A Critical Review on Recent Advances in Base-Assisted Smiles Rearrangement

Page: [1303 - 1310] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Rearrangement reactions of organic substrates is a versatile and sustainable tool in the construction of complex and bioactive organics by virtue of their atom-economic, stepeconomic and waste-, time- as well as energy-minimizing attributes. The X → C (or Y) aryl rearrangement reaction through an intramolecular nucleophilic aromatic substitution is referred to as Smiles rearrangement. The Smiles rearrangement enables access to complex natural products and is a useful tool to obtain various types of compounds with diversified applications, which have undergone a potent revival in recent years. In this review, we summarize the recent reports on Smiles rearrangement and most of them require a base. A few examples of the reported base-free Smiles rearrangements were also reviewed to provide comprehensive information on the selected topic. The literature review covers the published work on Smiles rearrangement reaction since 2017. The published work in these articles include simple Smiles, Truce-Smiles, radical Smiles, Ugi-Smiles, light-assisted Smiles, Dohmori-Smiles, electrochemical Smiles and phospha-Smiles rearrangement reactions for the construction of a variety of organic compounds including acyclic, heterocyclic, carbocyclic and polycyclic compounds. The formation of organic compounds with unusual ring sizes has also been discussed in the published work. Several domono/sequential reactions were also observed in these reports involving Smiles rearrangement as a crucial step. The selected examples demonstrate the synthetic power of this approach and hence this review may be highly useful to the synthetic chemists aimed to use Smiles rearrangement in their plan.

Keywords: Smiles rearrangement, base catalysts, heterocycles, nucleophiles, intramolecular reaction, and aromatic substitution.

Graphical Abstract

[1]
Jana, S.; Guo, Y.; Koenigs, R.M. Recent perspectives on rearrangement reactions of ylides via carbene transfer reactions. Chemistry, 2021, 27(4), 1270-1281.
[http://dx.doi.org/10.1002/chem.202002556] [PMID: 32754993]
[2]
Das, B.; Majhi, A.; Reddy, K.R.; Venkateswarlu, K.I. 2–SiO2: An efficient heterogeneous catalyst for the Johnson–Claisen rearrangement of Baylis-Hillman adducts. J. Mol. Catal. Chem., 2007, 263(1-2), 273-275.
[http://dx.doi.org/10.1016/j.molcata.2006.08.090]
[3]
Wang, Q.; Biosca, M.; Himo, F.; Szabó, K.J. Electrophilic fluorination of alkenes via Bora-Wagner–Meerwein rearrangement. Access to β-difluoroalkyl boronates. Angew. Chem. Int. Ed. Engl., 2021, 60(50), 26327-26331.
[http://dx.doi.org/10.1002/anie.202109461] [PMID: 34613633]
[4]
Virieux, D.; Delogu, F.; Porcheddu, A.; García, F.; Colacino, E. Mechanochemical rearrangements. J. Org. Chem., 2021, 86(20), 13885-13894.
[http://dx.doi.org/10.1021/acs.joc.1c01323] [PMID: 34259516]
[5]
Dicks, A.P.; Hent, A. Atom economy and reaction mass efficiency.Green Chemistry Matrics, Springer Briefs in Molecular Science; Springer: Cham, 2015, pp. 17-44.
[http://dx.doi.org/10.1007/978-3-319-10500-0_2]
[6]
Thulasi, K.M.; Manikkoth, S.T.; Ranjusha, M.K.; Salija, P.V.; Vattakkoval, N.; Palantavida, S.; Vijayan, B.K. Atom economy.Green Chemistry and Applications; CRC Press: Boca Raton, 2020, pp. 5-36.
[http://dx.doi.org/10.1201/9780429291166-2]
[7]
Henriques, R. Ueber thioderivate des β-naphtols. Ber. Dtsch. Chem. Ges., 1894, 27(3), 2993-3005.
[http://dx.doi.org/10.1002/cber.18940270365]
[8]
Hinsberg, O. Über β-naphtolsulfid und iso-β-naphtolsulfid. J. Prakt. Chem., 1914, 90(1), 345-353.
