Current Organic Chemistry

Author(s): Dong Zou* and Gang Han*

DOI: 10.2174/1385272826666220509142255

The Coupling of Carbon and Nitrogen Substituents with Nitroarenes: Vicarious Nucleophilic Substitution of Hydrogen in Nitroarenes

Page: [822 - 833] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

In recent years, nitroarenes have been extensively exploited as green, efficient electrophilic arylation reagents used in a variety of organic syntheses. Transition-metal-free cross-coupling reactions and Vicarious Nucleophilic Substitution (VNS) have become practical and reliable synthetic methods to access momentous functionalized organic compounds. Thus, the introduction of various substituents into nitroarenes has attracted considerable attention as important synthetic approaches due to their simplicity and practicality. In this review, we comprehensively summarize the coupling of several carbon and nitrogen substituents with nitroarenes via nucleophilic substitution under mild conditions, followed by the application of these transversions in the construction of carbon and heterocyclic rings.

Keywords: Nitroarenes, transition-metal-free, cross-coupling, vicarious nucleophilic substitution, carbon substituents, nitrogen substituents.

Graphical Abstract

[1]
Schofiled, K. Aromatic Nitrations; Cambridge University Press: Cambridge, 1980.
[2]
Olah, G.A.; Malhotra, R.; Narang, S.C. Nitration: Methods and Mechanism; Wiley-VCH: New York, 2003, pp. 975-979.
[3]
Sartori, G.; Maggi, R. Use of solid catalysts in Friedel-Crafts acylation reactions. Chem. Rev., 2006, 106(3), 1077-1104.
[http://dx.doi.org/10.1021/cr040695c] [PMID: 16522017]
[4]
Palucki, M.; Buchwald, S.L. Palladium-catalyzed α-arylation of ketones. J. Am. Chem. Soc., 1997, 119(45), 11108-11109.
[http://dx.doi.org/10.1021/ja972593s]
[5]
Hamann, B.C.; Hartwig, J.F. Palladium-catalyzed direct α-arylation of ketones. rate acceleration by sterically hindered chelating ligands and reductive elimination from a transition metal enolate com-plex. J. Am. Chem. Soc., 1997, 119(50), 12382-12383.
[http://dx.doi.org/10.1021/ja9727880]
[6]
Zhang, J.; Bellomo, A.; Creamer, A.D.; Dreher, S.D.; Walsh, P.J. Palladium-catalyzed C(sp3)-H ary-lation of diarylmethanes at room temperature: Synthesis of triarylmethanes via deprotonative-cross-coupling processes. J. Am. Chem. Soc., 2012, 134(33), 13765-13772.
[http://dx.doi.org/10.1021/ja3047816] [PMID: 22816972]
[7]
Bellomo, A.; Zhang, J.; Trongsiriwat, N.; Walsh, P.J. Additive effects on palladium-catalyzed depro-tonative-cross-coupling processes (dccp) of sp3c–h bonds in diarylmethanes. Chem. Sci. (Camb.), 2013, 4(2), 849-857.
[http://dx.doi.org/10.1039/C2SC21673F]
[8]
Zhang, J.; Sha, S.C.; Bellomo, A.; Trongsiriwat, N.; Gao, F.; Tomson, N.C.; Walsh, P.J. Positional selectivity in C-H functionalizations of 2-benzylfurans with bimetallic catalysts. J. Am. Chem. Soc., 2016, 138(12), 4260-4266.
[http://dx.doi.org/10.1021/jacs.6b01578] [PMID: 26937718]
[9]
Cao, X.; Sha, S.C.; Li, M.; Kim, B.S.; Morgan, C.; Huang, R.; Yang, X.; Walsh, P.J. Nickel-catalyzed arylation of heteroaryl-containing diarylmethanes: exceptional reactivity of the ni(nixantphos)-based catalyst. Chem. Sci. (Camb.), 2016, 7(1), 611-618.
[http://dx.doi.org/10.1039/C5SC03704B] [PMID: 27213035]
[10]
Zhang, J.; Bellomo, A.; Trongsiriwat, N.; Jia, T.; Carroll, P.J.; Dreher, S.D.; Tudge, M.T.; Yin, H.; Robinson, J.R.; Schelter, E.J.; Walsh, P.J. NiXantphos: A deprotonatable ligand for room-temperature palladium-catalyzed cross-couplings of aryl chlorides. J. Am. Chem. Soc., 2014, 136(17), 6276-6287.
[http://dx.doi.org/10.1021/ja411855d] [PMID: 24745758]
[11]
Jiang, H.; Sha, S.C.; Jeong, S.A.; Manor, B.C.; Walsh, P.J. Ni(NIXANTPHOS)-catalyzed mono-arylation of toluenes with aryl chlorides and bromides. Org. Lett., 2019, 21(6), 1735-1739.
