A Potential Strategy for Treatment of Neurodegenerative Disorders by Regulation of Adult Hippocampal Neurogenesis in Human Brain

Page: [5315 - 5347] Pages: 33

  • * (Excluding Mailing and Handling)

Abstract

Adult hippocampal neurogenesis is a multistage mechanism that continues throughout the lifespan of human and non-human mammals. These adult-born neurons in the central nervous system (CNS) play a significant role in various hippocampus-dependent processes, including learning, mood regulation, pattern recognition, etc. Reduction of adult hippocampal neurogenesis, caused by multiple factors such as neurological disorders and aging, would impair neuronal proliferation and differentiation and result in memory loss. Accumulating studies have indicated that functional neuron impairment could be restored by promoting adult hippocampal neurogenesis. In this review, we summarized the small molecules that could efficiently promote the process of adult neurogenesis, particularly the agents that have the capacity of crossing the blood-brain barrier (BBB), and showed in vivo efficacy in mammalian brains. This may pave the way for the rational design of drugs to treat human neurodegenerative disorders in the future.

Keywords: Neurogenesis, hippocampus, neurodegenerative, small molecules, structure-activity relationship, human brain.

[1]
Horner, P.J.; Gage, F.H. Regenerating the damaged central nervous system. Nature, 2000, 407(6807), 963-970.
[http://dx.doi.org/10.1038/35039559] [PMID: 11069169]
[2]
Altman, J.; Das, G.D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol., 1965, 124(3), 319-335.
[http://dx.doi.org/10.1002/cne.901240303] [PMID: 5861717]
[3]
Kuhn, H.G.; Dickinson-Anson, H.; Gage, F.H. Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal progenitor proliferation. J. Neurosci., 1996, 16(6), 2027-2033.
[http://dx.doi.org/10.1523/JNEUROSCI.16-06-02027.1996] [PMID: 8604047]
[4]
Ming, G.L.; Song, H. Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron, 2011, 70(4), 687-702.
[http://dx.doi.org/10.1016/j.neuron.2011.05.001] [PMID: 21609825]
[5]
Yuan, T.F.; Arias-Carrión, O. Adult neurogenesis in the hypothalamus: Evidence, functions, and implications. CNS Neurol. Disord. Drug Targets, 2011, 10(4), 433-439.
[http://dx.doi.org/10.2174/187152711795563985] [PMID: 21495965]
[6]
Eriksson, P.S.; Perfilieva, E.; Björk-Eriksson, T.; Alborn, A.M.; Nordborg, C.; Peterson, D.A.; Gage, F.H. Neurogenesis in the adult human hippocampus. Nat. Med., 1998, 4(11), 1313-1317.
[http://dx.doi.org/10.1038/3305] [PMID: 9809557]
[7]
Sorrells, S.F.; Paredes, M.F.; Cebrian-Silla, A.; Sandoval, K.; Qi, D.; Kelley, K.W.; James, D.; Mayer, S.; Chang, J.; Auguste, K.I.; Chang, E.F.; Gutierrez, A.J.; Kriegstein, A.R.; Mathern, G.W.; Oldham, M.C.; Huang, E.J.; Garcia-Verdugo, J.M.; Yang, Z.; Alvarez-Buylla, A. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature, 2018, 555(7696), 377-381.
[http://dx.doi.org/10.1038/nature25975] [PMID: 29513649]
[8]
Boldrini, M.; Fulmore, C.A.; Tartt, A.N.; Simeon, L.R.; Pavlova, I.; Poposka, V.; Rosoklija, G.B.; Stankov, A.; Arango, V.; Dwork, A.J.; Hen, R.; Mann, J.J. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell, 2018, 22(4), 589-599.e5.
[http://dx.doi.org/10.1016/j.stem.2018.03.015] [PMID: 29625071]
[9]
Lima, S.M.A.; Gomes-Leal, W. Neurogenesis in the hippocampus of adult humans: Controversy “fixed” at last. Neural Regen. Res., 2019, 14(11), 1917-1918.
[http://dx.doi.org/10.4103/1673-5374.259616] [PMID: 31290449]
[10]
Moreno-Jiménez, E.P.; Flor-García, M.; Terreros-Roncal, J.; Rábano, A.; Cafini, F.; Pallas-Bazarra, N.; Ávila, J.; Llorens-Martín, M. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med., 2019, 25(4), 554-560.
[http://dx.doi.org/10.1038/s41591-019-0375-9] [PMID: 30911133]
[11]
Lee, H.; Thuret, S. Adult human hippocampal neurogenesis: Controversy and evidence. Trends Mol. Med., 2018, 24(6), 521-522.
[http://dx.doi.org/10.1016/j.molmed.2018.04.002] [PMID: 29699864]
[12]
Chen, G.; Rajkowska, G.; Du, F.; Seraji-Bozorgzad, N.; Manji, H.K. Enhancement of hippocampal neurogenesis by lithium. J. Neurochem., 2000, 75(4), 1729-1734.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0751729.x] [PMID: 10987856]
[13]
Benraiss, A.; Chmielnicki, E.; Lerner, K.; Roh, D.; Goldman, S.A. Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J. Neurosci., 2001, 21(17), 6718-6731.
[http://dx.doi.org/10.1523/JNEUROSCI.21-17-06718.2001] [PMID: 11517261]
[14]
Hack, I.; Bancila, M.; Loulier, K.; Carroll, P.; Cremer, H. Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis. Nat. Neurosci., 2002, 5(10), 939-945.
[http://dx.doi.org/10.1038/nn923] [PMID: 12244323]
[15]
Murase, S.; Horwitz, A.F. Deleted in colorectal carcinoma and differentially expressed integrins mediate the directional migration of neural precursors in the rostral migratory stream. J. Neurosci., 2002, 22(9), 3568-3579.
[http://dx.doi.org/10.1523/JNEUROSCI.22-09-03568.2002] [PMID: 11978833]
[16]
Mizrahi, A. Dendritic development and plasticity of adult-born neurons in the mouse olfactory bulb. Nat. Neurosci., 2007, 10(4), 444-452.
[http://dx.doi.org/10.1038/nn1875] [PMID: 17369823]
[17]
Taupin, P. BrdU immunohistochemistry for studying adult neurogenesis: Paradigms, pitfalls, limitations, and validation. Brain Res. Brain Res. Rev., 2007, 53(1), 198-214.
[http://dx.doi.org/10.1016/j.brainresrev.2006.08.002] [PMID: 17020783]
[18]
Mathews, K.J.; Allen, K.M.; Boerrigter, D.; Ball, H.; Shannon Weickert, C.; Double, K.L. Evidence for reduced neurogenesis in the aging human hippocampus despite stable stem cell markers. Aging Cell, 2017, 16(5), 1195-1199.
[http://dx.doi.org/10.1111/acel.12641] [PMID: 28766905]
[19]
Mullen, R.J.; Buck, C.R.; Smith, A.M. NeuN, a neuronal specific nuclear protein in vertebrates. Development, 1992, 116(1), 201-211.
[http://dx.doi.org/10.1242/dev.116.1.201] [PMID: 1483388]
[20]
Soltani, M.H.; Pichardo, R.; Song, Z.; Sangha, N.; Camacho, F.; Satyamoorthy, K.; Sangueza, O.P.; Setaluri, V. Microtubule-associated protein 2, a marker of neuronal differentiation, induces mitotic defects, inhibits growth of melanoma cells, and predicts metastatic potential of cutaneous melanoma. Am. J. Pathol., 2005, 166(6), 1841-1850.
[http://dx.doi.org/10.1016/S0002-9440(10)62493-5] [PMID: 15920168]
[21]
von Bohlen Und Halbach, O. Immunohistological markers for staging neurogenesis in adult hippocampus. Cell Tissue Res., 2007, 329(3), 409-420.
[http://dx.doi.org/10.1007/s00441-007-0432-4] [PMID: 17541643]
[22]
von Bohlen und Halbach, O. Immunohistological markers for proliferative events, gliogenesis, and neurogenesis within the adult hippocampus. Cell Tissue Res., 2011, 345(1), 1-19.
[http://dx.doi.org/10.1007/s00441-011-1196-4] [PMID: 21647561]
[23]
Christian, K.M.; Song, H.; Ming, G-l. Functions and dysfunctions of adult hippocampal neurogenesis.Annu. Rev. Neurosci; Hyman, S.E., Eds.; Hyman, S.E., Eds.; , 2014, 37, pp. 243-262., 2014, 37, pp. 243-.
[http://dx.doi.org/10.1146/annurev-neuro-071013-014134]
[24]
Sasaguri, H.; Nilsson, P.; Hashimoto, S.; Nagata, K.; Saito, T.; De Strooper, B.; Hardy, J.; Vassar, R.; Winblad, B.; Saido, T.C. APP mouse models for Alzheimer’s disease preclinical studies. EMBO J., 2017, 36(17), 2473-2487.
[http://dx.doi.org/10.15252/embj.201797397] [PMID: 28768718]
[25]
Encinas, J.M.; Michurina, T.V.; Peunova, N.; Park, J-H.; Tordo, J.; Peterson, D.A.; Fishell, G.; Koulakov, A.; Enikolopov, G. Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell, 2011, 8(5), 566-579.
[http://dx.doi.org/10.1016/j.stem.2011.03.010] [PMID: 21549330]
[26]
Höglinger, G.U.; Rizk, P.; Muriel, M.P.; Duyckaerts, C.; Oertel, W.H.; Caille, I.; Hirsch, E.C. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat. Neurosci., 2004, 7(7), 726-735.
[http://dx.doi.org/10.1038/nn1265] [PMID: 15195095]
[27]
Lindqvist, A.; Mohapel, P.; Bouter, B.; Frielingsdorf, H.; Pizzo, D.; Brundin, P.; Erlanson-Albertsson, C. High-fat diet impairs hippocampal neurogenesis in male rats. Eur. J. Neurol., 2006, 13(12), 1385-1388.
[http://dx.doi.org/10.1111/j.1468-1331.2006.01500.x] [PMID: 17116226]
[28]
Dennis, C.V.; Suh, L.S.; Rodriguez, M.L.; Kril, J.J.; Sutherland, G.T. Human adult neurogenesis across the ages: An immunohistochemical study. Neuropathol. Appl. Neurobiol., 2016, 42(7), 621-638.
[http://dx.doi.org/10.1111/nan.12337] [PMID: 27424496]
[29]
Kempermann, G.; Krebs, J.; Fabel, K. The contribution of failing adult hippocampal neurogenesis to psychiatric disorders. Curr. Opin. Psychiatry, 2008, 21(3), 290-295.
[http://dx.doi.org/10.1097/YCO.0b013e3282fad375] [PMID: 18382230]
[30]
Auld, D.S.; Mennicken, F.; Quirion, R. Nerve growth factor rapidly induces prolonged acetylcholine release from cultured basal forebrain neurons: Differentiation between neuromodulatory and neurotrophic influences. J. Neurosci., 2001, 21(10), 3375-3382.
[http://dx.doi.org/10.1523/JNEUROSCI.21-10-03375.2001] [PMID: 11331367]
[31]
Huang, X.; Zhou, G.; Wu, W.; Ma, G.; D’Amore, P.A.; Mukai, S.; Lei, H. Editing VEGFR2 blocks VEGF-induced activation of Akt and Tube formation. Invest. Ophthalmol. Vis. Sci., 2017, 58(2), 1228-1236.
