A Smart Hydrogel from Salvia spinosa Seeds: pH Responsiveness, On-off Switching, Sustained Drug Release, and Transit Detection

Page: [292 - 305] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: The use of synthetic and semi-synthetic materials in drug delivery systems has associated drawbacks like costly synthesis, toxicity, and biocompatibility issues. Therefore, there is a need to introduce novel materials to overcome such issues. Naturally occurring and water-swellable polysaccharides are advantageous in overcoming the above-mentioned issues. Therefore, we are reporting a novel hydrogel (SSH) isolated from the seeds of Salvia spinosa as a sustained release material.

Methods: SSH was explored for its pH-dependent and salt-responsive swelling before and after compression in a tablet form. Stimuli-responsive swelling and deswelling were also monitored at pH 7.4 and pH 1.2 in deionized water (DW) and normal saline and DW and ethanol. The sustained-release potential of SSH-based tablets was monitored at gastrointestinal tract (GIT) pH. The transit of SSH tablets was ascertained through an X-ray study.

Results: The swelling of SSH in powder and tablet form was found in the order of DW > pH 7.4 > pH 6.8 > pH 1.2. An inverse relation was found between the swelling of SSH and the concentration of the salt solution. The SSH showed stimuli-responsive swelling and de-swelling before and after compression, indicating the unaltered nature of SSH even in a closely packed form, i.e., tablets. Sustained release of theophylline (< 80%) was witnessed at pH 6.8 and 7.4 during the 12 h study following zeroorder kinetics, and radiographic images also showed 9 h retention in GIT.

Conclusion: These investigations showed the potential of SSH as a pH-sensitive material for sustained and targeted drug delivery.

Keywords: Polysaccharides, stimuli-responsiveness, pH-sensitivity, sustained release, smart hydrogel, Kanocha mucilage, Salvia spinosa hydrogel.