[http://dx.doi.org/10.1021/acs.orglett.9b00294] [PMID: 30838860]
[12]
Dewanji, A.; Krach, P.E.; Rueping, M. The dual role of benzophenone in Visible-light/Nickel Photo-redox-catalyzed C-H arylations: Hydrogen-atom transfer and energy transfer. Angew. Chem. Int. Ed. Engl., 2019, 58(11), 3566-3570.
[http://dx.doi.org/10.1002/anie.201901327] [PMID: 30776185]
[13]
Li, M.; Yücel, B.; Adrio, J.; Bellomo, A.; Walsh, P.J. Synthesis of diarylmethylamines via palladium-catalyzed regioselective arylation of 1,1,3-triaryl-2-azaallyl anions. Chem. Sci. (Camb.), 2014, 5(6), 2383-2391.
[http://dx.doi.org/10.1039/c3sc53526f] [PMID: 25396041]
[14]
Li, M.; Yucel, B.; Jiménez, J.; Rotella, M.; Fu, Y.; Walsh, P.J. Umpolung synthesis of diarylmethyl-amines via palladium-catalyzed arylation of N-Benzyl Aldimines. Adv. Synth. Catal., 2016, 358(12), 1910-1915.
[http://dx.doi.org/10.1002/adsc.201600075] [PMID: 28190996]
[15]
Bull, D.; Fray, M.; Mackenny, M.; Malloy, K. Facile decarboxylation of nitrobenzeneacetic acid as a convenient route to alkylnitrobenzenes. Synlett, 1996, 07(7), 647-648.
[http://dx.doi.org/10.1055/s-1996-5561]
[16]
Achmatowicz, M.; Thiel, O.R.; Gorins, G.; Goldstein, C.; Affouard, C.; Jensen, R.; Larsen, R.D. Se-lective ortho methylation of nitroheteroaryls by vicarious nucleophilic substitution. J. Org. Chem., 2008, 73(17), 6793-6799.
[http://dx.doi.org/10.1021/jo801131z] [PMID: 18661950]
[17]
Leahy, D.K.; Li, J.; Sausker, J.B.; Zhu, J.; Fitzgerald, M.A.; Lai, C.; Buono, F.G.; Braem, A.; Mas, N.D.; Manaloto, Z. Development of an efficient synthesis of two crf antagonists for the treatment of neurological disorders. Org. Process Res. Dev., 2010, 14(5), 1221-1228.
[http://dx.doi.org/10.1021/op1001512]
[18]
Russell, G.A.; Weiner, S.A. Methylation of aromatic hydrocarbons by dimethyl sulfoxide in the presence of base. J. Org. Chem., 1966, 31(1), 248-251.
[http://dx.doi.org/10.1021/jo01339a056]
[19]
Haiss, P.; Zeller, K.P. Concerning the deprotonation of the trimethylsulfonium ion by the dimethyl-sulfinyl anion. Org. Biomol. Chem., 2011, 9(22), 7748-7754.
[http://dx.doi.org/10.1039/c1ob05889d] [PMID: 21946860]
[20]
Wrobel, Z.; Makosza, M. Direct alkylation of nitroarenes via vicarious nucleophlic substitution of hydrogen. Org. Prep. Proced. Int., 1990, 22(5), 575-578.
[http://dx.doi.org/10.1080/00304949009356327]
[21]
Makosza, M.; Winiarski, J. Vicarious nucleophilic substitution of hydrogen in nitroarenes with. α-substituted nitriles and esters. direct. α-cyanoalkylation and. α-carbalkoxyalkylation of nitroarenes. J. Org. Chem., 1984, 49(9), 1494-1499.
[http://dx.doi.org/10.1021/jo00183a004]
[22]
Eddahmi, M.; Moura, N.M.M.; Bouissane, L.; Gamouh, A.; Faustino, M.A.F.; Cavaleiro, J.A.S.; Paz, F.A.A.; Mendes, R.F.; Lodeiro, C.; Santos, S.M.; Neves, M.G.P.M.S.; Rakib, E.M. New Ni-troindazolylacetonitriles: Efficient synthetic accessviavicarious nucleophilic substitution and tauto-meric switching mediated by anions. New J. Chem., 2019, 43(36), 14355-14367.
[http://dx.doi.org/10.1039/C9NJ02807B]
[23]
Wojciechowski, K.; Wróbel, Z. Synthesis of substituted 3-Cyano- and 3-(Arenesulfonyl)indoles from o-Nitrobenzyl cyanides and sulfones. Synlett, 2011, 2011(17), 2567-2571.
[http://dx.doi.org/10.1055/s-0030-1289515]
[24]
Beier, P.; Iakobson, G.; Pošta, M. Synthesis of pentafluorosulfanyl-containing indoles and oxin-doles. Synlett, 2013, 24(07), 855-859.