[http://dx.doi.org/10.1167/iovs.16-20537] [PMID: 28241310]
[32]
Yourey, P.A.; Gohari, S.; Su, J.L.; Alderson, R.F. Vascular endothelial cell growth factors promote the in vitro development of rat photoreceptor cells. J. Neurosci., 2000, 20(18), 6781-6788.
[http://dx.doi.org/10.1523/JNEUROSCI.20-18-06781.2000] [PMID: 10995821]
[33]
Palmer, T.D.; Willhoite, A.R.; Gage, F.H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol., 2000, 425(4), 479-494.
[http://dx.doi.org/10.1002/1096-9861(20001002)425:4<479::AID-CNE2>3.0.CO;2-3] [PMID: 10975875]
[34]
Jin, K.; Mao, X.O.; Sun, Y.; Xie, L.; Jin, L.; Nishi, E.; Klagsbrun, M.; Greenberg, D.A. Heparin-binding epidermal growth factor-like growth factor: Hypoxia-inducible expression in vitro and stimulation of neurogenesis in vitro and in vivo. J. Neurosci., 2002, 22(13), 5365-5373.
[http://dx.doi.org/10.1523/JNEUROSCI.22-13-05365.2002] [PMID: 12097488]
[35]
Jin, K.; Zhu, Y.; Sun, Y.; Mao, X.O.; Xie, L.; Greenberg, D.A. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci. USA, 2002, 99(18), 11946-11950.
[http://dx.doi.org/10.1073/pnas.182296499] [PMID: 12181492]
[36]
Zhang, Z.G.; Zhang, L.; Jiang, Q.; Zhang, R.; Davies, K.; Powers, C.; Bruggen, N.; Chopp, M. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J. Clin. Invest., 2000, 106(7), 829-838.
[http://dx.doi.org/10.1172/JCI9369] [PMID: 11018070]
[37]
Alderson, R.F.; Alterman, A.L.; Barde, Y.A.; Lindsay, R.M. Brain-derived neurotrophic factor increases survival and differentiated functions of rat septal cholinergic neurons in culture. Neuron, 1990, 5(3), 297-306.
[http://dx.doi.org/10.1016/0896-6273(90)90166-D] [PMID: 2169269]
[38]
Kirschenbaum, B.; Goldman, S.A. Brain-derived neurotrophic factor promotes the survival of neurons arising from the adult rat forebrain subependymal zone. Proc. Natl. Acad. Sci. USA, 1995, 92(1), 210-214.
[http://dx.doi.org/10.1073/pnas.92.1.210] [PMID: 7816819]
[39]
Zigova, T.; Pencea, V.; Wiegand, S.J.; Luskin, M.B. Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol. Cell. Neurosci., 1998, 11(4), 234-245.
[http://dx.doi.org/10.1006/mcne.1998.0684] [PMID: 9675054]
[40]
Aberg, M.A.I.; Aberg, N.D.; Hedbäcker, H.; Oscarsson, J.; Eriksson, P.S. Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J. Neurosci., 2000, 20(8), 2896-2903.
[http://dx.doi.org/10.1523/JNEUROSCI.20-08-02896.2000] [PMID: 10751442]
[41]
Hassani, Z.; O’Reilly, J.; Pearse, Y.; Stroemer, P.; Tang, E.; Sinden, J.; Price, J.; Thuret, S. Human neural progenitor cell engraftment increases neurogenesis and microglial recruitment in the brain of rats with stroke. PLoS One, 2012, 7(11), e50444.
[http://dx.doi.org/10.1371/journal.pone.0050444] [PMID: 23185625]
[42]
Tuszynski, M.H.; Thal, L.; Pay, M.; Salmon, D.P.; U, H.S.; Bakay, R.; Patel, P.; Blesch, A.; Vahlsing, H.L.; Ho, G.; Tong, G.; Potkin, S.G.; Fallon, J.; Hansen, L.; Mufson, E.J.; Kordower, J.H.; Gall, C.; Conner, J. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat. Med., 2005, 11(5), 551-555.
[http://dx.doi.org/10.1038/nm1239] [PMID: 15852017]
[43]
Yamashima, T.; Tonchev, A.B.; Yukie, M. Adult hippocampal neurogenesis in rodents and primates: Endogenous, enhanced, and engrafted. Rev. Neurosci., 2007, 18(1), 67-82.
[http://dx.doi.org/10.1515/REVNEURO.2007.18.1.67] [PMID: 17405451]
[44]
Bankiewicz, K.S.; Forsayeth, J.; Eberling, J.L.; Sanchez-Pernaute, R.; Pivirotto, P.; Bringas, J.; Herscovitch, P.; Carson, R.E.; Eckelman, W.; Reutter, B.; Cunningham, J. Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol. Ther., 2006, 14(4), 564-570.
[http://dx.doi.org/10.1016/j.ymthe.2006.05.005] [PMID: 16829205]
[45]
Henry, R.A.; Hughes, S.M.; Connor, B. AAV-mediated delivery of BDNF augments neurogenesis in the normal and quinolinic acid-lesioned adult rat brain. Eur. J. Neurosci., 2007, 25(12), 3513-3525.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05625.x] [PMID: 17610571]
[46]
Adessi, C.; Soto, C. Converting a peptide into a drug: Strategies to improve stability and bioavailability. Curr. Med. Chem., 2002, 9(9), 963-978.
[http://dx.doi.org/10.2174/0929867024606731] [PMID: 11966456]
[47]
Blanchard, J.; Chohan, M.O.; Li, B.; Liu, F.; Iqbal, K.; Grundke-Iqbal, I. Beneficial effect of a CNTF tetrapeptide on adult hippocampal neurogenesis, neuronal plasticity, and spatial memory in mice. J. Alzheimers Dis., 2010, 21(4), 1185-1195.
[http://dx.doi.org/10.3233/JAD-2010-1000069] [PMID: 20952820]
[48]
Chohan, M.O.; Li, B.; Blanchard, J.; Tung, Y-C.; Heaney, A.T.; Rabe, A.; Iqbal, K.; Grundke-Iqbal, I. Enhancement of dentate gyrus neurogenesis, dendritic and synaptic plasticity and memory by a neurotrophic peptide. Neurobiol. Aging, 2011, 32(8), 1420-1434.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.08.008] [PMID: 19767127]
[49]
Bolognin, S.; Buffelli, M.; Puoliväli, J.; Iqbal, K. Rescue of cognitive-aging by administration of a neurogenic and/or neurotrophic compound. Neurobiol. Aging, 2014, 35(9), 2134-2146.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.02.017] [PMID: 24702821]
[50]
Li, B.; Wanka, L.; Blanchard, J.; Liu, F.; Chohan, M.O.; Iqbal, K.; Grundke-Iqbal, I. Neurotrophic peptides incorporating adamantane improve learning and memory, promote neurogenesis and synaptic plasticity in mice. FEBS Lett., 2010, 584(15), 3359-3365.
[http://dx.doi.org/10.1016/j.febslet.2010.06.025] [PMID: 20600002]
[51]
Song, N-N.; Huang, Y.; Yu, X.; Lang, B.; Ding, Y-Q.; Zhang, L. Divergent roles of central serotonin in adult hippocampal neurogenesis. Front. Cell. Neurosci., 2017, 11, 185.
[http://dx.doi.org/10.3389/fncel.2017.00185] [PMID: 28713247]
[52]
Zheng, C.; Huang, Y.; Zhang, H.; Zha, Y.; Wang, M. [β2-nicotinic acetylcholine receptor promotes development of GABAA receptors in mouse hippocampal CA1 and CA3 pyramidal neurons]. Nan Fang Yi Ke Da Xue Xue Bao, 2018, 38(9), 1045-1051.
[PMID: 30377105]
[53]
Nishimura, A.; Ueda, S.; Takeuchi, Y.; Sawada, T.; Kawata, M. Age-related decrease of serotonergic fibres and S-100 beta immunoreactivity in the rat dentate gyrus. Neuroreport, 1995, 6(10), 1445-1448.
[http://dx.doi.org/10.1097/00001756-199507100-00021] [PMID: 7488745]
[54]
Pompeiano, M.; Palacios, J.M.; Mengod, G. Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: Correlation with receptor binding. J. Neurosci., 1992, 12(2), 440-453.
[http://dx.doi.org/10.1523/JNEUROSCI.12-02-00440.1992] [PMID: 1531498]
[55]
Brezun, J.M.; Daszuta, A. Serotonin may stimulate granule cell proliferation in the adult hippocampus, as observed in rats grafted with foetal raphe neurons. Eur. J. Neurosci., 2000, 12(1), 391-396.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00932.x] [PMID: 10651896]
[56]
Brezun, J.M.; Daszuta, A. Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience, 1999, 89(4), 999-1002.
[http://dx.doi.org/10.1016/S0306-4522(98)00693-9] [PMID: 10362289]
[57]
Young, S.Z.; Taylor, M.M.; Bordey, A. Neurotransmitters couple brain activity to subventricular zone neurogenesis. Eur. J. Neurosci., 2011, 33(6), 1123-1132.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07611.x] [PMID: 21395856]
[58]
Wichterle, H.; Turnbull, D.H.; Nery, S.; Fishell, G.; Alvarez-Buylla, A. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development, 2001, 128(19), 3759-3771.
[http://dx.doi.org/10.1242/dev.128.19.3759] [PMID: 11585802]
[59]
Borta, A.; Höglinger, G.U. Dopamine and adult neurogenesis. J. Neurochem., 2007, 100(3), 587-595.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04241.x] [PMID: 17101030]
[60]
O’Keeffe, G.C.; Tyers, P.; Aarsland, D.; Dalley, J.W.; Barker, R.A.; Caldwell, M.A. Dopamine-induced proliferation of adult neural precursor cells in the mammalian subventricular zone is mediated through EGF. Proc. Natl. Acad. Sci. USA, 2009, 106(21), 8754-8759.
[http://dx.doi.org/10.1073/pnas.0803955106] [PMID: 19433789]
[61]
Winner, B.; Desplats, P.; Hagl, C.; Klucken, J.; Aigner, R.; Ploetz, S.; Laemke, J.; Karl, A.; Aigner, L.; Masliah, E.; Buerger, E.; Winkler, J. Dopamine receptor activation promotes adult neurogenesis in an acute Parkinson model. Exp. Neurol., 2009, 219(2), 543-552.
[http://dx.doi.org/10.1016/j.expneurol.2009.07.013] [PMID: 19619535]
[62]
O’Keeffe, G.C.; Barker, R.A.; Caldwell, M.A. Dopaminergic modulation of neurogenesis in the subventricular zone of the adult brain. Cell Cycle, 2009, 8(18), 2888-2894.
[http://dx.doi.org/10.4161/cc.8.18.9512] [PMID: 19713754]
[63]
Ma, W.; Maric, D.; Li, B.S.; Hu, Q.; Andreadis, J.D.; Grant, G.M.; Liu, Q.Y.; Shaffer, K.M.; Chang, Y.H.; Zhang, L.; Pancrazio, J.J.; Pant, H.C.; Stenger, D.A.; Barker, J.L. Acetylcholine stimulates cortical precursor cell proliferation in vitro via muscarinic receptor activation and MAP kinase phosphorylation. Eur. J. Neurosci., 2000, 12(4), 1227-1240.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00010.x] [PMID: 10762352]
[64]
Van Kampen, J.M.; Eckman, C.B. Agonist-induced restoration of hippocampal neurogenesis and cognitive improvement in a model of cholinergic denervation. Neuropharmacology, 2010, 58(6), 921-929.
