Wound Healing Properties of Pelargonium Graveolens L'Hér Extract Lipogel: In-Vivo Evaluation in an Animal Burn Model

Page: [601 - 607] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Pelargonium graveolens L'Hér has traditionally been used to reduce skin inflammation, and recent studies have confirmed antioxidant compounds in the plant's extract. The present study aimed to prepare a lipogel formulation from P. graveolens hydroalcoholic extract and evaluate its efficacy on the wound healing process in an animal model.

Material and Methods: The aerial part extract of P. graveolens was prepared through percolation. Additionally, plastibase was prepared by mixing 5% of low-molecular-weight polyethylene with hot mineral oil (130°C). The extract (5%) was levigated in the mineral oil (5-15%) and dispersed in the cooled plastibase. The physical properties of the lipogel, thermal stability, and microbial limits were tested. Further, the effect of the lipogel in the wound healing rate was examined among male Wistar rats, and skin tissue samples were assessed histologically.

Results and Discussion: The results represented the best rheological and thermal stability characteristics in the formulation with 5% mineral oil (as the levigator). The lipogel-treated group had the least burn area compared to the silver sulfadiazine and negative control groups (p<0.05). The microscopic examination of tissue samples revealed increased collagen fiber production and maturation and significantly also faster epithelial repair among lipogel-treated rats than in the other two groups(p<0.05).

Conclusion: The results indicated the significant therapeutic effects of P. graveolens lipogelon burn healing. The suitable physicochemical properties and the low lipogel production cost facilitate further scale-up studies.

Keywords: Pelargonium graveolens, plastibase, percolation, burn wound healing, physicochemical properties, collagen fibers.