[http://dx.doi.org/10.1055/s-0032-1318452]
[25]
Mathi, G.R.; Kang, C.H.; Lee, H.K.; Achary, R.; Lee, H.Y.; Lee, J.Y.; Ha, J.D.; Ahn, S.; Park, C.H.; Lee, C.O.; Hwang, J.Y.; Yun, C.S.; Jung, H.J.; Cho, S.Y.; Kim, H.R.; Kim, P. Replacing the termi-nal piperidine in ceritinib with aliphatic amines confers activities against crizotinib-resistant mutants including G1202R. Eur. J. Med. Chem., 2017, 126, 536-549.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.046] [PMID: 27915169]
[26]
Pedras, M.S.C.; To, Q.H. Synthesis of stable isotope-labeled nasturlexins and potential precursors to probe biosynthetic pathways of cruciferous phytoalexins. J. Labelled Comp. Radiopharm., 2018, 61(2), 94-106.
[http://dx.doi.org/10.1002/jlcr.3591] [PMID: 29231250]
[27]
Davis, R.B.; Pizzini, L.C. Condensation of aromatic nitro compounds with acrylacetonitriles. some p-substituted nitrobenzenes. J. Org. Chem., 1960, 25(11), 1884-1888.
[http://dx.doi.org/10.1021/jo01081a015]
[28]
Rad, N.I.; Teslenko, Y.O.; Obushak, M.D.; Matiychuk, V.S.; Lytvyn, R.Z. Oximes as products in the reactions of 5-Substituted 2-Nitrothiophenes with arylacetonitriles. J. Heterocycl. Chem., 2011, 48(6), 1371-1374.
[http://dx.doi.org/10.1002/jhet.723]
[29]
Beier, P. Pastýříková, T. Synthesis of SF5-containing benzisoxazoles, quinolines, and quinazolines by the Davis reaction of nitro-(pentafluorosulfanyl)benzenes. Beilstein J. Org. Chem., 2013, 9, 411-416.
[http://dx.doi.org/10.3762/bjoc.9.43] [PMID: 23502942]
[30]
Lee, H-J.; Xin, H.; Park, S-M.; Park, S-I.; Ahn, T.; Park, D-K.; Jenekhe, S.A.; Kwon, T-W. Syn-thesis and properties of diarylamino-substituted linear and dendritic oligoquinolines for organic light-emitting diodes. Bull. Korean Chem. Soc., 2012, 33(5), 1627-1637.
[http://dx.doi.org/10.5012/bkcs.2012.33.5.1627]
[31]
Pordel, M.; Abdollahi, A.; Razavi, B. Synthesis and biological evaluation of novel isoxazolo[4,3-e]indoles as antibacterial agents. Bioorg. Khim., 2013, 39(2), 240-243.
[http://dx.doi.org/10.7868/S0132342313020103] [PMID: 23964525]
[32]
Rahimizadeh, M.; Pordel, M.; Ranaei, M.; Bakavoli, M. An Efficient one-pot synthesis of a new het-erocyclic system with high-fluorescent properties. J. Heterocycl. Chem., 2012, 49(1), 208-211.
[http://dx.doi.org/10.1002/jhet.681]
[33]
Nowacki, M.; Wojciechowski, K. Simple synthesis 11-Substituted norcryptotackieine derivatives. RSC Advances, 2015, 5(114), 94296-94303.
[http://dx.doi.org/10.1039/C5RA18626A]
[34]
Wojciechowski, K.; Nowacki, M. Synthesis of [1]Benzothieno[2,3-b]quinolines via Transition-Metal-Free [3+3] Annulation of Nitroarenes and Benzo[b]thiophen-3-ylacetonitrile or 3-(Phenylsulfonylmethyl)benzo[b]thiophene carbanions. Synthesis, 2017, 49(16), 3794-3800.
[http://dx.doi.org/10.1055/s-0036-1588426]
[35]
Nowacki, M.; Wojciechowski, K. Transition-metal-free [3 + 3] annulation of indol-2-ylmethyl car-banions to nitroarenes. A novel synthesis of indolo[3,2-b]quinolines (quindolines). Beilstein J. Org. Chem., 2018, 14, 194-202.
[http://dx.doi.org/10.3762/bjoc.14.14] [PMID: 29441142]
[36]
Mąkosza, M.; Sulikowski, D. Multiple reaction pathways between the carbanions of α-alkoxy-α-phenylacetonitrile and o-chloronitrobenzene. Eur. J. Org. Chem., 2011, 2011(34), 6887-6892.