[http://dx.doi.org/10.1016/j.neuropharm.2009.12.005] [PMID: 20026137]
[65]
Hamson, D.K.; Wainwright, S.R.; Taylor, J.R.; Jones, B.A.; Watson, N.V.; Galea, L.A.M. Androgens increase survival of adult-born neurons in the dentate gyrus by an androgen receptor-dependent mechanism in male rats. Endocrinology, 2013, 154(9), 3294-3304.
[http://dx.doi.org/10.1210/en.2013-1129] [PMID: 23782943]
[66]
Galea, L.A.M.; Wainwright, S.R.; Roes, M.M.; Duarte-Guterman, P.; Chow, C.; Hamson, D.K. Sex, hormones and neurogenesis in the hippocampus: Hormonal modulation of neurogenesis and potential functional implications. J. Neuroendocrinol., 2013, 25(11), 1039-1061.
[http://dx.doi.org/10.1111/jne.12070] [PMID: 23822747]
[67]
Mazzucco, C.A.; Lieblich, S.E.; Bingham, B.I.; Williamson, M.A.; Viau, V.; Galea, L.A.M. Both estrogen receptor alpha and estrogen receptor beta agonists enhance cell proliferation in the dentate gyrus of adult female rats. Neuroscience, 2006, 141(4), 1793-1800.
[http://dx.doi.org/10.1016/j.neuroscience.2006.05.032] [PMID: 16797852]
[68]
Tanapat, P.; Hastings, N.B.; Reeves, A.J.; Gould, E. Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. J. Neurosci., 1999, 19(14), 5792-5801.
[http://dx.doi.org/10.1523/JNEUROSCI.19-14-05792.1999] [PMID: 10407020]
[69]
Nagy, A.I.; Ormerod, B.K.; Mazzucco, C.; Galea, L.A.M. Estradiol-induced enhancement in cell proliferation is mediated through estrogen receptors in the dentate gyrus of adult female rats. Drug Dev. Res., 2005, 66(2), 142-149.
[http://dx.doi.org/10.1002/ddr.20053]
[70]
Garza, J.C.; Guo, M.; Zhang, W.; Lu, X-Y. Leptin increases adult hippocampal neurogenesis in vivo and in vitro. J. Biol. Chem., 2008, 283(26), 18238-18247.
[http://dx.doi.org/10.1074/jbc.M800053200] [PMID: 18367451]
[71]
Kuipers, S.D.; Bramham, C.R.; Cameron, H.A.; Fitzsimons, C.P.; Korosi, A.; Lucassen, P.J. Environmental control of adult neurogenesis: From hippocampal homeostasis to behavior and disease. Neural Plast., 2014, 2014, 808643.
[http://dx.doi.org/10.1155/2014/808643] [PMID: 25580306]
[72]
van Praag, H.; Kempermann, G.; Gage, F.H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci., 1999, 2(3), 266-270.
[http://dx.doi.org/10.1038/6368] [PMID: 10195220]
[73]
Chae, C.H.; Jung, S.L.; An, S.H.; Park, B.Y.; Kim, T.W.; Wang, S.W.; Kim, J.H.; Lee, H.C.; Kim, H.T. Swimming exercise stimulates neuro-genesis in the subventricular zone via increase in synapsin I and nerve growth factor levels. Biol. Sport, 2014, 31(4), 309-314.
[http://dx.doi.org/10.5604/20831862.1132130] [PMID: 25609889]
[74]
van Praag, H.; Christie, B.R.; Sejnowski, T.J.; Gage, F.H. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. USA, 1999, 96(23), 13427-13431.
[http://dx.doi.org/10.1073/pnas.96.23.13427] [PMID: 10557337]
[75]
Niwa, A.; Nishibori, M.; Hamasaki, S.; Kobori, T.; Liu, K.; Wake, H.; Mori, S.; Yoshino, T.; Takahashi, H. Voluntary exercise induces neurogenesis in the hypothalamus and ependymal lining of the third ventricle. Brain Struct. Funct., 2016, 221(3), 1653-1666.
[http://dx.doi.org/10.1007/s00429-015-0995-x] [PMID: 25633473]
[76]
Swain, R.A.; Harris, A.B.; Wiener, E.C.; Dutka, M.V.; Morris, H.D.; Theien, B.E.; Konda, S.; Engberg, K.; Lauterbur, P.C.; Greenough, W.T. Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience, 2003, 117(4), 1037-1046.
[http://dx.doi.org/10.1016/S0306-4522(02)00664-4] [PMID: 12654355]
[77]
Sharma, H.S.; Cervós-Navarro, J.; Dey, P.K. Increased blood-brain barrier permeability following acute short-term swimming exercise in conscious normotensive young rats. Neurosci. Res., 1991, 10(3), 211-221.
[http://dx.doi.org/10.1016/0168-0102(91)90058-7] [PMID: 1650437]
[78]
Marlatt, M.W.; Potter, M.C.; Lucassen, P.J.; van Praag, H. Running throughout middle-age improves memory function, hippocampal neurogenesis, and BDNF levels in female C57BL/6J mice. Dev. Neurobiol., 2012, 72(6), 943-952.
[http://dx.doi.org/10.1002/dneu.22009] [PMID: 22252978]
[79]
Stangl, D.; Thuret, S. Impact of diet on adult hippocampal neurogenesis. Genes Nutr., 2009, 4(4), 271-282.
[http://dx.doi.org/10.1007/s12263-009-0134-5] [PMID: 19685256]
[80]
Witte, A.V.; Fobker, M.; Gellner, R.; Knecht, S.; Flöel, A. Caloric restriction improves memory in elderly humans. Proc. Natl. Acad. Sci. USA, 2009, 106(4), 1255-1260.
[http://dx.doi.org/10.1073/pnas.0808587106] [PMID: 19171901]
[81]
Lee, J.; Duan, W.; Long, J.M.; Ingram, D.K.; Mattson, M.P. Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J. Mol. Neurosci., 2000, 15(2), 99-108.
[http://dx.doi.org/10.1385/JMN:15:2:99] [PMID: 11220789]
[82]
Lee, J.; Seroogy, K.B.; Mattson, M.P. Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J. Neurochem., 2002, 80(3), 539-547.
[http://dx.doi.org/10.1046/j.0022-3042.2001.00747.x] [PMID: 11905999]
[83]
Yamamoto, T.; Hirayama, A.; Hosoe, N.; Furube, M.; Hirano, S. Effects of soft-diet feeding on BDNF expression in hippocampus of mice. Bull. Tokyo Dent. Coll., 2008, 49(4), 185-190.
[http://dx.doi.org/10.2209/tdcpublication.49.185] [PMID: 19420879]
[84]
Venna, V.R.; Deplanque, D.; Allet, C.; Belarbi, K.; Hamdane, M.; Bordet, R. PUFA induce antidepressant-like effects in parallel to structural and molecular changes in the hippocampus. Psychoneuroendocrinology, 2009, 34(2), 199-211.
[http://dx.doi.org/10.1016/j.psyneuen.2008.08.025] [PMID: 18848400]
[85]
Kokaia, Z.; Thored, P.; Arvidsson, A.; Lindvall, O. Regulation of stroke-induced neurogenesis in adult brain--recent scientific progress. Cereb. Cortex, 2006, 16(Suppl. 1), i162-i167.
[http://dx.doi.org/10.1093/cercor/bhj174] [PMID: 16766702]
[86]
Arvidsson, A.; Collin, T.; Kirik, D.; Kokaia, Z.; Lindvall, O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med., 2002, 8(9), 963-970.
[http://dx.doi.org/10.1038/nm747] [PMID: 12161747]
[87]
Lee, S.T.; Chu, K.; Park, J.E.; Lee, K.; Kang, L.; Kim, S.U.; Kim, M. Intravenous administration of human neural stem cells induces functional recovery in Huntington’s disease rat model. Neurosci. Res., 2005, 52(3), 243-249.
[http://dx.doi.org/10.1016/j.neures.2005.03.016] [PMID: 15896865]
[88]
Qu, T.; Brannen, C.L.; Kim, H.M.; Sugaya, K. Human neural stem cells improve cognitive function of aged brain. Neuroreport, 2001, 12(6), 1127-1132.
[http://dx.doi.org/10.1097/00001756-200105080-00016] [PMID: 11338178]
[89]
Tfilin, M.; Sudai, E.; Merenlender, A.; Gispan, I.; Yadid, G.; Turgeman, G. Mesenchymal stem cells increase hippocampal neurogenesis and counteract depressive-like behavior. Mol. Psychiatry, 2010, 15(12), 1164-1175.
[http://dx.doi.org/10.1038/mp.2009.110] [PMID: 19859069]
[90]
Duncan, T.; Valenzuela, M. Alzheimer’s disease, dementia, and stem cell therapy. Stem Cell Res. Ther., 2017, 8(1), 111.
[http://dx.doi.org/10.1186/s13287-017-0567-5] [PMID: 28494803]
[91]
Dayan, E.; Censor, N.; Buch, E.R.; Sandrini, M.; Cohen, L.G. Noninvasive brain stimulation: From physiology to network dynamics and back. Nat. Neurosci., 2013, 16(7), 838-844.
[http://dx.doi.org/10.1038/nn.3422] [PMID: 23799477]
[92]
Kammer, T.; Spitzer, M. Brain stimulation in psychiatry: Methods and magnets, patients and parameters. Curr. Opin. Psychiatry, 2012, 25(6), 535-541.
[http://dx.doi.org/10.1097/YCO.0b013e328358df8c] [PMID: 22992545]
[93]
Zhang, Y.; Mao, R-R.; Chen, Z-F.; Tian, M.; Tong, D-L.; Gao, Z-R.; Huang, M.; Li, X.; Xu, X.; Zhou, W-H.; Li, C-Y.; Wang, J.; Xu, L.; Qiu, Z. Deep-brain magnetic stimulation promotes adult hippocampal neurogenesis and alleviates stress-related behaviors in mouse models for neuropsychiatric disorders. Mol. Brain, 2014, 7(11), 11.
[http://dx.doi.org/10.1186/1756-6606-7-11] [PMID: 24512669]
[94]
George, M.S.; Taylor, J.J.; Short, E.B. The expanding evidence base for rTMS treatment of depression. Curr. Opin. Psychiatry, 2013, 26(1), 13-18.
[http://dx.doi.org/10.1097/YCO.0b013e32835ab46d] [PMID: 23154644]
[95]
Oakley, H.; Cole, S.L.; Logan, S.; Maus, E.; Shao, P.; Craft, J.; Guillozet-Bongaarts, A.; Ohno, M.; Disterhoft, J.; Van Eldik, L.; Berry, R.; Vassar, R. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: Potential factors in amyloid plaque formation. J. Neurosci., 2006, 26(40), 10129-10140.