Graphical Abstract

[1]
Chakrabarti, S.; Chattopadhyay, P.; Islam, J.; Ray, S.; Raju, P.S.; Mazumder, B. Aspects of nanomaterials in wound healing. Curr. Drug Deliv., 2019, 16(1), 26-41.
[http://dx.doi.org/10.2174/1567201815666180918110134] [PMID: 30227817]
[2]
Aslam, M.S.; Ahmad, M.S.; Riaz, H.; Raza, S.A.; Hussain, S.; Qureshi, O.S. Role of flavonoids as wound healing Agent. Phytochemicals-Source of Antioxidants and Role in Disease Prevention; IntechOpen, 2018, pp. 95-102.
[http://dx.doi.org/10.5772/intechopen.79179]
[3]
Palungwachira, P.; Tancharoen, S.; Phruksaniyom, C.; Klungsaeng, S.; Srichan, R.; Kikuchi, K. Antioxidant and anti-inflammatory properties of anthocyanins extracted from Oryza sativa L. in primary dermal fibroblasts. Oxid. Med. Cell. Longev., 2019, 2019, 18.
[4]
Ennaifer, M.; Bouzaiene, T.; Messaoud, C.; Hamdi, M. Phytochemicals, antioxidant, anti-acetyl-cholinesterase, and antimicrobial activities of decoction and infusion of Pelargonium graveolens. Nat. Prod. Res., 2020, 34(18), 2634-2638.
[http://dx.doi.org/10.1080/14786419.2018.1547299] [PMID: 30584784]
[5]
El Aanachi, S.; Gali, L.; Nacer, S.N.; Bensouici, C.; Dari, K.; Aassila, H. Phenolic contents and in vitro investigation of the antioxidant, enzyme inhibitory, photoprotective, and antimicrobial effects of the organic extracts of Pelargonium graveolens growing in Morocco. Biocatal. Agric. Biotechnol., 2020, 29, 101819.
[http://dx.doi.org/10.1016/j.bcab.2020.101819]
[6]
Dimitrova, M.; Mihaylova, D.; Popova, A.; Alexieva, J.; Sapundzhieva, T.; Fidan, H. Phenolic profile, antibacterial and antioxidant activity of Pelargonium graveolens leaves’ extracts. Sci. Bull. Ser. F Biotechnol., 2015, 19, 130-135.
[7]
Androutsopoulou, C.; Christopoulou, S.D.; Hahalis, P.; Kotsalou, C.; Lamari, F.N.; Vantarakis, A. Evaluation of essential oils and extracts of Rose geranium and rose petals as natural preservatives in terms of toxicity, antimicrobial, and antiviral activity. Pathogens, 2021, 10(4), 494.
[http://dx.doi.org/10.3390/pathogens10040494] [PMID: 33921899]
[8]
Gansukh, E.; Nile, A.; Kim, D.H.; Oh, J.W.; Nile, S.H. New insights into antiviral and cytotoxic potential of quercetin and its derivatives - A biochemical perspective. Food Chem., 2021, 334, 127508.
[http://dx.doi.org/10.1016/j.foodchem.2020.127508] [PMID: 32711265]
[9]
Solnier, J.; Fladerer, J-P. Flavonoids: A complementary approach to conventional therapy of COVID-19? Phytochem. Rev., 2021, 20(4), 773-795.
[http://dx.doi.org/10.1007/s11101-020-09720-6] [PMID: 32982616]
[10]
Hamishehkar, H.; Nokhodchi, A.; Ghanbarzadeh, S.; Kouhsoltani, M. Triamcinolone acetonide oromucoadhesive paste for treatment of aphthous stomatitis. Adv. Pharm. Bull., 2015, 5(2), 277-282.
[http://dx.doi.org/10.15171/apb.2015.038] [PMID: 26236668]
[11]
Farmoudeh, A.; Shokoohi, A.; Ebrahimnejad, P.; Ebrahimnejad, P. Preparation and evaluation of the antibacterial effect of chitosan nanoparticles containing ginger extract tailored by central composite design. Adv. Pharm. Bull., 2021, 11(4), 643-650.
[http://dx.doi.org/10.34172/apb.2021.073] [PMID: 34888211]
[12]
Shafiee, F.; Khoshvishkaie, E.; Davoodi, A.; Dashti Kalantar, A.; Bakhshi, J.H.; Ataee, R. The determination of blood glucose lowering and metabolic effects of Mespilus germanica L. hydroacetonic extract on streptozocin-induced diabetic Balb/c mice. Medicines, 2018, 5(1), 1.
[http://dx.doi.org/10.3390/medicines5010001] [PMID: 29301240]
[13]
Chen, M.X.; Alexander, K.S.; Baki, G. Formulation and evaluation of antibacterial creams and gels containing metal ions for topical application. J. Pharm., 2016, 2016, 5754349.
[http://dx.doi.org/10.1155/2016/5754349]
[14]
Asija, R.; Dhaker, P.C.; Nema, N. Formulation & evaluation of voriconazole ointment for topical delivery. J. Drug Discov. Therapeutics, 2015, 26(3), 7-14.
[15]
Biswal, B.; Karna, N.; Nayak, J.; Joshi, V. Formulation and evaluation of microemulsion based topical hydrogel containing lornoxicam. J. Appl. Pharm. Sci., 2014, 4(12), 77-84.
[16]
WASTE DO. Microbial Content Test Broth Base,
[17]
Convention, UP Microbiological examination of nonsterile products: Microbial enumeration tests. USP 42–NF 37, 2019, 1-9.
[18]
Venter, N.G.; Monte-Alto-Costa, A.; Marques, R.G. A new model for the standardization of experimental burn wounds. Burns, 2015, 41(3), 542-547.
[http://dx.doi.org/10.1016/j.burns.2014.08.002] [PMID: 25440857]
[19]
Rosique, M.J.; Rosique, R.G.; Faria, F.M.; Oliveira, C.C.; Farina, J.A., Jr; Évora, P.R.B. Methylene blue reduces progression of burn and increases skin survival in an experimental rat model. Burns, 2017, 43(8), 1702-1708.
[http://dx.doi.org/10.1016/j.burns.2017.04.021] [PMID: 28778756]
[20]
Vidal, A.; Mendieta Zerón, H.; Giacaman, I.; Camarillo Romero, M.D.; López, S.P.; Meza Trillo, L.E.; Pérez Pérez, D.A.; Concha, M.; Torres-Gallegos, C.; Orellana, S.L.; Oyarzun-Ampuero, F.; Moreno-Villoslada, I. A simple mathematical model for wound closure evaluation. J. Am. Coll. Clin. Wound Spec., 2016, 7(1-3), 40-49.
[http://dx.doi.org/10.1016/j.jccw.2016.07.002] [PMID: 28053868]
[21]
Farmoudeh, A.; Akbari, J.; Saeedi, M.; Ghasemi, M.; Asemi, N.; Nokhodchi, A. Methylene blue-loaded niosome: Preparation, physicochemical characterization, and in vivo wound healing assessment. Drug Deliv. Transl. Res., 2020, 10(5), 1428-1441.
[http://dx.doi.org/10.1007/s13346-020-00715-6] [PMID: 32100265]
[22]
Asgarirad, H.; Ebrahimnejad, P.; Mahjoub, M.A.; Jalalian, M.; Morad, H.; Ataee, R. A promising technology for wound healing; in-vitro and in-vivo evaluation of chitosan nano-biocomposite films containing gentamicin. J. Microencapsul., 2020, 38(2), 100-107.
[PMID: 33245001]
[23]
Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for analysis of plant phenolic compounds. Molecules, 2013, 18(2), 2328-2375.
[http://dx.doi.org/10.3390/molecules18022328] [PMID: 23429347]
[24]
Ben Hsouna, A.; Hamdi, N. Phytochemical composition and antimicrobial activities of the essential oils and organic extracts from Pelargonium graveolens growing in Tunisia. Lipids Health Dis., 2012, 11(1), 167.
[http://dx.doi.org/10.1186/1476-511X-11-167] [PMID: 23216669]
[25]
A., Satyanarayana D; K Kulkarni, P; G Shivakumar, H. Gels and jellies as a dosage form for dysphagia patients: A review. Curr. Drug Ther., 2011, 6(2), 79-86.
[http://dx.doi.org/10.2174/157488511795304921]
[26]
Ghisleni, D.D.; Braga, M.S.; Kikuchi, I.S. Braşoveanu, M.; Nemţanu, M.R.; Dua, K.; Pinto, T.J. The microbial quality aspects and decontamination approaches for the herbal medicinal plants and products: An in-depth review. Curr. Pharm. Des., 2016, 22(27), 4264-4287.
[http://dx.doi.org/10.2174/1381612822666160623070829] [PMID: 27339428]
[27]
Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The potential of plant phenolics in prevention and therapy of skin disorders. Int. J. Mol. Sci., 2016, 17(2), 160.
[http://dx.doi.org/10.3390/ijms17020160] [PMID: 26901191]
[28]
Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines, 2018, 5(3), 93.
[http://dx.doi.org/10.3390/medicines5030093] [PMID: 30149600]
[29]
Nasiri, E.; Hosseinimehr, S.J.; Akbari, J.; Azadbakht, M.; Azizi, S. The effects of Punica granatum flower extract on skin injuries induced by burn in rats. Adv. Pharmacol. Sci., 2017, 2017, 3059745.
[30]
Hosseinimehr, S.J.; Khorasani, G.; Azadbakht, M.; Zamani, P.; Ghasemi, M.; Ahmadi, A. Effect of aloe cream versus silver sulfadiazine for healing burn wounds in rats. Acta Dermatovenerol. Croat., 2010, 18(1), 2-7.