[http://dx.doi.org/10.1002/ejoc.201100909]
[37]
Rad, N. Mąkosza, M. Simple synthesis of aryl p-nitroarylacetonitriles by vicarious nucleophilic sub-stitution with carbanions of protected cyanohydrins. Eur. J. Org. Chem., 2018, 2018(3), 376-380.
[http://dx.doi.org/10.1002/ejoc.201701507]
[38]
Chhaly, L.; Pritzkow, W. 4-Nitro benzylchloride as a nucleophile in VNS reactions. J. Prakt. Chem., 1994, 336(6), 558-560.
[http://dx.doi.org/10.1002/prac.19943360619]
[39]
Florio, S.; Lorusso, P.; Granito, C.; Ronzini, L.; Troisi, L. Vicarious nucleophilic substitution of (Chloroalkyl)oxazolines with nitroarenes: synthesis of (Nitrobenzyl)oxazolines. Eur. J. Org. Chem., 2003, 2003(20), 4053-4058.
[http://dx.doi.org/10.1002/ejoc.200300411]
[40]
Florio, S.; Lorusso, P.; Granito, C.; Luisi, R.; Troisi, L. One-pot regioselective synthesis of nitro-phenyloxazolinyl styrene oxides by the Darzens reaction of vicarious nucleophilic substitution-formed carbanions of 2-dichloromethyl-4,4-dimethyloxazoline. J. Org. Chem., 2004, 69(15), 4961-4965.
[http://dx.doi.org/10.1021/jo0498359] [PMID: 15255722]
[41]
Mąkosza, M.; Sakowicz, A.; Loska, R. One-Pot synthesis of oxiranes through vicarious nucleophilic substitution (VNS)–darzens reaction. Synlett, 2016, 27(17), 2443-2446.
[http://dx.doi.org/10.1055/s-0035-1562472]
[42]
Florio, S.; Lorusso, P.; Luisi, R.; Granito, C.; Ronzini, L.; Troisi, L. Vicarious nucleophilic substitu-tion of (Chloroalkyl)heterocycles with nitroarenes. Eur. J. Org. Chem., 2004, 2004(10), 2118-2124.
[http://dx.doi.org/10.1002/ejoc.200300806]
[43]
Kisiel, K. Brześkiewicz, J.; Loska, R.; Mąkosza, M. Transition metal free nucleophilic benzylation of nitroarenes. Umpolung of the friedel crafts reaction. Adv. Synth. Catal., 2019, 361(7), 1641-1646.
[http://dx.doi.org/10.1002/adsc.201801715]
[44]
Xiong, Y.; Wu, J.; Xiao, S.; Cao, S. One-pot three component synthesis of Polyfluoroarylated Ary-lacetatesviaVNSAr-SNAr Reaction. Chin. J. Chem., 2012, 30(12), 2747-2751.
[http://dx.doi.org/10.1002/cjoc.201201044]
[45]
Ajenjo, J.; Greenhall, M.; Zarantonello, C.; Beier, P. Synthesis and nucleophilic aromatic substitution of 3-fluoro-5-nitro-1-(pentafluorosulfanyl)-benzene. Beilstein J. Org. Chem., 2016, 12, 192-197.
[http://dx.doi.org/10.3762/bjoc.12.21] [PMID: 26977178]
[46]
Beier, P.; Pastýríková, T.; Iakobson, G. Preparation of SF5 aromatics by vicarious nucleophilic substi-tution reactions of nitro(pentafluorosulfanyl)-benzenes with carbanions. J. Org. Chem., 2011, 76(11), 4781-4786.
[http://dx.doi.org/10.1021/jo200618p] [PMID: 21545179]
[47]
Li, S.S.; Fu, S.; Wang, L.; Xu, L.; Xiao, J. t-BuOK-Mediated oxidative dehydrogenative C(sp3)-H arylation of 2-alkylazaarenes with nitroarenes. J. Org. Chem., 2017, 82(16), 8703-8709.
[http://dx.doi.org/10.1021/acs.joc.7b00732] [PMID: 28737943]
[48]
Katritzky, A.R.; Toader, D. First general synthesis of (p-Nitroaryl)-diarylmethanes via vicarious nu-cleophilic substitution of hydrogen. J. Org. Chem., 1997, 62(12), 4137-4141.
[http://dx.doi.org/10.1021/jo9624197]
[49]
Mπkosza, M.; Surowiec, M.; Voskresensky, S. Synthesis of (p-Nitroaryl)diarylmethanes via vicarious nucleophilic substitution of hydrogen. Synthesis, 2000, 9(9), 1237-1240.
[http://dx.doi.org/10.1055/s-2000-6411]
[50]
Makosza, M.; Bialecki, M. Synthesis of (Nitroaryl)chloromethane via vicarious nucleophilic substitution. synlett, 1991, 181
[51]
Brześkiewicz, J.; Loska, R.; Mąkosza, M. α-Chlorobenzylation of Nitroarenes via vicarious nucleo-philic substitution with benzylidene dichloride: umpolung of the friedel-crafts reaction. J. Org. Chem., 2018, 83(15), 8499-8508.