[http://dx.doi.org/10.1523/JNEUROSCI.1202-06.2006] [PMID: 17021169]
[96]
Wang, C.; Chen, T.; Li, G.; Zhou, L.; Sha, S.; Chen, L. Simvastatin prevents β-amyloid (25-35)-impaired neurogenesis in hippocampal dentate gyrus through α7nAChR-dependent cascading PI3K-Akt and increasing BDNF via reduction of farnesyl pyrophosphate. Neuropharmacology, 2015, 97, 122-132.
[http://dx.doi.org/10.1016/j.neuropharm.2015.05.020] [PMID: 26051402]
[97]
Perry, E.K.; Johnson, M.; Ekonomou, A.; Perry, R.H.; Ballard, C.; Attems, J. Neurogenic abnormalities in Alzheimer’s disease differ between stages of neurogenesis and are partly related to cholinergic pathology. Neurobiol. Dis., 2012, 47(2), 155-162.
[http://dx.doi.org/10.1016/j.nbd.2012.03.033] [PMID: 22504537]
[98]
Tanaka, T.; Mizukami, S.; Hasegawa-Baba, Y.; Onda, N.; Sugita-Konishi, Y.; Yoshida, T.; Shibutani, M. Developmental exposure of aflatoxin B1 reversibly affects hippocampal neurogenesis targeting late-stage neural progenitor cells through suppression of cholinergic signaling in rats. Toxicology, 2015, 336, 59-69.
[http://dx.doi.org/10.1016/j.tox.2015.08.001] [PMID: 26260870]
[99]
Zhen, J.; Qian, Y.; Fu, J.; Su, R.; An, H.; Wang, W.; Zheng, Y.; Wang, X. Deep brain magnetic stimulation promotes neurogenesis and restores cholinergic activity in a transgenic mouse model of Alzheimer’s disease. Front. Neural Circuits, 2017, 11, 48.
[http://dx.doi.org/10.3389/fncir.2017.00048] [PMID: 28713248]
[100]
Jolivalt, C.G.; Marquez, A.; Quach, D.; Navarro Diaz, M.C.; Anaya, C.; Kifle, B.; Muttalib, N.; Sanchez, G.; Guernsey, L.; Hefferan, M.; Smith, D.R.; Fernyhough, P.; Johe, K.; Calcutt, N.A. Amelioration of both central and peripheral neuropathy in mouse models of type 1 and type 2 diabetes by the neurogenic molecule NSI-189. Diabetes, 2019, 68(11), 2143-2154.
[http://dx.doi.org/10.2337/db19-0271] [PMID: 31492662]
[101]
McIntyre, R.S.; Johe, K.; Rong, C.; Lee, Y. The neurogenic compound, NSI-189 phosphate: A novel multi-domain treatment capable of pro-cognitive and antidepressant effects. Expert Opin. Investig. Drugs, 2017, 26(6), 767-770.
[http://dx.doi.org/10.1080/13543784.2017.1324847] [PMID: 28460574]
[102]
Liu, Y.; Johe, K.; Sun, J.; Hao, X.; Wang, Y.; Bi, X.; Baudry, M. Enhancement of synaptic plasticity and reversal of impairments in motor and cognitive functions in a mouse model of Angelman Syndrome by a small neurogenic molecule, NSI-189. Neuropharmacology, 2019, 144, 337-344.
[http://dx.doi.org/10.1016/j.neuropharm.2018.10.038] [PMID: 30408487]
[103]
Allen, B.D.; Acharya, M.M.; Lu, C.; Giedzinski, E.; Chmielewski, N.N.; Quach, D.; Hefferan, M.; Johe, K.K.; Limoli, C.L. Remediation of radiation-induced cognitive dysfunction through oral administration of the neuroprotective compound NSI-189. Radiat. Res., 2018, 189(4), 345-353.
[http://dx.doi.org/10.1667/RR14879.1] [PMID: 29351056]
[104]
Jolivalt, C.G.; Marquez, A.; Anaya, C.; Kifle, B.; Muttalib, N.; Hefferan, M.; Johe, K.; Calcutt, N.A. Therapeutic efficacy of NSI-189 against diabetic neuropathy and encephalopathy in mice. Diabetes, 2017, 66, A145-A145.
[105]
Tajiri, N.; Quach, D.M.; Kaneko, Y.; Wu, S.; Lee, D.; Lam, T.; Hayama, K.L.; Hazel, T.G.; Johe, K.; Wu, M.C.; Borlongan, C.V. NSI-189, a small molecule with neurogenic properties, exerts behavioral, and neurostructural benefits in stroke rats. J. Cell. Physiol., 2017, 232(10), 2731-2740.
[http://dx.doi.org/10.1002/jcp.25847] [PMID: 28181668]
[106]
English, B.; Johnstone, J.; Johe, K.; Gertsik, L.; Sherman, M.; Fava, M.; Ereshefsky, L. Effects of NSI-189, a neurogenic compound, on quantitative electroencephalography (qEEG) in patients with major depressive disorder (MDD) during a phase 1b randomized, double-blind, placebo controlled, multiple ascending dose study. Int. J. Neuropsychopharmacol., 2014, 17, 119.
[107]
Ereshefsky, L.; English, B.; Johnstone, J.; Johe, K.; Gertsik, L.; Fava, M.; Freeman, M.; Potkin, S. Effects of NSI-189, a neurogenic compound, on Quantitative EEQ (QEEG) in patients with major depressive disorder: QEEG effects, dose response relationships, and clinical outcomes. Neuropsychopharmacology, 2014, 39, S353-S354.
[108]
Fava, M.; Johe, K.; Ereshefsky, L.; Gertsik, L.G.; English, B.A.; Bilello, J.A.; Thurmond, L.M.; Johnstone, J.; Dickerson, B.C.; Makris, N.; Hoeppner, B.B.; Flynn, M.; Mischoulon, D.; Kinrys, G.; Freeman, M.P. A Phase 1B, randomized, double blind, placebo controlled, multiple-dose escalation study of NSI-189 phosphate, a neurogenic compound, in depressed patients. Mol. Psychiatry, 2016, 21(10), 1372-1380.
[http://dx.doi.org/10.1038/mp.2015.178] [PMID: 26643541]
[109]
Fava, M.; Johe, K.; Ereshefsky, L.; Gertsik, L.G.; English, B.A.; Bilello, J.A.; Thurmond, L.M.; Johnstone, J.; Dickerson, B.C.; Makris, N.; Hoeppner, B.B.; Flynn, M.; Mischoulon, D.; Kinrys, G.; Freeman, M.P. A Phase 1B, randomized, double blind, placebo controlled, multiple-dose escalation study of NSI-189 phosphate, a neurogenic compound, in depressed patients. Mol. Psychiatry, 2016, 21(10), 1483-1484.
[http://dx.doi.org/10.1038/mp.2016.140] [PMID: 27528461]
[110]
Papakostas, G.; Johe, K.; Hoeppner, B.; Freeman, M.; Flynn, M.; Hand, H.; Kashambwa, R.; Fava, M. A phase 2, double-blind, placebo-controlled study of NSI-189 phosphate, a neurogenic compound among out-patients with major depressive disorder. Neuropsychopharmacology, 2017, 42, S162-S163.
[111]
Johe, K.K.; Kay, G.; Kumar, S.; Burdick, K.E.; McIntyre, R.S.; Papakostas, G.I.; Fava, M. NSI-189 phosphate, a novel neurogenic compound, selectively benefits moderately depressed patients: A post-hoc analysis of a phase 2 study of major depressive disorder. Ann. Clin. Psychiatry, 2020, 32(3), 182-196.
[PMID: 32722729]
[112]
Papakostas, G.I.; Johe, K.; Hand, H.; Drouillard, A.; Russo, P.; Kay, G.; Kashambwa, R.; Hoeppner, B.; Flynn, M.; Yeung, A.; Martinson, M.A.; Fava, M. A phase 2, double-blind, placebo-controlled study of NSI-189 phosphate, a neurogenic compound, among outpatients with major depressive disorder. Mol. Psychiatry, 2020, 25(7), 1569-1579.
[http://dx.doi.org/10.1038/s41380-018-0334-8] [PMID: 30626911]
[113]
Pieper, A.A.; Xie, S.; Capota, E.; Estill, S.J.; Zhong, J.; Long, J.M.; Becker, G.L.; Huntington, P.; Goldman, S.E.; Shen, C-H.; Capota, M.; Britt, J.K.; Kotti, T.; Ure, K.; Brat, D.J.; Williams, N.S.; MacMillan, K.S.; Naidoo, J.; Melito, L.; Hsieh, J.; De Brabander, J.; Ready, J.M.; McKnight, S.L. Discovery of a proneurogenic, neuroprotective chemical. Cell, 2010, 142(1), 39-51.
[http://dx.doi.org/10.1016/j.cell.2010.06.018] [PMID: 20603013]
[114]
Bauman, M.D.; Schumann, C.M.; Carlson, E.L.; Taylor, S.L.; Vázquez-Rosa, E.; Cintrón-Pérez, C.J.; Shin, M-K.; Williams, N.S.; Pieper, A.A. Neuroprotective efficacy of P7C3 compounds in primate hippocampus. Transl. Psychiatry, 2018, 8(1), 202.
[http://dx.doi.org/10.1038/s41398-018-0244-1] [PMID: 30258178]
[115]
MacMillan, K.S.; Naidoo, J.; Liang, J.; Melito, L.; Williams, N.S.; Morlock, L.; Huntington, P.J.; Estill, S.J.; Longgood, J.; Becker, G.L.; McKnight, S.L.; Pieper, A.A.; De Brabander, J.K.; Ready, J.M. Development of proneurogenic, neuroprotective small molecules. J. Am. Chem. Soc., 2011, 133(5), 1428-1437.
[http://dx.doi.org/10.1021/ja108211m] [PMID: 21210688]
[116]
Naidoo, J.; De Jesus-Cortes, H.; Huntington, P.; Estill, S.; Morlock, L.K.; Starwalt, R.; Mangano, T.J.; Williams, N.S.; Pieper, A.A.; Ready, J.M. Discovery of a neuroprotective chemical, (S)-N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-6-methoxypyridin-2-amine [(-)-P7C3-S243], with improved druglike properties. J. Med. Chem., 2014, 57(9), 3746-3754.
[http://dx.doi.org/10.1021/jm401919s] [PMID: 24697290]
[117]
Pieper, A.A.; McKnight, S.L.; Ready, J.M. P7C3 and an unbiased approach to drug discovery for neurodegenerative diseases. Chem. Soc. Rev., 2014, 43(19), 6716-6726.
[http://dx.doi.org/10.1039/C3CS60448A] [PMID: 24514864]
[118]
Walker, A.K.; Rivera, P.D.; Wang, Q.; Chuang, J.C.; Tran, S.; Osborne-Lawrence, S.; Estill, S.J.; Starwalt, R.; Huntington, P.; Morlock, L.; Naidoo, J.; Williams, N.S.; Ready, J.M.; Eisch, A.J.; Pieper, A.A.; Zigman, J.M. The P7C3 class of neuroprotective compounds exerts antidepressant efficacy in mice by increasing hippocampal neurogenesis. Mol. Psychiatry, 2015, 20(4), 500-508.