[http://dx.doi.org/10.1002/prac.19140900121]
[9]
Hinsberg, O. Über β-naphtolsulfid und iso-β-naphtolsulfid. J. Prakt. Chem., 1916, 93(1), 277-301.
[http://dx.doi.org/10.1002/prac.19160930118]
[10]
Warren, L.A.; Smiles, S. CLXXI.–Dehydro-2-naphtholsulphone. J. Chem. Soc., 1930, 1327-1331(0), 1327-1331.
[http://dx.doi.org/10.1039/JR9300001327]
[11]
Cohen, A.; Smiles, S. LVI.–Derivatives of 3-keto-2: 3-dihydrothionaphthen 1: 1-dioxide. J. Chem. Soc., 1930, 0(0), 406-414.
[http://dx.doi.org/10.1039/JR9300000406]
[12]
Levy, A.A.; Rains, H.C.; Smiles, S. CCCCLII.–The rearrangement of hydroxy-sulphones. Part I. J. Chem. Soc., 1931, 0(0), 3264-3269.
[http://dx.doi.org/10.1039/JR9310003264]
[13]
Levi, A.A.; Smiles, S. 199. The rearrangement of hydroxy-sulphones. Part III. J. Chem. Soc., 1932, 1488-1492, 1488.
[http://dx.doi.org/10.1039/jr9320001488]
[14]
Wight, C.F.; Smiles, S. Smiles. 74. A rearrangement of o-benzamido-sulphides. J. Chem. Soc., 1935, 340-343, 340.
[http://dx.doi.org/10.1039/jr9350000340]
[15]
Tozer, B.T.; Smiles, S. 357. A rearrangement of aryl salicylates. J. Chem. Soc., 1938, 1897-1900, 1897.
[http://dx.doi.org/10.1039/jr9380001897]
[16]
Holden, C.M.; Greaney, M.F. Modern aspects of the Smiles rearrangement. Chemistry, 2017, 23(38), 8992-9008.
[http://dx.doi.org/10.1002/chem.201700353] [PMID: 28401655]
[17]
Truce, W.E.; Ray, W.J., Jr Rearrangements of aryl sulfones. II. The synthesis and rearrangement of several o-methyldiaryl sulfones to o-benzylbenzenesulfinic acids. J. Am. Chem. Soc., 1959, 81(2), 481-484.
[http://dx.doi.org/10.1021/ja01511a054]
[18]
Truce, W.E.; Ray, W.J., Jr Rearrangements of aryl sulfones. III. The Kinetics of the reaction of o-methyldiaryl sulfones with n-butyllithium. J. Am. Chem. Soc., 1959, 81(2), 484-487.
[http://dx.doi.org/10.1021/ja01511a055]
[19]
Truce, W.E.; Guy, M.M. Rearrangements of aryl sulfones. IV. substituted phenyl mesityl sulfones. J. Org. Chem., 1961, 26(11), 4331-4336.
[http://dx.doi.org/10.1021/jo01069a036]
[20]
Snape, T.J. A truce on the Smiles rearrangement: Revisiting an old reaction--the Truce-Smiles rearrangement. Chem. Soc. Rev., 2008, 37(11), 2452-2458.
[http://dx.doi.org/10.1039/b808960d] [PMID: 18949118]
[21]
Henderson, A.R.P.; Kosowan, J.R.; Wood, T.E. The Truce-Smiles rearrangement and related reactions: A review. Can. J. Chem., 2017, 95(5), 483-504.
[http://dx.doi.org/10.1139/cjc-2016-0594]
[22]
Truce, W.E. Forty years in organic chemistry. Sulfur Rep., 1990, 9(4), 351-357.
[http://dx.doi.org/10.1080/01961779008048733]
[23]
El Kaïm, L.; Grimaud, L. Ugi-Smiles and Passerini_Smiles coupling.Multicomponent reactions in organic synthesis, Wiley-VCH Verlag GmbH, KGaA; Zhu, J.; Wang, Q.; Wang, M-X., Eds.; Weinheim, 2015; pp. 73-107.