[http://dx.doi.org/10.1021/acs.joc.8b01091] [PMID: 29905070]
[52]
Czaban-Jóźwiak, J.; Loska, R.; Mąkosza, M. Synthesis of α-Fluoro-α-nitroarylacetates via vicarious nucleophilic substitution of hydrogen. J. Org. Chem., 2016, 81(23), 11751-11757.
[http://dx.doi.org/10.1021/acs.joc.6b02219] [PMID: 27783510]
[53]
Mąkosza, M.; Bester, K.; Cmoch, P. One-Pot synthesis of esters of cyclopropane carboxylic acids via tandem vicarious nucleophilic substitution-michael addition process. J. Org. Chem., 2015, 80(11), 5436-5443.
[http://dx.doi.org/10.1021/acs.joc.5b00204] [PMID: 25950949]
[54]
Han, Y.; Chen, W.; Kuang, Y.; Sun, H.; Wang, Z.; Peng, X. UV-Induced DNA interstrand cross-linking and direct strand breaks from a new type of binitroimidazole analogue. Chem. Res. Toxicol., 2015, 28(5), 919-926.
[http://dx.doi.org/10.1021/tx500522r] [PMID: 25844639]
[55]
Khutorianskyi, V.V. Klepetářová, B.; Beier, P. Vicarious nucleophilic chloromethylation of nitroar-omatics. Org. Lett., 2019, 21(14), 5443-5446.
[http://dx.doi.org/10.1021/acs.orglett.9b01676] [PMID: 31247758]
[56]
Mcbee, E.T.; Hodgins, T.; Wesseler, E.P. Reaction of trichloromethyllithium with 4-halonitrobenzenes. J. Org. Chem., 1971, 36(19), 2907-2909.
[http://dx.doi.org/10.1021/jo00818a048]
[57]
Míjkosza, M.; Owczarczyk, Z. Dihalomethylation of nitroarenes via vicarious nucleophilic substitu-tion of hydrogen with trihalomethyl carbanions. J. Org. Chem., 1989, 54(21), 5094-5100.
[http://dx.doi.org/10.1021/jo00282a025]
[58]
Vanelle, P.; Crozet, M.; Kaafarani, M.; Crozet, M.P.; Suspène, C. Synthesis of a new imidazo[4,5-b]pyridin-5-One via a vicarious nucleophilic substitution of hydrogen. Heterocycles, 2004, 63(7), 1629-1635.
[http://dx.doi.org/10.3987/COM-04-10069]
[59]
Couch, G.D.; Burke, P.J.; Knox, R.J.; Moody, C.J. Synthesis of 2-Aryl-6-Methyl-5-Nitroquinoline derivatives as potential prodrug systems for reductive activation. Tetrahedron, 2008, 64(12), 2816-2823.
[http://dx.doi.org/10.1016/j.tet.2008.01.043]
[60]
Ellis, D. Versatile synthesis of fused tricyclic 1,2,4-triazole derivatives. Synth. Commun., 2011, 41(7), 963-975.
[http://dx.doi.org/10.1080/00397911003707170]
[61]
Ostrowski, S.; Kosmalska, M.; Mikus, A. A vicarious approach to porphyrin aldehydes. Tetrahedron Lett., 2017, 58(21), 2011-2013.
[http://dx.doi.org/10.1016/j.tetlet.2017.03.008]
[62]
Xu, Q.L.; Gao, H.; Yousufuddin, M.; Ess, D.H.; Kürti, L. Aerobic, transition-metal-free, direct, and regiospecific mono-α-arylation of ketones: Synthesis and mechanism by DFT calculations. J. Am. Chem. Soc., 2013, 135(38), 14048-14051.
[http://dx.doi.org/10.1021/ja4074563] [PMID: 24003902]
[63]
Diab, S.; Noël-Duchesneau, L.; Sanselme, M.; Kondo, Y.; De Paolis, M.; Chataigner, I. High pres-sure elicits unexpected transformations of plain nitroaromatics with 4-(cyclohex-1-en-1-yl)morpholine. Eur. J. Org. Chem., 2018, 2018(18), 2048-2052.
[http://dx.doi.org/10.1002/ejoc.201800316]
[64]
Breitbach, A.S.; Lim, Y.; Xu, Q.L.; Kürti, L.; Armstrong, D.W.; Breitbach, Z.S. Enantiomeric sepa-rations of α-aryl ketones with cyclofructan chiral stationary phases via high performance liquid chromatography and supercritical fluid chromatography. J. Chromatogr. A, 2016, 1427, 45-54.