[http://dx.doi.org/10.1038/mp.2014.34] [PMID: 24751964]
[119]
Blaya, M.O.; Wasserman, J.M.; Pieper, A.A.; Sick, T.J.; Bramlett, H.M.; Dietrich, W.D. Neurotherapeutic capacity of P7C3 agents for the treatment of Traumatic Brain Injury. Neuropharmacology, 2019, 145(Pt B), 268-282.
[http://dx.doi.org/10.1016/j.neuropharm.2018.09.024] [PMID: 30236963]
[120]
Loris, Z.B.; Pieper, A.A.; Dietrich, W.D. The neuroprotective compound P7C3-A20 promotes neurogenesis and improves cognitive function after ischemic stroke. Exp. Neurol., 2017, 290, 63-73.
[http://dx.doi.org/10.1016/j.expneurol.2017.01.006] [PMID: 28077334]
[121]
Gu, C.; Hu, Q.; Wu, J.; Mu, C.; Ren, H.; Liu, C-F.; Wang, G. P7C3 inhibits LPS-induced microglial activation to protect dopaminergic neurons against inflammatory factor-induced cell death in vitro and in vivo. Front. Cell. Neurosci., 2018, 12, 400.
[http://dx.doi.org/10.3389/fncel.2018.00400] [PMID: 30455635]
[122]
Wang, G.; Han, T.; Nijhawan, D.; Theodoropoulos, P.; Naidoo, J.; Yadavalli, S.; Mirzaei, H.; Pieper, A.A.; Ready, J.M.; McKnight, S.L. P7C3 neuroprotective chemicals function by activating the rate-limiting enzyme in NAD salvage. Cell, 2014, 158(6), 1324-1334.
[http://dx.doi.org/10.1016/j.cell.2014.07.040] [PMID: 25215490]
[123]
Jang, S-W.; Liu, X.; Yepes, M.; Shepherd, K.R.; Miller, G.W.; Liu, Y.; Wilson, W.D.; Xiao, G.; Blanchi, B.; Sun, Y.E.; Ye, K. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc. Natl. Acad. Sci. USA, 2010, 107(6), 2687-2692.
[http://dx.doi.org/10.1073/pnas.0913572107] [PMID: 20133810]
[124]
Saarelainen, T.; Hendolin, P.; Lucas, G.; Koponen, E.; Sairanen, M.; MacDonald, E.; Agerman, K.; Haapasalo, A.; Nawa, H.; Aloyz, R.; Ernfors, P.; Castrén, E. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J. Neurosci., 2003, 23(1), 349-357.
[http://dx.doi.org/10.1523/JNEUROSCI.23-01-00349.2003] [PMID: 12514234]
[125]
Monteggia, L.M.; Barrot, M.; Powell, C.M.; Berton, O.; Galanis, V.; Gemelli, T.; Meuth, S.; Nagy, A.; Greene, R.W.; Nestler, E.J. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc. Natl. Acad. Sci. USA, 2004, 101(29), 10827-10832.
[http://dx.doi.org/10.1073/pnas.0402141101] [PMID: 15249684]
[126]
Liu, X.; Chan, C-B.; Jang, S-W.; Pradoldej, S.; Huang, J.; He, K.; Phun, L.H.; France, S.; Xiao, G.; Jia, Y.; Luo, H.R.; Ye, K. A synthetic 7,8-dihydroxyflavone derivative promotes neurogenesis and exhibits potent antidepressant effect. J. Med. Chem., 2010, 53(23), 8274-8286.
[http://dx.doi.org/10.1021/jm101206p] [PMID: 21073191]
[127]
Moriya, J.; Chen, R.; Yamakawa, J.; Sasaki, K.; Ishigaki, Y.; Takahashi, T. Resveratrol improves hippocampal atrophy in chronic fatigue mice by enhancing neurogenesis and inhibiting apoptosis of granular cells. Biol. Pharm. Bull., 2011, 34(3), 354-359.
[http://dx.doi.org/10.1248/bpb.34.354] [PMID: 21372384]
[128]
Liang, J-H.; Yang, L.; Wu, S.; Liu, S-S.; Cushman, M.; Tian, J.; Li, N-M.; Yang, Q-H.; Zhang, H-A.; Qiu, Y-J.; Xiang, L.; Ma, C-X.; Li, X-M.; Qing, H. Discovery of efficient stimulators for adult hippocampal neurogenesis based on scaffolds in dragon’s blood. Eur. J. Med. Chem., 2017, 136, 382-392.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.025] [PMID: 28525839]
[129]
Zhang, H.; Xiang, L.; Yang, L.; Wu, S.; Liu, S.; Zhao, J.; Song, D.; Ma, C.; Ni, J.; Quan, Z.; Liang, J.; Qing, H. WS6 induces adult hippocampal neurogenesis in correlation to its antidepressant effect on the alleviation of depressive-like behaviors of rats. Neuroscience, 2021, 473, 119-129.
[http://dx.doi.org/10.1016/j.neuroscience.2021.08.020] [PMID: 34455011]
[130]
Lin, H.; Fang, H.; Wang, J.; Meng, Q.; Dai, X.; Wu, S.; Luo, J.; Pu, D.; Chen, L.; Minick, D.; Arai, K.; Mandeville, E.T.; Lo, E.; Holder, J.C.; Chuang, T.T.; Zhao, J. Discovery of a novel 2,3,11,11a-tetrahydro-1H-pyrazino[1,2-b]isoquinoline-1,4(6H)-dione series promoting neurogenesis of human neural progenitor cells. Bioorg. Med. Chem. Lett., 2015, 25(17), 3748-3753.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.084] [PMID: 26142946]
[131]
Anacker, C.; Zunszain, P.A.; Cattaneo, A.; Carvalho, L.A.; Garabedian, M.J.; Thuret, S.; Price, J.; Pariante, C.M. Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Mol. Psychiatry, 2011, 16(7), 738-750.
[http://dx.doi.org/10.1038/mp.2011.26] [PMID: 21483429]
[132]
Gergely, F.; Karlsson, C.; Still, I.; Cowell, J.; Kilmartin, J.; Raff, J.W. The TACC domain identifies a family of centrosomal proteins that can interact with microtubules. Proc. Natl. Acad. Sci. USA, 2000, 97(26), 14352-14357.
[http://dx.doi.org/10.1073/pnas.97.26.14352] [PMID: 11121038]
[133]
Xie, Z.; Moy, L.Y.; Sanada, K.; Zhou, Y.; Buchman, J.J.; Tsai, L-H. Cep120 and TACCs control interkinetic nuclear migration and the neural progenitor pool. Neuron, 2007, 56(1), 79-93.
[http://dx.doi.org/10.1016/j.neuron.2007.08.026] [PMID: 17920017]
[134]
Wurdak, H.; Zhu, S.; Min, K.H.; Aimone, L.; Lairson, L.L.; Watson, J.; Chopiuk, G.; Demas, J.; Charette, B.; Halder, R.; Weerapana, E.; Cravatt, B.F.; Cline, H.T.; Peters, E.C.; Zhang, J.; Walker, J.R.; Wu, C.; Chang, J.; Tuntland, T.; Cho, C.Y.; Schultz, P.G. A small molecule accelerates neuronal differentiation in the adult rat. Proc. Natl. Acad. Sci. USA, 2010, 107(38), 16542-16547.
[http://dx.doi.org/10.1073/pnas.1010300107] [PMID: 20823227]
[135]
Kim, S.J.; Son, T.G.; Park, H.R.; Park, M.; Kim, M-S.; Kim, H.S.; Chung, H.Y.; Mattson, M.P.; Lee, J. Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J. Biol. Chem., 2008, 283(21), 14497-14505.
[http://dx.doi.org/10.1074/jbc.M708373200] [PMID: 18362141]
[136]
Tiwari, S.K.; Agarwal, S.; Seth, B.; Yadav, A.; Nair, S.; Bhatnagar, P.; Karmakar, M.; Kumari, M.; Chauhan, L.K.S.; Patel, D.K.; Srivastava, V.; Singh, D.; Gupta, S.K.; Tripathi, A.; Chaturvedi, R.K.; Gupta, K.C. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano, 2014, 8(1), 76-103.
[http://dx.doi.org/10.1021/nn405077y] [PMID: 24467380]
[137]
Li, J.; Han, Y.; Li, M.; Nie, C. Curcumin promotes proliferation of adult neural stem cells and the birth of neurons in Alzheimer’s disease mice via notch signaling pathway. Cell. Reprogram., 2019, 21(3), 152-161.
[http://dx.doi.org/10.1089/cell.2018.0027] [PMID: 31145652]
[138]
Mu, Y.; Lee, S.W.; Gage, F.H. Signaling in adult neurogenesis. Curr. Opin. Neurobiol., 2010, 20(4), 416-423.
[http://dx.doi.org/10.1016/j.conb.2010.04.010] [PMID: 20471243]
[139]
Dias, G.P.; Cavegn, N.; Nix, A.; do Nascimento Bevilaqua, M.C.; Stangl, D.; Zainuddin, M.S.A.; Nardi, A.E.; Gardino, P.F.; Thuret, S. The role of dietary polyphenols on adult hippocampal neurogenesis: Molecular mechanisms and behavioural effects on depression and anxiety. Oxid. Med. Cell. Longev., 2012, 2012, 541971.
[http://dx.doi.org/10.1155/2012/541971] [PMID: 22829957]
[140]
Shors, T.J.; Townsend, D.A.; Zhao, M.; Kozorovitskiy, Y.; Gould, E. Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus, 2002, 12(5), 578-584.
[http://dx.doi.org/10.1002/hipo.10103] [PMID: 12440573]
[141]
Mohapel, P.; Leanza, G.; Kokaia, M.; Lindvall, O. Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol. Aging, 2005, 26(6), 939-946.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.07.015] [PMID: 15718053]
[142]
Nakagawa, S.; Kim, J.E.; Lee, R.; Malberg, J.E.; Chen, J.; Steffen, C.; Zhang, Y.J.; Nestler, E.J.; Duman, R.S. Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. J. Neurosci., 2002, 22(9), 3673-3682.
[http://dx.doi.org/10.1523/JNEUROSCI.22-09-03673.2002] [PMID: 11978843]
[143]
Madsen, T.M.; Kristjansen, P.E.G.; Bolwig, T.G.; Wörtwein, G. Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat. Neuroscience, 2003, 119(3), 635-642.
[http://dx.doi.org/10.1016/S0306-4522(03)00199-4] [PMID: 12809684]
[144]
Kotani, S.; Yamauchi, T.; Teramoto, T.; Ogura, H. Donepezil, an acetylcholinesterase inhibitor, enhances adult hippocampal neurogenesis. Chem. Biol. Interact., 2008, 175(1-3), 227-230.
[http://dx.doi.org/10.1016/j.cbi.2008.04.004] [PMID: 18501884]
[145]
Encinas, J.M.; Vaahtokari, A.; Enikolopov, G. Fluoxetine targets early progenitor cells in the adult brain. Proc. Natl. Acad. Sci. USA, 2006, 103(21), 8233-8238.
[http://dx.doi.org/10.1073/pnas.0601992103] [PMID: 16702546]
[146]
Kong, H.; Sha, L.L.; Fan, Y.; Xiao, M.; Ding, J.H.; Wu, J.; Hu, G. Requirement of AQP4 for antidepressive efficiency of fluoxetine: Implication in adult hippocampal neurogenesis. Neuropsychopharmacology, 2009, 34(5), 1263-1276.