[24]
El Kaïm, L.; Grimaud, L. The Ugi-Smiles and Passerini-Smiles couplings: A story about phenols in isocyanides-based multicomponent reactions. Eur. J. Org. Chem., 2014, 2014(35), 7749-7762.
[http://dx.doi.org/10.1002/ejoc.201402783]
[25]
El Kaïm, L.; Grimaud, L. Ugi-Smiles couplings: New entries to N-aryl carboxamide derivatives. Mol. Divers., 2010, 14(4), 855-867.
[http://dx.doi.org/10.1007/s11030-009-9175-3] [PMID: 19582586]
[26]
Allart-Simon, I.; Gérard, S.; Sapi, J. Radical Smiles rearrangement: An update. Molecules, 2016, 21(7), 878.
[http://dx.doi.org/10.3390/molecules21070878] [PMID: 27399654]
[27]
Plesniak, K.; Zarecki, A.; Wicha, J. The smiles rearrangement and the julia-kocienski olefination reaction. Top. Curr. Chem., 2007, 275, 163-250.
[http://dx.doi.org/10.1007/128_049] [PMID: 23605513]
[28]
Bunnet, J.F.; Zahler, R.E. Aromatic nucleophilic substitution reactions. Chem. Rev., 1951, 49(2), 273-412.
[http://dx.doi.org/10.1021/cr60153a002]
[29]
Truce, W.E.; Kreider, E.M.; Brand, W.W. The Smiles and related rearrangements of aromatic systems. Org. React., 1970, 18, 99-215.
[http://dx.doi.org/10.1002/0471264180.or018.02]
[30]
Shine, H.J. Aromatic rearrangements; Elsevier: Amsterdam, 1967, pp. 307-316.
[31]
Stevens, T.S.; Watts, W.E. Selected molecular rearrangements, van Nostrand-Reinchold; London, 1973, pp. 120-124.
[32]
Kumar, R.R.; Perumal, S. Smiles rearrangement, Name reactions for homologations, part 2.Wiley; Li, J.J., Ed.; Hoboken, New Jersey, 2009, pp. 489-515.
[33]
Ramazani, A.; Moradnia, F.; Aghahosseini, H.; Abdolmaleki, I. Several species of nucleophiles in the Smiles rearrangement. Curr. Org. Chem., 2017, 21(16), 1612-1625.
[http://dx.doi.org/10.2174/1385272821666170420172606]
[34]
Xia, S.; Wang, L-Y.; Zuo, H.; Li, Z-B. Smiles rerrangement in synthetic chemistry. Curr. Org. Synth., 2013, 10(6), 935-946.
[http://dx.doi.org/10.2174/15701794113106660081]
[35]
El Kaïm, L.; Grimaud, L. Smiles rearrangements.Molecular rearrangements in organic synthesis; Rojas, C., Ed.; Wiley: Hoboken, New Jersey, 2016, pp. 629-660.
[36]
Venkateswarlu, K. Ashes from organic waste as reagents in synthetic chemistry: A review. Environ. Chem. Lett., 2021, 19(5), 3887-3950.
[http://dx.doi.org/10.1007/s10311-021-01253-4]
[37]
Nguyen, T.B.; Mac, D.H.; Retailleau, P. Base-catalyzed three-component reaction of α-cyanoacetates with chalcones and elemental sulfur: Access to 2-aminothiophenes unobtainable via the Gewald reaction. J. Org. Chem., 2021, 86(14), 9418-9427.
[http://dx.doi.org/10.1021/acs.joc.1c00740] [PMID: 34197118]
[38]
Appa, R.M.; Naidu, B.R.; Venkateswarlu, D.; Hanafiah, M.M.; Lakkaboyana, S.K.; Lakshmidevi, J.; Venkateswarlu, K. Water extract of pomegranate ash–I2 as sustainable system for external oxidant/metal/catalyst-free oxidative iodination of (hetero)arenes. Green Chem. Lett. Rev., 2021, 14(4), 700-712.