[http://dx.doi.org/10.1016/j.chroma.2015.11.069] [PMID: 26687164]
[65]
Stenlid, J.H.; Brinck, T. Nucleophilic aromatic substitution reactions described by the local electron attachment energy. J. Org. Chem., 2017, 82(6), 3072-3083.
[http://dx.doi.org/10.1021/acs.joc.7b00059] [PMID: 28195731]
[66]
Błaziak, K.; Danikiewicz, W.; Mąkosza, M. How does nucleophilic aromatic substitution really pro-ceed in nitroarenes? computational prediction and experimental verification. J. Am. Chem. Soc., 2016, 138(23), 7276-7281.
[http://dx.doi.org/10.1021/jacs.5b13365] [PMID: 27218876]
[67]
Moskalev, N.; Barbasiewicz, M. Mąkosza, M. Synthesis of 4- and 6-substituted nitroindoles. Tetrahedron, 2004, 60(2), 347-358.
[http://dx.doi.org/10.1016/j.tet.2003.11.011]
[68]
Rathore, V.; Sattar, M.; Kumar, R.; Kumar, S. Synthesis of unsymmetrical diaryl acetamides, benzo-furans, benzophenones, and xanthenes by transition-metal-free oxidative cross-coupling of sp3 and sp2 C-H Bonds. J. Org. Chem., 2016, 81(19), 9206-9218.
[http://dx.doi.org/10.1021/acs.joc.6b01771] [PMID: 27617624]
[69]
Sattar, M.; Rathore, V.; Prasad, C.D.; Kumar, S. Transition-metal-free chemoselective oxidative C-C Coupling of the sp3 C-H bond of oxindoles with arenes and addition to alkene: synthesis of 3-aryl oxindoles, and benzofuro- and indoloindoles. Chem. Asian J., 2017, 12(7), 734-743.
[http://dx.doi.org/10.1002/asia.201601647] [PMID: 28169505]
[70]
Lovato, K.; Guo, L.; Xu, Q.L.; Liu, F.; Yousufuddin, M.; Ess, D.H.; Kürti, L.; Gao, H. Transition metal-free direct dehydrogenative arylation of activated C(sp3)-H bonds: synthetic ambit and DFT reactivity predictions. Chem. Sci. (Camb.), 2018, 9(41), 7992-7999.
[http://dx.doi.org/10.1039/C8SC02758G] [PMID: 30450183]
[71]
Mąkosza, M.; Kamieńska-Trela, K.; Paszewski, M.; Bechcicka, M. Oxidative nucleophilic substitu-tion of hydrogen in nitroarenes with phenylacetic acid derivatives. Tetrahedron, 2005, 61(50), 11952-11964.
[http://dx.doi.org/10.1016/j.tet.2005.09.053]
[72]
Sulikowski, D. Mąkosza, M. Oxidative nucleophilic substitution of hydrogen in nitroarenes with carbanions of protected serine and threonine esters. Eur. J. Org. Chem., 2010, 2010(22), 4218-4226.
[http://dx.doi.org/10.1002/ejoc.201000498]
[73]
Kumar, P.; Sharma, A.K.; Guntreddi, T.; Singh, R.; Singh, K.N. Transition-metal-free regiospecific aroylation of nitroarenes using ethyl arylacetates at room temperature. Org. Lett., 2018, 20(3), 744-747.
[http://dx.doi.org/10.1021/acs.orglett.7b03882] [PMID: 29345475]
[74]
Li, J.S.; Yang, Q.; Yang, F.; Chen, G.Q.; Li, Z.W.; Kuang, Y.J.; Zhang, W.J.; Huang, P.M. Aerobic oxidative acylation of nitroarenes with arylacetic esters under mild conditions: facile access to dia-rylketones. Org. Biomol. Chem., 2017, 16(1), 140-145.
[http://dx.doi.org/10.1039/C7OB02865B] [PMID: 29218339]
[75]
Iakobson, G.; Beier, P. Highly selective synthesis of (E)-alkenyl-(pentafluorosulfanyl)benzenes through Horner-Wadsworth-Emmons reaction. Beilstein J. Org. Chem., 2012, 8, 1185-1190.
[http://dx.doi.org/10.3762/bjoc.8.131] [PMID: 23019446]
[76]
Loska, R. C-H-Alkenylation of arenes in a one-pot VNS - julia-kocienski reaction. Eur. J. Org. Chem., 2018, 2018(47), 6649-6656.
[http://dx.doi.org/10.1002/ejoc.201801018]
[77]
Bujok, R. Mąkosza, M. Direct synthesis of nitroaryl acetylenes from acetylenes and nitroarenes via oxidative nucleophilic substitution of hydrogen. Chem. Commun. (Camb.), 2016, 52(85), 12650-12652.