[http://dx.doi.org/10.1038/npp.2008.185] [PMID: 18923397]
[147]
Duman, R.S.; Malberg, J.; Nakagawa, S.; D’Sa, C. Neuronal plasticity and survival in mood disorders. Biol. Psychiatry, 2000, 48(8), 732-739.
[http://dx.doi.org/10.1016/S0006-3223(00)00935-5] [PMID: 11063970]
[148]
Jacobs, B.L. Adult brain neurogenesis and depression. Brain Behav. Immun., 2002, 16(5), 602-609.
[http://dx.doi.org/10.1016/S0889-1591(02)00015-6] [PMID: 12401475]
[149]
Santarelli, L.; Saxe, M.; Gross, C.; Surget, A.; Battaglia, F.; Dulawa, S.; Weisstaub, N.; Lee, J.; Duman, R.; Arancio, O.; Belzung, C.; Hen, R. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 2003, 301(5634), 805-809.
[http://dx.doi.org/10.1126/science.1083328] [PMID: 12907793]
[150]
Diniz, L.; dos Santos, T.B.; Britto, L.R.G.; Céspedes, I.C.; Garcia, M.C.; Spadari-Bratfisch, R.C.; Medalha, C.C.; de Castro, G.M.; Montesano, F.T.; Viana, M.B. Effects of chronic treatment with corticosterone and imipramine on fos immunoreactivity and adult hippocampal neurogenesis. Behav. Brain Res., 2013, 238, 170-177.
[http://dx.doi.org/10.1016/j.bbr.2012.10.024] [PMID: 23098799]
[151]
Han, X.; Tong, J.; Zhang, J.; Farahvar, A.; Wang, E.; Yang, J.; Samadani, U.; Smith, D.H.; Huang, J.H. Imipramine treatment improves cognitive outcome associated with enhanced hippocampal neurogenesis after traumatic brain injury in mice. J. Neurotrauma, 2011, 28(6), 995-1007.
[http://dx.doi.org/10.1089/neu.2010.1563] [PMID: 21463148]
[152]
Mohn, F.; Weber, M.; Rebhan, M.; Roloff, T.C.; Richter, J.; Stadler, M.B.; Bibel, M.; Schübeler, D. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell, 2008, 30(6), 755-766.
[http://dx.doi.org/10.1016/j.molcel.2008.05.007] [PMID: 18514006]
[153]
Chen, J.; Zhang, Z.G.; Li, Y.; Wang, Y.; Wang, L.; Jiang, H.; Zhang, C.; Lu, M.; Katakowski, M.; Feldkamp, C.S.; Chopp, M. Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke. Ann. Neurol., 2003, 53(6), 743-751.
[http://dx.doi.org/10.1002/ana.10555] [PMID: 12783420]
[154]
Jin, K.; Xie, L.; Mao, X.O.; Greenberg, D.A. Alzheimer’s disease drugs promote neurogenesis. Brain Res., 2006, 1085(1), 183-188.
[http://dx.doi.org/10.1016/j.brainres.2006.02.081] [PMID: 16580645]
[155]
Malberg, J.E.; Schechter, L.E. Increasing hippocampal neurogenesis: A novel mechanism for antidepressant drugs. Curr. Pharm. Des., 2005, 11(2), 145-155.
[http://dx.doi.org/10.2174/1381612053382223] [PMID: 15638755]
[156]
Gahr, M.; Freudenmann, R.W.; Connemann, B.J.; Hiemke, C.; Schönfeldt-Lecuona, C. Agomelatine and hepatotoxicity: Implications of cumulated data derived from spontaneous reports of adverse drug reactions. Pharmacopsychiatry, 2013, 46(6), 214-220.
[http://dx.doi.org/10.1055/s-0033-1353156] [PMID: 23966266]
[157]
Yang, Y.; Ang, W.; Long, H.; Chang, Y.; Li, Z.; Zhou, L.; Yang, T.; Deng, Y.; Luo, Y. Scaffold hopping toward agomelatine: Novel 3, 4-dihydroisoquinoline compounds as potential antidepressant agents. Sci. Rep., 2016, 6(1), 34711.
[http://dx.doi.org/10.1038/srep34711] [PMID: 27698414]
[158]
Berg, D.A.; Belnoue, L.; Song, H.; Simon, A. Neurotransmitter-mediated control of neurogenesis in the adult vertebrate brain. Development, 2013, 140(12), 2548-2561.
[http://dx.doi.org/10.1242/dev.088005] [PMID: 23715548]
[159]
Panayi, F.; Sors, A.; Bert, L.; Martin, B.; Rollin-Jego, G.; Billiras, R.; Carrié, I.; Albinet, K.; Danober, L.; Rogez, N.; Thomas, J-Y.; Pira, L.; Bertaina-Anglade, V.; Lestage, P. In vivo pharmacological profile of S 38093, a novel histamine H3 receptor inverse agonist. Eur. J. Pharmacol., 2017, 803, 1-10.
[http://dx.doi.org/10.1016/j.ejphar.2017.03.008] [PMID: 28315340]
[160]
Guilloux, J-P.; Samuels, B.A.; Mendez-David, I.; Hu, A.; Levinstein, M.; Faye, C.; Mekiri, M.; Mocaer, E.; Gardier, A.M.; Hen, R.; Sors, A.; David, D.J.S. S 38093, a histamine H3 antagonist/inverse agonist, promotes hippocampal neurogenesis and improves context discrimination task in aged mice. Sci. Rep., 2017, 7(1), 42946.
[http://dx.doi.org/10.1038/srep42946] [PMID: 28218311]
[161]
Sotthibundhu, A.; Li, Q.X.; Thangnipon, W.; Coulson, E.J. Abeta(1-42) stimulates adult SVZ neurogenesis through the p75 neurotrophin receptor. Neurobiol. Aging, 2009, 30(12), 1975-1985.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.02.004] [PMID: 18374455]
[162]
Underwood, C.K.; Coulson, E.J. The p75 neurotrophin receptor. Int. J. Biochem. Cell Biol., 2008, 40(9), 1664-1668.
[http://dx.doi.org/10.1016/j.biocel.2007.06.010] [PMID: 17681869]
[163]
Shi, J.; Longo, F.M.; Massa, S.M. A small molecule p75(NTR) ligand protects neurogenesis after traumatic brain injury. Stem Cells, 2013, 31(11), 2561-2574.
[http://dx.doi.org/10.1002/stem.1516] [PMID: 23940017]
[164]
Kita, Y.; Ago, Y.; Higashino, K.; Asada, K.; Takano, E.; Takuma, K.; Matsuda, T. Galantamine promotes adult hippocampal neurogenesis via M1 muscarinic and α7 nicotinic receptors in mice. Int. J. Neuropsychopharmacol., 2014, 17(12), 1957-1968.
[http://dx.doi.org/10.1017/S1461145714000613] [PMID: 24818616]
[165]
Vukovic, J.; Borlikova, G.G.; Ruitenberg, M.J.; Robinson, G.J.; Sullivan, R.K.P.; Walker, T.L.; Bartlett, P.F. Immature doublecortin-positive hippocampal neurons are important for learning but not for remembering. J. Neurosci., 2013, 33(15), 6603-6613.
[http://dx.doi.org/10.1523/JNEUROSCI.3064-12.2013] [PMID: 23575857]
[166]
Vieira, M.S.; Santos, A.K.; Vasconcellos, R.; Goulart, V.A.M.; Parreira, R.C.; Kihara, A.H.; Ulrich, H.; Resende, R.R. Neural stem cell differentiation into mature neurons: Mechanisms of regulation and biotechnological applications. Biotechnol. Adv., 2018, 36(7), 1946-1970.
[http://dx.doi.org/10.1016/j.biotechadv.2018.08.002] [PMID: 30077716]
[167]
Kim, W-Y.; Wang, X.; Wu, Y.; Doble, B.W.; Patel, S.; Woodgett, J.R.; Snider, W.D. GSK-3 is a master regulator of neural progenitor homeostasis. Nat. Neurosci., 2009, 12(11), 1390-1397.
[http://dx.doi.org/10.1038/nn.2408] [PMID: 19801986]
[168]
Gao, Q.; Jeon, S.J.; Jung, H.A.; Lee, H.E.; Park, S.J.; Lee, Y.; Lee, Y.; Ko, S.Y.; Kim, B.; Choi, J.S.; Ryu, J.H. Nodakenin enhances cognitive function and adult hippocampal neurogenesis in mice. Neurochem. Res., 2015, 40(7), 1438-1447.
[http://dx.doi.org/10.1007/s11064-015-1612-3] [PMID: 25998887]
[169]
Couillard-Despres, S.; Winner, B.; Schaubeck, S.; Aigner, R.; Vroemen, M.; Weidner, N.; Bogdahn, U.; Winkler, J.; Kuhn, H.G.; Aigner, L. Doublecortin expression levels in adult brain reflect neurogenesis. Eur. J. Neurosci., 2005, 21(1), 1-14.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03813.x] [PMID: 15654838]
[170]
Morales-Garcia, J.A.; Luna-Medina, R.; Alonso-Gil, S.; Sanz-Sancristobal, M.; Palomo, V.; Gil, C.; Santos, A.; Martinez, A.; Perez-Castillo, A. Glycogen synthase kinase 3 inhibition promotes adult hippocampal neurogenesis in vitro and in vivo. ACS Chem. Neurosci., 2012, 3(11), 963-971.
[http://dx.doi.org/10.1021/cn300110c] [PMID: 23173075]
[171]
Mehta, G.; Samineni, R.; Srihari, P.; Reddy, R.G.; Chakravarty, S. Diverted organic synthesis (DOS): Accessing a new, natural product inspired, neurotrophically active scaffold through an intramolecular Pauson-Khand reaction. Org. Biomol. Chem., 2012, 10(34), 6830-6833.
[http://dx.doi.org/10.1039/c2ob26107c] [PMID: 22832868]
[172]
Chakravarty, S.; Maitra, S.; Reddy, R.G.; Das, T.; Jhelum, P.; Kootar, S.; Rajan, W.D.; Samanta, A.; Samineni, R.; Pabbaraja, S.; Kernie, S.G.; Mehta, G.; Kumar, A. A novel natural product inspired scaffold with robust neurotrophic, neurogenic and neuroprotective action. Sci. Rep., 2015, 5(1), 14134.
[http://dx.doi.org/10.1038/srep14134] [PMID: 26388493]
[173]
Schneider, J.W.; Gao, Z.; Li, S.; Farooqi, M.; Tang, T-S.; Bezprozvanny, I.; Frantz, D.E.; Hsieh, J. Small-molecule activation of neuronal cell fate. Nat. Chem. Biol., 2008, 4(7), 408-410.
[http://dx.doi.org/10.1038/nchembio.95] [PMID: 18552832]
[174]
Petrik, D.; Jiang, Y.; Birnbaum, S.G.; Powell, C.M.; Kim, M-S.; Hsieh, J.; Eisch, A.J. Functional and mechanistic exploration of an adult neurogenesis-promoting small molecule. FASEB J., 2012, 26(8), 3148-3162.