[http://dx.doi.org/10.1080/17518253.2021.2006319]
[39]
Lakshmidevi, J.; Naidu, B.R.; Reddy, S.S.S.; Venkateswarlu, K. Oxidative iododeborylation reaction of (hetero)arylboronic acids in water extract of pomegranate ash: A novel and sustainable synthesis of iodo(hetero)arenes. Waste Biomass Valoriz., 2022, 13(4), 2207-2216.
[http://dx.doi.org/10.1007/s12649-021-01647-z]
[40]
Puleo, T.R.; Sujansky, S.J.; Wright, S.E.; Bandar, J.S. Organic superbases in recent synthetic methodology research. Chemistry, 2021, 27(13), 4216-4229.
[http://dx.doi.org/10.1002/chem.202003580] [PMID: 32841442]
[41]
Rao, K.U.; Appa, R.M.; Lakshmidevi, J.; Vijitha, R.; Rao, K.S.V.K.; Narasimhulu, M.; Venkateswarlu, K.C. (sp2)−C(sp2) coupling in water: Palladium(II) complexes of N-pincer tetradentate porphyrins as effective eatalysts. Asian J. Org. Chem., 2017, 6(6), 751-757.
[http://dx.doi.org/10.1002/ajoc.201700068]
[42]
Alpers, D.; Cole, K.P.; Stephenson, C.R.J. Visible light mediated aryl migration by homolytic C−N cleavage of aryl amines. Angew. Chem. Int. Ed. Engl., 2018, 57(37), 12167-12170.
[http://dx.doi.org/10.1002/anie.201806659] [PMID: 30025192]
[43]
Jiang, X.; Hu, F. One-pot highly regioselective synthesis of indole-fused pyridazino[4,5-b][1,4]benzoxazepin-4(3H)-ones by a Smiles rearrangement. Synlett, 2018, 29(9), 1207-1210.
[http://dx.doi.org/10.1055/s-0037-1609338]
[44]
Huang, Y.; Yi, W.; Sun, Q.; Yi, F. Copper-catalyzed one-pot approach to α-aryl amidines via Truce-Smiles rearrangement. Adv. Synth. Catal., 2018, 360(16), 3074-3082.
[http://dx.doi.org/10.1002/adsc.201800490]
[45]
Kumar, K.S.; Ramulu, M.S.; Kumar, N.P. Unexpected C–N bond formation via Smiles rearrangement: One pot synthesis of N-arylated coumarin/pyran derivatives. New J. Chem., 2018, 42(14), 11276-11279.
[http://dx.doi.org/10.1039/C8NJ02109K]
[46]
Ramezanpour, S.; Rezaei, M.N.; Vaezghaemi, A.; Rominger, F. Facile synthesis of novel 3,4,5-trisubstituted-1,2,4-triazin-6(1H)-ones via a sequential Ugi–Smiles type/nucleophilic substitution/cyclization reaction. New J. Chem., 2018, 42(21), 17533-17537.
[http://dx.doi.org/10.1039/C8NJ03949F]
[47]
Wang, J.; Niu, L.; Huang, J.; Yan, Z.; Zhou, X.; Wang, J. Thiazolyl substituted NBD as fluorescent probe for the detection of homocysteine and cysteine. Dyes Pigments, 2018, 158, 151-156.
[http://dx.doi.org/10.1016/j.dyepig.2018.05.039]
[48]
Azzi, E.; Ghigo, G.; Parisotto, S.; Pellegrino, F.; Priola, E.; Renzi, P.; Deagostino, A. Visible light mediated photocatalytic N-radical cascade reactivity of γδ-unsaturated N-arylsulfonylhydrazones: A general approach to structurally diverse tetrahydropyridazines. J. Org. Chem., 2021, 86(4), 3300-3323.
[http://dx.doi.org/10.1021/acs.joc.0c02605] [PMID: 33523670]
[49]
Tripathy, A.R.; Yedase, G.S.; Yatham, V.R. Cerium photocatalyzed radical smiles rearrangement of 2-aryloxybenzoic acids. RSC Advances, 2021, 11(41), 25207-25210.