[http://dx.doi.org/10.1039/C6CC07475H] [PMID: 27713937]
[78]
Kumar, S.; Rathore, V.; Verma, A.; Prasad, ChD.; Kumar, A.; Yadav, A.; Jana, S.; Sattar, M. Meenakshi; Kumar, S. KO(t)Bu-mediated aerobic transition-metal-free regioselective β-arylation of indoles: synthesis of β-(2-/4-nitroaryl)-indoles. Org. Lett., 2015, 17(1), 82-85.
[http://dx.doi.org/10.1021/ol503274z] [PMID: 25496238]
[79]
Yu, J.; Moon, H.R.; Kim, S.Y.; Kim, J.N. Aerobic transition-metal-free synthesis of 2,3-diarylindoles and 5-aryluracils via oxidative nucleophilic substitution of hydrogen pathway. Bull. Korean Chem. Soc., 2016, 37(1), 112-115.
[http://dx.doi.org/10.1002/bkcs.10629]
[80]
Kim, S.Y.; Lim, J.W.; Nam, K.C.; Kim, J.N. Nucleophilic aromatictele-substitution of hydrogen of 9-nitroanthracene with 2-naphthols and phloroglucinol. Bull. Korean Chem. Soc., 2016, 37(9), 1522-1525.
[http://dx.doi.org/10.1002/bkcs.10880]
[81]
Titova, I.A.; Vakul’skaya, T.I.; Larina, L.I.; Mizandrontsev, M.I.; Volkov, V.A.; Dolgushin, G.V.; Lopyrev, V.A. Vakul’Skaya, T. I.; Larina, L. I.; Mizandrontsev, M. I.; Lopyrev, V. A. vicarious nu-cleophilic c-amination of nitrobenzene and 5- and 6-nitro-1-methylbenzimidazoles. Russ. J. Org. Chem., 2006, 41(9), 1306-1315.
[http://dx.doi.org/10.1007/s11178-005-0339-z]
[82]
Makosza, M.; Biaecki, M. Nitroarylamines via the vicarious nucleophilic substitution of hydrogen: amination, alkylamination, and arylamination of nitroarenes with sulfenamides. J. Org. Chem., 1998, 63(15), 4878-4888.
[http://dx.doi.org/10.1021/jo970582b]
[83]
Makosza, M.; Bialecki, M. Amination of nitroarenes with sulfenamides via vicarious nucleophilic-substitution of hydrogen. J. Org. Chem., 1992, 57(18), 4784-4785.
[http://dx.doi.org/10.1021/jo00044a002]
[84]
Seko, S.; Kawamura, N. Copper-catalyzed direct amination of nitrobenzenes with O-alkylhydroxylamines. J. Org. Chem., 1996, 61(2), 442-443.
[http://dx.doi.org/10.1021/jo951903r] [PMID: 11666957]
[85]
Gulevskaya, A.V.; Verbeeck, S.; Burov, O.N.; Meyers, C.; Korbukova, I.N.; Herrebout, W.; Maes, B.U.W. Synthesis of (Alkylamino)nitroarenes by oxidative alkylamination of nitroarenes. Eur. J. Org. Chem., 2009, 2009(4), 564-574.
[http://dx.doi.org/10.1002/ejoc.200800740]
[86]
Wróbel, Z.; Kwast, A. Simple synthesis of N-aryl-2-nitrosoanilines in the reaction of nitroarenes with aniline anion derivatives. Synthesis, 2010, 2010(22), 3865-3872.
[http://dx.doi.org/10.1055/s-0030-1258230]
[87]
Krylova, O.V.; Elokhina, V.N.; Nakhmanovich, A.S.; Larina, L.I.; Lopyrev, V.A. Vicarious C-amination of nitrobenzene. Russ. J. Org. Chem., 2001, 37(6), 887-888.
[http://dx.doi.org/10.1023/A:1012482103171]
[88]
Babkin, A.V.; Asachenko, A.F.; Uborsky, D.V.; Kononovich, D.S.; Izmer, V.V.; Kudakina, V.A.; Shnaider, V.A.; Shevchenko, N.E.; Voskoboynikov, A.Z. Preparation of N-phenyl-p-phenylenediamine by coupling of aniline and nitrobenzene in KOH–poly(ethylene glycol) medium. Mendeleev Commun., 2016, 26(6), 555-557.
[http://dx.doi.org/10.1016/j.mencom.2016.11.033]
[89]
Alsharif, M.A.; Khan, D.; Mukhtar, S.; Alahmdi, M.I.; Ahmed, N. KOtBu-Mediated Aza-Michael addition of aromatic amines or n-phenylurea to 3-nitro-2-phenyl-2h-chromenes and sequential aero-bic dehydrogenation. Eur. J. Org. Chem., 2018, 2018(26), 3454-3463.