Graphical Abstract

[1]
Zhu, H.; Luo, W.; Ciesielski, P.N.; Fang, Z.; Zhu, J.Y.; Henriksson, G.; Himmel, M.E.; Hu, L. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev., 2016, 116(16), 9305-9374.
[http://dx.doi.org/10.1021/acs.chemrev.6b00225] [PMID: 27459699]
[2]
Mohammadinejad, R.; Karimi, S.; Iravani, S.; Verma, R.S. Plant-derived nanostructures: Types and applications. Green Chem., 2016, 18(1), 20-52.
[http://dx.doi.org/10.1039/C5GC01403D]
[3]
Abuajah, C.I.; Ogbonna, A.C.; Osuji, C.M. Functional components and medicinal properties of food: A review. J. Food Sci. Technol., 2015, 52(5), 2522-2529.
[http://dx.doi.org/10.1007/s13197-014-1396-5] [PMID: 25892752]
[4]
Hussain, M.A.; Muhammad, G.; Haseeb, M.T.; Tahir, M.N. Quince seed mucilage: A stimuli-responsive/smart biopolymer. In: Functional Biopolymers. Polymers and Polymeric Composites: A Reference Series; Jafar Mazumder, M.; Sheardown, H.; Al-Ahmed, A., Eds.; Springer: Cham, Switzerland, 2019; pp. 127-148.
[5]
Huang, G.; Mei, X.; Hu, J. The antioxidant activities of natural polysaccharides. Curr. Drug Targets, 2017, 18(11), 1296-1300.
[http://dx.doi.org/10.2174/1389450118666170123145357] [PMID: 28117001]
[6]
Hussain, M.A.; Muhammad, G.; Jantan, I.; Bukhari, S.N.A. Psyllium arabinoxylan: A versatile biomaterial for potential medicinal and pharmaceutical applications. Polym. Rev. (Phila. Pa.), 2016, 56(1), 1-30.
[http://dx.doi.org/10.1080/15583724.2015.1078351]
[7]
Chen, L.; Huang, G. Antitumor activity of polysaccharides: An overview. Curr. Drug Targets, 2018, 19(1), 89-96.
[http://dx.doi.org/10.2174/1389450118666170704143018] [PMID: 28676001]
[8]
Huang, G.; Mei, X.; Xiao, F.; Chen, X.; Tang, Q.; Peng, D. Applications of important polysaccharides in drug delivery. Curr. Pharm. Des., 2015, 21(25), 3692-3696.
[http://dx.doi.org/10.2174/1381612821666150109144613] [PMID: 25578889]
[9]
Yu, Y.; Shen, M.; Song, Q.; Xie, J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr. Polym., 2018, 183, 91-101.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.009] [PMID: 29352896]
[10]
Lodhi, B.A.; Hussain, M.A.; Ashraf, M.U.; Haseeb, M.T.; Muhammad, G.; Farid-ul-Haq, M.; Naeem-ul-Hassan, M. Basil (Ocimum basilicum L.) seeds engender a smart material for intelligent drug delivery: On-off switching and real-time swelling, in vivo transit detection, and mechanistic studies. Ind. Crops Prod., 2020, 155, 112780.
[http://dx.doi.org/10.1016/j.indcrop.2020.112780]
[11]
Saha, D.; Bhattacharya, S. Hydrocolloids as thickening and gelling agents in food: A critical review. J. Food Sci. Technol., 2010, 47(6), 587-597.
[http://dx.doi.org/10.1007/s13197-010-0162-6] [PMID: 23572691]
[12]
Jiang, Y.; Wang, Y.; Li, Q.; Yu, C.; Chu, W. Natural polymer-based stimuli-responsive hydrogels. Curr. Med. Chem., 2020, 27(16), 2631-2657.
[http://dx.doi.org/10.2174/0929867326666191122144916] [PMID: 31755377]
[13]
Liu, H.; Chen, T.; Dong, C.; Pan, X. Biomedical applications of hemicellulose-based hydrogels. Curr. Med. Chem., 2020, 27(28), 4647-4659.
[http://dx.doi.org/10.2174/0929867327666200408115817] [PMID: 32268859]
[14]
Hussain, M.A.; Rana, R.I.; Haseeb, M.T.; Muhammad, G.; Kiran, L. Citric acid cross-linked glucuronoxylans: A pH-sensitive polysaccharide material for responsive swelling-deswelling vs various biomimetic stimuli and zero-order drug release. J. Drug Deliv. Sci. Technol., 2020, 55, 101470.
[http://dx.doi.org/10.1016/j.jddst.2019.101470]
[15]
Gopinath, V.; Saravanan, S.; Al-Maleki, A.R.; Ramesh, M.; Vadivelu, J. A review of natural polysaccharides for drug delivery applications: Special focus on cellulose, starch and glycogen. Biomed. Pharmacother., 2018, 107, 96-108.
[http://dx.doi.org/10.1016/j.biopha.2018.07.136] [PMID: 30086465]
[16]
Modak, P.; Hammond, W.; Jaffe, M.; Nadig, M.; Russo, R. Reproducible, biocompatible medical materials from biologically derived polysaccharides: Processing and characterization. J. Appl. Polym. Sci., 2020, 137(11), 48454.
[http://dx.doi.org/10.1002/app.48454]