[http://dx.doi.org/10.1096/fj.11-201426] [PMID: 22542682]
[175]
Bettio, L.E.B.; Patten, A.R.; Gil-Mohapel, J.; O’Rourke, N.F.; Hanley, R.P.; Kennedy, S.; Gopalakrishnan, K.; Rodrigues, A.L.S.; Wulff, J.; Christie, B.R. ISX-9 can potentiate cell proliferation and neuronal commitment in the rat dentate gyrus. Neuroscience, 2016, 332, 212-222.
[http://dx.doi.org/10.1016/j.neuroscience.2016.06.042] [PMID: 27373772]
[176]
Bettio, L.E.B.; Gil-Mohapel, J.; Patten, A.R.; O’Rourke, N.F.; Hanley, R.P.; Gopalakrishnan, K.; Wulff, J.E.; Christie, B.R. Effects of Isx-9 and stress on adult hippocampal neurogenesis: Experimental considerations and future perspectives. Neurogenesis (Austin), 2017, 4(1), e1317692.
[http://dx.doi.org/10.1080/23262133.2017.1317692] [PMID: 28656155]
[177]
Olateju, O.I.; Spocter, M.A.; Patzke, N.; Ihunwo, A.O.; Manger, P.R. Hippocampal neurogenesis in the C57BL/6J mice at early adulthood following prenatal alcohol exposure. Metab. Brain Dis., 2018, 33(2), 397-410.
[http://dx.doi.org/10.1007/s11011-017-0156-4] [PMID: 29164372]
[178]
Assali, A.; Harrington, A.J.; Cowan, C.W. Emerging roles for MEF2 in brain development and mental disorders. Curr. Opin. Neurobiol., 2019, 59, 49-58.
[http://dx.doi.org/10.1016/j.conb.2019.04.008] [PMID: 31129473]
[179]
Lyons, G.E.; Micales, B.K.; Schwarz, J.; Martin, J.F.; Olson, E.N. Expression of mef2 genes in the mouse central nervous system suggests a role in neuronal maturation. J. Neurosci., 1995, 15(8), 5727-5738.
[http://dx.doi.org/10.1523/JNEUROSCI.15-08-05727.1995] [PMID: 7643214]
[180]
Kim, Y.; Phan, D.; van Rooij, E.; Wang, D-Z.; McAnally, J.; Qi, X.; Richardson, J.A.; Hill, J.A.; Bassel-Duby, R.; Olson, E.N. The MEF2D transcription factor mediates stress-dependent cardiac remodeling in mice. J. Clin. Invest., 2008, 118(1), 124-132.
[http://dx.doi.org/10.1172/JCI33255] [PMID: 18079970]
[181]
Lee, Y.; Jeon, S.J.; Lee, H.E.; Jung, I.H.; Jo, Y-W.; Lee, S.; Cheong, J.H.; Jang, D.S.; Ryu, J.H. Spinosin, a C-glycoside flavonoid, enhances cognitive performance and adult hippocampal neurogenesis in mice. Pharmacol. Biochem. Behav., 2016, 145, 9-16.
[http://dx.doi.org/10.1016/j.pbb.2016.03.007] [PMID: 26997033]
[182]
Kwon, H.; Jung, I.H.; Yi, J.H.; Kim, J.H.; Park, J.H.; Lee, S.; Jung, J.W.; Lee, Y.C.; Ryu, J.H.; Kim, D.H. The seed of zizyphus jujuba var. spinosa attenuates Alzheimer’s disease-associated hippocampal synaptic deficits through BDNF/TrkB signaling. Biol. Pharm. Bull., 2017, 40(12), 2096-2104.
[http://dx.doi.org/10.1248/bpb.b17-00378] [PMID: 29199234]
[183]
Zhang, X.; Wang, J.; Gong, G.; Ma, R.; Xu, F.; Yan, T.; Wu, B.; Jia, Y. Spinosin inhibits a beta(1-42)production and aggregation via activating Nrf2/HO-1 pathway. Biomol. Ther. (Seoul), 2020, 28(3), 259-266.
[http://dx.doi.org/10.4062/biomolther.2019.123] [PMID: 31791116]
[184]
Licinio, J.; Dong, C.; Wong, M-L. Novel sequence variations in the brain-derived neurotrophic factor gene and association with major depression and antidepressant treatment response. Arch. Gen. Psychiatry, 2009, 66(5), 488-497.
[http://dx.doi.org/10.1001/archgenpsychiatry.2009.38] [PMID: 19414708]
[185]
Michael-Titus, A.T.; Albert, M.; Michael, G.J.; Michaelis, T.; Watanabe, T.; Frahm, J.; Pudovkina, O.; van der Hart, M.G.C.; Hesselink, M.B.; Fuchs, E.; Czéh, B. SONU20176289, a compound combining partial dopamine D(2) receptor agonism with specific serotonin reuptake inhibitor activity, affects neuroplasticity in an animal model for depression. Eur. J. Pharmacol., 2008, 598(1-3), 43-50.
[http://dx.doi.org/10.1016/j.ejphar.2008.09.006] [PMID: 18822282]
[186]
Gulbins, E.; Palmada, M.; Reichel, M.; Lüth, A.; Böhmer, C.; Amato, D.; Müller, C.P.; Tischbirek, C.H.; Groemer, T.W.; Tabatabai, G.; Becker, K.A.; Tripal, P.; Staedtler, S.; Ackermann, T.F.; van Brederode, J.; Alzheimer, C.; Weller, M.; Lang, U.E.; Kleuser, B.; Grassmé, H.; Kornhuber, J. Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs. Nat. Med., 2013, 19(7), 934-938.
[http://dx.doi.org/10.1038/nm.3214] [PMID: 23770692]
[187]
Grassmé, H.; Jernigan, P.L.; Hoehn, R.S.; Wilker, B.; Soddemann, M.; Edwards, M.J.; Müller, C.P.; Kornhuber, J.; Gulbins, E. Inhibition of acid sphingomyelinase by antidepressants counteracts stress-induced activation of P38-kinase in major depression. Neurosignals, 2015, 23(1), 84-92.
[http://dx.doi.org/10.1159/000442606] [PMID: 26682751]
[188]
Yang, K.; Yu, J.; Nong, K.; Wang, Y.; Niu, A.; Chen, W.; Dong, J.; Wang, J. Discovery of potent, selective, and direct acid sphingomyelinase inhibitors with antidepressant activity. J. Med. Chem., 2020, 63(3), 961-974.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00739] [PMID: 31944697]
[189]
Lim, J.; Kim, H.I.; Bang, Y.; Choi, H.J. Peroxisome proliferator-activated receptor gamma: A novel therapeutic target for cognitive impairment and mood disorders that functions via the regulation of adult neurogenesis. Arch. Pharm. Res., 2021, 44(6), 553-563.
[http://dx.doi.org/10.1007/s12272-021-01333-7] [PMID: 34138417]
[190]
Torres, C.; Escarabajal, M.D.; Cándido, A.; de la Torre, L.; Gómez, M.J.; Maldonado, A.; Tobeña, A.; Fernández-Teruel, A. One-way avoidance learning and diazepam in female roman high-avoidance and low-avoidance rats. Behav. Pharmacol., 2007, 18(3), 251-253.
[http://dx.doi.org/10.1097/FBP.0b013e328157f43c] [PMID: 17426489]
[191]
Sadaghiani, M.S.; Javadi-Paydar, M.; Gharedaghi, M.H.; Fard, Y.Y.; Dehpour, A.R. Antidepressant-like effect of pioglitazone in the forced swimming test in mice: The role of PPAR-gamma receptor and nitric oxide pathway. Behav. Brain Res., 2011, 224(2), 336-343.
[http://dx.doi.org/10.1016/j.bbr.2011.06.011] [PMID: 21704657]
[192]
Kemp, D.E.; Ismail-Beigi, F.; Calabrese, J.R. Antidepressant response associated with pioglitazone: Support for an overlapping pathophysiology between major depression and metabolic syndrome. Am. J. Psychiatry, 2009, 166(5), 619-619.
[http://dx.doi.org/10.1176/appi.ajp.2008.08081195] [PMID: 19411385]
[193]
Denner, L.A.; Rodriguez-Rivera, J.; Haidacher, S.J.; Jahrling, J.B.; Carmical, J.R.; Hernandez, C.M.; Zhao, Y.; Sadygov, R.G.; Starkey, J.M.; Spratt, H.; Luxon, B.A.; Wood, T.G.; Dineley, K.T. Cognitive enhancement with rosiglitazone links the hippocampal PPARγ and ERK MAPK signaling pathways. J. Neurosci., 2012, 32(47), 16725-35a.
[http://dx.doi.org/10.1523/JNEUROSCI.2153-12.2012] [PMID: 23175826]
[194]
D’Angelo, B.; Benedetti, E.; Di Loreto, S.; Cristiano, L.; Laurenti, G.; Cerù, M.P.; Cimini, A. Signal transduction pathways involved in PPARβ/δ-induced neuronal differentiation. J. Cell. Physiol., 2011, 226(8), 2170-2180.
[http://dx.doi.org/10.1002/jcp.22552] [PMID: 21520069]
[195]
Kowiański, P.; Lietzau, G.; Czuba, E.; Waśkow, M.; Steliga, A.; Moryś, J. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cell. Mol. Neurobiol., 2018, 38(3), 579-593.
[http://dx.doi.org/10.1007/s10571-017-0510-4] [PMID: 28623429]
[196]
da Silva Júnior, W.F.; Bezerra de Menezes, D.L.; de Oliveira, L.C.; Koester, L.S.; Oliveira de Almeida, P.D.; Lima, E.S.; de Azevedo, E.P.; da Veiga Júnior, V.F.; Neves de Lima, Á.A. Inclusion complexes of β and HPβ-cyclodextrin with α, β amyrin and in vitro anti-Inflammatory activity. Biomolecules, 2019, 9(6), 241.
[http://dx.doi.org/10.3390/biom9060241] [PMID: 31234312]
[197]
Mao, J.; Huang, S.; Liu, S.; Feng, X-L.; Yu, M.; Liu, J.; Sun, Y.E.; Chen, G.; Yu, Y.; Zhao, J.; Pei, G. A herbal medicine for Alzheimer’s disease and its active constituents promote neural progenitor proliferation. Aging Cell, 2015, 14(5), 784-796.
[http://dx.doi.org/10.1111/acel.12356] [PMID: 26010330]
[198]
Dong, H.; Gao, Z.; Rong, H.; Jin, M.; Zhang, X. β-asarone reverses chronic unpredictable mild stress-induced depression-like behavior and promotes hippocampal neurogenesis in rats. Molecules, 2014, 19(5), 5634-5649.
[http://dx.doi.org/10.3390/molecules19055634] [PMID: 24786848]
[199]
Shioda, N.; Yamamoto, Y.; Han, F.; Moriguchi, S.; Yamaguchi, Y.; Hino, M.; Fukunaga, K. A novel cognitive enhancer, ZSET1446/ST101, promotes hippocampal neurogenesis and ameliorates depressive behavior in olfactory bulbectomized mice. J. Pharmacol. Exp. Ther., 2010, 333(1), 43-50.