[http://dx.doi.org/10.1002/ejoc.201800431]
[90]
Stern, M.K.K.; Cheng, B. Amination of nitrobenzene via nucleophilic aromatic substitution for hy-drogen: Direct formation of aromatic amide bonds. J. Org. Chem., 1993, 58(24), 6883-6888.
[http://dx.doi.org/10.1021/jo00076a059]
[91]
Amangasieva, G.A.; Borovlev, I.V.; Demidov, O.P.; Avakyan, E.K.; Borovleva, A.A. Synthesis of amides by nucleophilic substitution of hydrogen in 3-nitropyridine. Russ. J. Org. Chem., 2018, 54(6), 867-872.
[http://dx.doi.org/10.1134/S1070428018060076]
[92]
Fang, X.; Jackstell, R.; Beller, M. Selective palladium-catalyzed aminocarbonylation of olefins with aromatic amines and nitroarenes. Angew. Chem. Int. Ed. Engl., 2013, 52(52), 14089-14093.
[http://dx.doi.org/10.1002/anie.201308455] [PMID: 24214903]
[93]
Cheung, C.W.; Hu, X. Amine synthesis via iron-catalysed reductive coupling of nitroarenes with al-kyl halides. Nat. Commun., 2016, 7(1), 12494.
[http://dx.doi.org/10.1038/ncomms12494] [PMID: 27515391]
[94]
Zhou, F.; Wang, D.S.; Guan, X.; Driver, T.G. Nitroarenes as the nitrogen source in intermolecular Palladium-catalyzed aryl C-H bond aminocarbonylation reactions. Angew. Chem. Int. Ed. Engl., 2017, 56(16), 4530-4534.
[http://dx.doi.org/10.1002/anie.201612324] [PMID: 28370898]
[95]
Cheung, C.W.; Ma, J.A.; Hu, X. Manganese-Mediated reductive transamidation of tertiary amides with nitroarenes. J. Am. Chem. Soc., 2018, 140(22), 6789-6792.
[http://dx.doi.org/10.1021/jacs.8b03739] [PMID: 29775290]
[96]
Xiao, J.; He, Y.; Ye, F.; Zhu, S. Remote sp3 C–H amination of alkenes with nitroarenes. Chem, 2018, 4(7), 1645-1657.
[http://dx.doi.org/10.1016/j.chempr.2018.04.008]
[97]
Wang, H.; Yu, A.; Cao, A.; Chang, J.; Wu, Y. First Palladium-catalyzed denitrated coupling reaction of nitroarenes with phenols. Appl. Organomet. Chem., 2013, 27(10), 611-614.
[http://dx.doi.org/10.1002/aoc.3043]
[98]
Bahekar, S.S.; Sarkate, A.P.; Wadhai, V.M.; Wakte, P.S.; Shinde, D.B. CuI catalyzed C-S bond formation by using nitroarenes. Catal. Commun., 2013, 41, 123-125.
[http://dx.doi.org/10.1016/j.catcom.2013.07.019]
[99]
Yadav, M.R.; Nagaoka, M.; Kashihara, M.; Zhong, R.L.; Miyazaki, T.; Sakaki, S.; Nakao, Y. The Suzuki-miyaura coupling of nitroarenes. J. Am. Chem. Soc., 2017, 139(28), 9423-9426.
[http://dx.doi.org/10.1021/jacs.7b03159] [PMID: 28678486]
[100]
Chen, W.; Chen, K.; Chen, W.; Liu, M.; Wu, H. Well-Designed N-Heterocyclic carbene ligands for palladium-catalyzed denitrative c–n coupling of nitroarenes with amines. ACS Catal., 2019, 9(9), 8110-8115.
[http://dx.doi.org/10.1021/acscatal.9b02760]
[101]
Bartoli, G.; Palmieri, G.; Bosco, M.; Dalpozzo, R. The reaction of vinyl grignard reagents with 2-substituted nitroarenes: A new approach to the synthesis of 7-substituted indoles. Tetrahedron Lett., 1989, 30(16), 2129-2132.
[http://dx.doi.org/10.1016/S0040-4039(01)93730-X]
[102]
Bartoli, G.; Dalpozzo, R.; Nardi, M. Applications of bartoli indole synthesis. Chem. Soc. Rev., 2014, 43(13), 4728-4750.
[http://dx.doi.org/10.1039/C4CS00045E] [PMID: 24718836]
[103]
Zou, D.; Gan, L.; Yang, F.; Wang, H.; Pu, Y.; Li, J.; Walsh, P.J. SET activation of nitroarenes by 2-azaallyl anions as a straightforward access to 2,5-dihydro-1,2,4-oxadiazoles. Nat. Commun., 2021, 12(1), 7060.
[http://dx.doi.org/10.1038/s41467-021-26767-x] [PMID: 34862375]