[http://dx.doi.org/10.1039/D1RA04130D]
[50]
Hu, Y.; Wang, Z.; Luo, H.; Jin, H.; Liu, Y.; Zhou, B. NHC-catalyzed truce-smiles rearrangement of N-aryl methacrylamides for the synthesis of trans-cinnamides. Org. Biomol. Chem., 2021, 19(17), 3834-3837.
[http://dx.doi.org/10.1039/D1OB00443C] [PMID: 33949593]
[51]
Šlachtová, V.; Chasák, J.; Brulíková, L. Synthesis of various 2-aminobenzoxazoles: The study of cyclization and Smiles rearrangement. ACS Omega, 2019, 4(21), 19314-19323.
[http://dx.doi.org/10.1021/acsomega.9b02702] [PMID: 31763555]
[52]
Chang, X.; Zhang, Q.; Guo, C. Electrochemical reductive Smiles rearrangement for C–N bond formation. Org. Lett., 2019, 21(1), 10-13.
[http://dx.doi.org/10.1021/acs.orglett.8b03178] [PMID: 30543437]
[53]
Li, J.; Liu, Z.; Wu, S.; Chen, Y. Acyl radical Smiles rearrangement to construct hydroxybenzophenones by photoredox catalysis. Org. Lett., 2019, 21(7), 2077-2080.
[http://dx.doi.org/10.1021/acs.orglett.9b00353] [PMID: 30888188]
[54]
Whalley, D.M.; Duong, H.A.; Greaney, M.F. Alkene carboarylation through catalyst-free, visible light-mediated Smiles rearrangement. Chemistry, 2019, 25(8), 1927-1930.
[http://dx.doi.org/10.1002/chem.201805712] [PMID: 30536854]
[55]
Barlow, H.L.; Rabet, P.T.G.; Durie, A.; Evans, T.; Greaney, M.F. Arylation using sulfonamides: Phenylacetamide synthesis through tandem acylation−Smiles rearrangement. Org. Lett., 2019, 21(22), 9033-9035.
[http://dx.doi.org/10.1021/acs.orglett.9b03429] [PMID: 31674791]
[56]
Chang, X.; Zhang, Q.; Guo, C. Switchable Smiles rearrangement for enantioselective O-aryl amination. Org. Lett., 2019, 21(12), 4915-4918.
[http://dx.doi.org/10.1021/acs.orglett.9b01848] [PMID: 31184913]
[57]
Bujok, R. Mąkosza, M. Synthesis of diarylacetylenes bearing electron-withdrawing groups via the Smiles rearrangement. Synthesis, 2019, 51(16), 3109-3116.
[http://dx.doi.org/10.1055/s-0037-1612423]
[58]
Honnanayakanavar, J.M.; Harish, B.; Nanubolu, J.B.; Suresh, S. Tandem copper-catalyzed regioselective N-arylation-aza-Michael addition: Synthesis of tetracyclic 5H-benzothiazolo[3,2-a]quinazoline derivatives. J. Org. Chem., 2020, 85(14), 8780-8791.
[http://dx.doi.org/10.1021/acs.joc.0c00275] [PMID: 32603597]
[59]
Yang, D.; Xie, C-X.; Wu, X-T.; Fei, L-R.; Feng, L.; Ma, C. Metal-free β-amino alcohol synthesis: A two-step Smiles rearrangement. J. Org. Chem., 2020, 85(23), 14905-14915.
[http://dx.doi.org/10.1021/acs.joc.0c01543] [PMID: 33124420]
[60]
Xie, C.; Yang, D.; Wang, X.; Ma, C. A cascade reaction of Michael and Truce-Smiles rearrangement to synthesize trisubstituted 4-quinolone derivatives. J. Org. Chem., 2020, 85(23), 14937-14944.