[17]
Lachmann, L.; Liberman, H.A.; Kanig, J.L. Theory and Practice of Industrial Pharmacy;, 3rd Ed; Lea and Febiger: Philadelphia, 1987.
[18]
Haseeb, M.T.; Hussain, M.A.; Yuk, S.H.; Bashir, S.; Nauman, M. Polysaccharides based superabsorbent hydrogel from Linseed: Dynamic swelling, stimuli responsive on-off switching and drug release. Carbohydr. Polym., 2016, 136, 750-756.
[http://dx.doi.org/10.1016/j.carbpol.2015.09.092] [PMID: 26572409]
[19]
Zhang, K.; Feng, W.; Jin, C. Protocol efficiently measuring the swelling rate of hydrogels. MethodsX, 2019, 7, 100779.
[http://dx.doi.org/10.1016/j.mex.2019.100779] [PMID: 31993340]
[20]
Wang, Y.; He, G.; Li, Z.; Hua, J.; Wu, M.; Gong, J.; Zhang, J.; Ban, L.T.; Huang, L. Novel biological hydrogel: Swelling behaviors study in salt solutions with different ionic valence number. Polymers (Basel), 2018, 10(2), 112.
[http://dx.doi.org/10.3390/polym10020112] [PMID: 30966148]
[21]
Farid-ul-Haq, M.; Haseeb, M.T.; Hussain, M.A.; Ashraf, M.U.; Naeem-ul-Hassan, M.; Hussain, S.Z.; Hussain, I. A smart drug delivery system based on Artemisia vulgaris hydrogel: Design, on-off switching, and real-time swelling, transit detection, and mechanistic studies. J. Drug Deliv. Sci. Technol., 2020, 58, 101795.
[http://dx.doi.org/10.1016/j.jddst.2020.101795]
[22]
Haseeb, M.T.; Hussain, M.A.; Bashir, S.; Ashraf, M.U.; Ahmad, N. Evaluation of superabsorbent linseed-polysaccharides as a novel stimuli-responsive oral sustained release drug delivery system. Drug Dev. Ind. Pharm., 2017, 43(3), 409-420.
[http://dx.doi.org/10.1080/03639045.2016.1257017] [PMID: 27808567]
[23]
Ashraf, M.U.; Hussain, M.A.; Bashir, S.; Haseeb, M.T.; Hussain, Z. Quince seed hydrogel (glucuronoxylan): Evaluation of stimuli responsive sustained release oral drug delivery system and biomedical properties. J. Drug Deliv. Sci. Technol., 2018, 45, 455-465.
[http://dx.doi.org/10.1016/j.jddst.2018.04.008]
[24]
Patil, S.H.; Talele, G.S. Natural gum as mucoadhesive controlled release carriers: Evaluation of cefpodoxime proxetil by D-optimal design technique. Drug Deliv., 2014, 21(2), 118-129.
[http://dx.doi.org/10.3109/10717544.2013.834416] [PMID: 24032629]
[25]
Rizwan, M.; Yahya, R.; Hassan, A.; Yar, M.; Azzahari, A.D.; Selvanathan, V.; Sonsudin, F.; Abouloula, C.N. pH Sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications. Polymers (Basel), 2017, 9(4), 137.
[http://dx.doi.org/10.3390/polym9040137] [PMID: 30970818]
[26]
Peppas, N.A.; Mikes, A.G. Hydrogels in Medicine and Pharmacy; CRC Press: Boca Raton, FL, 1986, pp. 1-26.
[27]
Irfan, J.; Hussain, M.A.; Haseeb, M.T.; Ali, A.; Farid-ul-Haq, M.; Tabassum, T.; Hussain, S.Z.; Hussain, I.; Naeem-ul-Hassan, M. A pH-sensitive, stimuli-responsive, superabsorbent, smart hydrogel from psyllium (Plantago ovata) for intelligent drug delivery. RSC Adv., 2021, 11(28), 19755-19767.
[http://dx.doi.org/10.1039/D1RA02219A]
[28]
Muhammad, G.; Hussain, M.A.; Ashraf, M.U.; Haseeb, M.T.; Hussain, S.Z.; Hussain, I. Polysaccharide based superabsorbent hydrogel from Mimosa pudica: Swelling–deswelling and drug release. RSC Adv., 2016, 6(28), 23310-23317.
[http://dx.doi.org/10.1039/C5RA23088H]
[29]
Namazi, H.; Hasani, M.; Yadollahi, M. Antibacterial oxidized starch/ZnO nanocomposite hydrogel: Synthesis and evaluation of its swelling behaviours in various pHs and salt solutions. Int. J. Biol. Macromol., 2019, 126, 578-584.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.242] [PMID: 30594626]
[30]
Tanan, W.; Panichpakdee, J.; Saengsuwan, S. Novel biodegradable hydrogel based on natural polymers: Synthesis, characterization, swelling/reswelling and biodegradability. Eur. Polym. J., 2019, 112, 678-687.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.10.033]
[31]
Walden, M.; Nicholls, F.A.; Smith, K.J.; Tucker, G.T. The effect of ethanol on the release of opioids from oral prolonged-release preparations. Drug Dev. Ind. Pharm., 2007, 33(10), 1101-1111.
[http://dx.doi.org/10.1080/03639040701377292] [PMID: 17882730]