.; Shen, Z.; Du, P. NPI-RGCNAE: Fast predicting ncRNA-protein interactions using the relational graph convolutional network auto-encoder; IEEE J. Biomed Health, 2021. [epub ahead of print
[http://dx.doi.org/10.1109/JBHI.2021.3122527] [PMID: 34699377]
[113]
Shen, Z.A.; Luo, T.; Zhou, Y.K.; Yu, H.; Du, P.F. NPI-GNN: Predicting ncRNA-protein interactions with deep graph neural networks. Brief. Bioinform., 2021, 22(5), b51.
[http://dx.doi.org/10.1093/bib/bbab051] [PMID: 33822882]
[114]
Zhang, H.; Liang, Y.; Han, S.; Peng, C.; Li, Y. Long noncoding RNA and protein interactions: From experimental results to computational models based on network methods. Int. J. Mol. Sci., 2019, 20(6), 1284.
[http://dx.doi.org/10.3390/ijms20061284] [PMID: 30875752]
[115]
Zheng, X.; Wang, Y.; Tian, K.; Zhou, J.; Guan, J.; Luo, L.; Zhou, S. Fusing multiple protein-protein similarity networks to effectively pre-dict lncRNA-protein interactions. BMC Bioinformatics, 2017, 18(Suppl. 12), 420.
[http://dx.doi.org/10.1186/s12859-017-1819-1] [PMID: 29072138]
[116]
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]