[http://dx.doi.org/10.1021/acs.joc.0c01662] [PMID: 33146531]
[61]
Arokianathar, J.N.; Kolodziejczak, K.; Bugden, F.; Clark, K.; Tuttle, T.; Murphy, J.A. Benzylic C−H functionalization by [Et3SiH+KOtBu] leads to radical rearrangements in o-tolyl aryl ethers, amines and sulfides. Adv. Synth. Catal., 2020, 362(11), 2260-2267.
[http://dx.doi.org/10.1002/adsc.202000356]
[62]
Johnson, S.; Kovács, E.; Greaney, M.F. Arylation and alkenylation of activated alkyl halides using sulfonamides. Chem. Commun. (Camb.), 2020, 56(21), 3222-3224.
[http://dx.doi.org/10.1039/D0CC00220H] [PMID: 32073052]
[63]
Lawson, C.A.; Dominey, A.P.; Williams, G.D.; Murphy, J.A. Visible light-mediated Smiles rearrangements and annulations of non-activated aromatics. Chem. Commun. (Camb.), 2020, 56(77), 11445-11448.
[http://dx.doi.org/10.1039/D0CC04666C] [PMID: 32852011]
[64]
Whalley, D.M.; Duong, H.A.; Greaney, M.F. A visible light-mediated, decarboxylative, desulfonylative Smiles rearrangement for general arylethylamine syntheses. Chem. Commun. (Camb.), 2020, 56(77), 11493-11496.
[http://dx.doi.org/10.1039/D0CC05049K] [PMID: 32857086]
[65]
Jiang, X.; Wei, X.; Lin, F.; Zhang, Z.; Yao, G.; Yang, S.; Zhao, W.; Zhao, C.; Xu, H. Substratecontrolled [5+1] annulation of 5-amino-1Hphenylpyrazoles with alkenes: Divergent synthesis of multi-substituted 4,5-dihydropyrazolo[1,5-a]quinazolines. Eur. J. Org, 2020, 3997-4003.
[http://dx.doi.org/10.1002/ejoc.202000536]
[66]
Yan, J.; Cheo, H.W.; Teo, W.K.; Shi, X.; Wu, H.; Idres, S.B.; Deng, L-W.; Wu, J. A radical Smiles rearrangement promoted by neutral Eosin Y as a direct hydrogen atom transfer photocatalyst. J. Am. Chem. Soc., 2020, 142(26), 11357-11362.
[http://dx.doi.org/10.1021/jacs.0c02052] [PMID: 32543192]
[67]
Wang, Z-S.; Chen, Y-B.; Zhang, H-W.; Sun, Z.; Zhu, C.; Ye, L-W. Ynamide Smiles rearrangement triggered by visible-light mediated regioselective ketyl−ynamide coupling: Rapid access to functionalized indoles and isoquinolines. J. Am. Chem. Soc., 2020, 142(7), 3636-3644.
[http://dx.doi.org/10.1021/jacs.9b13975] [PMID: 32003986]
[68]
De Abreu, M.; Belmont, P.; Brachet, E. Light-enabled radical 1,4-aryl migration via a phospho-Smiles rearrangement. J. Org. Chem., 2021, 86(5), 3758-3767.
[http://dx.doi.org/10.1021/acs.joc.0c02540] [PMID: 33439649]
[69]
Abrams, R.; Jesani, M.H.; Browning, A.; Clayden, J. Triarylmethanes and their medium-ring analogues by unactivated Truce-Smiles rearrangement of banzanilides. Angew. Chem. Int. Ed. Engl., 2021, 60(20), 11272-11277.
[http://dx.doi.org/10.1002/anie.202102192] [PMID: 33830592]
[70]
Shiva Kumar, K.; Siddi Ramulu, M.; Rajesham, B.; Kumar, N.P.; Voora, V.; Kancha, R.K. FeCl3 catalysed 7-membered ring formation in a single pot: A new route to indole-fused oxepines/azepines and their cytotoxic activity. Org. Biomol. Chem., 2017, 15(20), 4468-4476.
[http://dx.doi.org/10.1039/C7OB00715A] [PMID: 28497830]