[http://dx.doi.org/10.1124/jpet.109.163535] [PMID: 20068029]
[200]
Sun, Y.; Hong, F.; Zhang, L.; Feng, L. The sphingosine-1-phosphate analogue, FTY-720, promotes the proliferation of embryonic neural stem cells, enhances hippocampal neurogenesis and learning and memory abilities in adult mice. Br. J. Pharmacol., 2016, 173(18), 2793-2807.
[http://dx.doi.org/10.1111/bph.13557] [PMID: 27429358]
[201]
Lu, H.; Cheng, G.; Hong, F.; Zhang, L.; Hu, Y.; Feng, L. A novel 2-phenylamino-quinazoline-based compound expands the neural stem cell pool and promotes the hippocampal neurogenesis and the cognitive ability of adult mice. Stem Cells, 2018, 36(8), 1273-1285.
[http://dx.doi.org/10.1002/stem.2843] [PMID: 29726088]
[202]
Yoo, D.Y.; Jung, H.Y.; Kim, W.; Hahn, K.R.; Kwon, H.J.; Nam, S.M.; Chung, J.Y.; Yoon, Y.S.; Kim, D.W.; Hwang, I.K. Entacapone promotes hippocampal neurogenesis in mice. Neural Regen. Res., 2021, 16(6), 1005-1110.
[http://dx.doi.org/10.4103/1673-5374.300447] [PMID: 33269743]
[203]
Kogan, N.M.; Mechoulam, R. Cannabinoids in health and disease. Dialogues Clin. Neurosci., 2007, 9(4), 413-430.
[http://dx.doi.org/10.31887/DCNS.2007.9.4/nkogan] [PMID: 18286801]
[204]
Sarne, Y.; Mechoulam, R. Cannabinoids: Between neuroprotection and neurotoxicity. Curr. Drug Targets CNS Neurol. Disord., 2005, 4(6), 677-684.
[http://dx.doi.org/10.2174/156800705774933005] [PMID: 16375685]
[205]
Pertwee, R.G. Emerging strategies for exploiting cannabinoid receptor agonists as medicines. Br. J. Pharmacol., 2009, 156(3), 397-411.
[http://dx.doi.org/10.1111/j.1476-5381.2008.00048.x] [PMID: 19226257]
[206]
Wolf, S.A.; Bick-Sander, A.; Fabel, K.; Leal-Galicia, P.; Tauber, S.; Ramirez-Rodriguez, G.; Müller, A.; Melnik, A.; Waltinger, T.P.; Ullrich, O.; Kempermann, G. Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis. Cell Commun. Signal., 2010, 8(1), 12.
[http://dx.doi.org/10.1186/1478-811X-8-12] [PMID: 20565726]
[207]
Warashina, M.; Min, K.H.; Kuwabara, T.; Huynh, A.; Gage, F.H.; Schultz, P.G.; Ding, S. A synthetic small molecule that induces neuronal differentiation of adult hippocampal neural progenitor cells. Angew. Chem. Int. Ed., 2006, 45(4), 591-593.
[http://dx.doi.org/10.1002/anie.200503089] [PMID: 16323231]
[208]
Chang, D.J.; Jeong, M.Y.; Song, J.; Jin, C.Y.; Suh, Y-G.; Kim, H-J.; Min, K.H. Discovery of small molecules that enhance astrocyte differentiation in rat fetal neural stem cells. Bioorg. Med. Chem. Lett., 2011, 21(23), 7050-7053.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.099] [PMID: 22001087]
[209]
Imai, S.; Armstrong, C.M.; Kaeberlein, M.; Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 2000, 403(6771), 795-800.
[http://dx.doi.org/10.1038/35001622] [PMID: 10693811]
[210]
Cai, Y.; Xu, L.; Xu, H.; Fan, X. SIRT1 and neural cell fate determination. Mol. Neurobiol., 2016, 53(5), 2815-2825.
[http://dx.doi.org/10.1007/s12035-015-9158-6] [PMID: 25850787]
[211]
Calvanese, V.; Lara, E.; Suárez-Alvarez, B.; Abu Dawud, R.; Vázquez-Chantada, M.; Martínez-Chantar, M.L.; Embade, N.; López-Nieva, P.; Horrillo, A.; Hmadcha, A.; Soria, B.; Piazzolla, D.; Herranz, D.; Serrano, M.; Mato, J.M.; Andrews, P.W.; López-Larrea, C.; Esteller, M.; Fraga, M.F. Sirtuin 1 regulation of developmental genes during differentiation of stem cells. Proc. Natl. Acad. Sci. USA, 2010, 107(31), 13736-13741.
[http://dx.doi.org/10.1073/pnas.1001399107] [PMID: 20631301]
[212]
Hisahara, S.; Chiba, S.; Matsumoto, H.; Tanno, M.; Yagi, H.; Shimohama, S.; Sato, M.; Horio, Y. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc. Natl. Acad. Sci. USA, 2008, 105(40), 15599-15604.
[http://dx.doi.org/10.1073/pnas.0800612105] [PMID: 18829436]
[213]
Rodriguez, R.M.; Fernandez, A.F.; Fraga, M.F. Role of sirtuins in stem cell differentiation. Genes Cancer, 2013, 4(3-4), 105-111.
[http://dx.doi.org/10.1177/1947601913479798] [PMID: 24020001]
[214]
Kim, B.S.; Lee, C-H.; Chang, G-E.; Cheong, E.; Shin, I. A potent and selective small molecule inhibitor of sirtuin 1 promotes differentiation of pluripotent P19 cells into functional neurons. Sci. Rep., 2016, 6(1), 34324.
[http://dx.doi.org/10.1038/srep34324] [PMID: 27680533]
[215]
Kim, G.H.; Halder, D.; Park, J.; Namkung, W.; Shin, I. Imidazole-based small molecules that promote neurogenesis in pluripotent cells. Angew. Chem. Int. Ed. Engl., 2014, 53(35), 9271-9274.
[http://dx.doi.org/10.1002/anie.201404871] [PMID: 25044422]
[216]
Ramsewak, R.S.; Nair, M.G.; Strasburg, G.M.; DeWitt, D.L.; Nitiss, J.L. Biologically active carbazole alkaloids from Murraya koenigii. J. Agric. Food Chem., 1999, 47(2), 444-447.
[http://dx.doi.org/10.1021/jf9805808] [PMID: 10563914]
[217]
Furukawa, Y.; Sawamoto, A.; Yamaoka, M.; Nakaya, M.; Hieda, Y.; Choshi, T.; Hatae, N.; Okuyama, S.; Nakajima, M.; Hibino, S. Effects of carbazole derivatives on neurite outgrowth and hydrogen peroxide-induced cytotoxicity in neuro2a cells. Molecules, 2019, 24(7), E1366.
[http://dx.doi.org/10.3390/molecules24071366] [PMID: 30959983]
[218]
Estrada, A.A.; Sweeney, Z.K. Chemical biology of leucine-rich repeat kinase 2 (LRRK2) inhibitors. J. Med. Chem., 2015, 58(17), 6733-6746.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00261] [PMID: 25915084]
[219]
Salado, I.G.; Zaldivar-Diez, J.; Sebastián-Pérez, V.; Li, L.; Geiger, L.; González, S.; Campillo, N.E.; Gil, C.; Morales, A.V.; Perez, D.I.; Martinez, A. Leucine rich repeat kinase 2 (LRRK2) inhibitors based on indolinone scaffold: Potential pro-neurogenic agents. Eur. J. Med. Chem., 2017, 138, 328-342.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.060] [PMID: 28688273]
[220]
Okano, T.; Shimomura, Y.; Yamane, M.; Suhara, Y.; Kamao, M.; Sugiura, M.; Nakagawa, K. Conversion of phylloquinone (Vitamin K1) into menaquinone-4 (Vitamin K2) in mice: Two possible routes for menaquinone-4 accumulation in cerebra of mice. J. Biol. Chem., 2008, 283(17), 11270-11279.
[http://dx.doi.org/10.1074/jbc.M702971200] [PMID: 18083713]
[221]
Suhara, Y.; Hirota, Y.; Hanada, N.; Nishina, S.; Eguchi, S.; Sakane, R.; Nakagawa, K.; Wada, A.; Takahashi, K.; Tokiwa, H.; Okano, T. Synthetic small molecules derived from natural vitamin K homologues that induce selective neuronal differentiation of neuronal progenitor cells. J. Med. Chem., 2015, 58(17), 7088-7092.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00999] [PMID: 26305288]
[222]
Kimura, K.; Hirota, Y.; Kuwahara, S.; Takeuchi, A.; Tode, C.; Wada, A.; Osakabe, N.; Suhara, Y. Synthesis of novel synthetic vitamin k analogues prepared by introduction of a heteroatom and a phenyl group that induce highly selective neuronal differentiation of neuronal progenitor cells. J. Med. Chem., 2017, 60(6), 2591-2596.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01717] [PMID: 28225275]
[223]
Hardeland, R.; Cardinali, D.P.; Srinivasan, V.; Spence, D.W.; Brown, G.M.; Pandi-Perumal, S.R. Melatonin--a pleiotropic, orchestrating regulator molecule. Prog. Neurobiol., 2011, 93(3), 350-384.
[http://dx.doi.org/10.1016/j.pneurobio.2010.12.004] [PMID: 21193011]
[224]
de la Fuente Revenga, M.; Fernández-Sáez, N.; Herrera-Arozamena, C.; Morales-García, J.A.; Alonso-Gil, S.; Pérez-Castillo, A.; Caignard, D-H.; Rivara, S.; Rodríguez-Franco, M.I. Novel N-acetyl bioisosteres of melatonin: Melatonergic receptor pharmacology, physicochemical studies, and phenotypic assessment of their neurogenic potential. J. Med. Chem., 2015, 58(12), 4998-5014.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00245] [PMID: 26023814]
[225]
Rayasam, G.V.; Tulasi, V.K.; Sodhi, R.; Davis, J.A.; Ray, A. Glycogen synthase kinase 3: More than a namesake. Br. J. Pharmacol., 2009, 156(6), 885-898.
[http://dx.doi.org/10.1111/j.1476-5381.2008.00085.x] [PMID: 19366350]
[226]
Lange, C.; Mix, E.; Frahm, J.; Glass, A.; Müller, J.; Schmitt, O.; Schmöle, A.C.; Klemm, K.; Ortinau, S.; Hübner, R.; Frech, M.J.; Wree, A.; Rolfs, A. Small molecule GSK-3 inhibitors increase neurogenesis of human neural progenitor cells. Neurosci. Lett., 2011, 488(1), 36-40.
[http://dx.doi.org/10.1016/j.neulet.2010.10.076] [PMID: 21056624]
[227]
Palomo, V.; Perez, D.I.; Perez, C.; Morales-Garcia, J.A.; Soteras, I.; Alonso-Gil, S.; Encinas, A.; Castro, A.; Campillo, N.E.; Perez-Castillo, A.; Gil, C.; Martinez, A. 5-imino-1,2,4-thiadiazoles: First small molecules as substrate competitive inhibitors of glycogen synthase kinase 3. J. Med. Chem., 2012, 55(4), 1645-1661.
[http://dx.doi.org/10.1021/jm201463v] [PMID: 22257026]
[228]
Huang, J.Y.; Ma, Y.Z.; Yuan, Y.H.; Zuo, W.; Chu, S.F.; Liu, H.; Du, G.H.; Zhang, D.M.; Chen, N.H. Claulansine F promoted the neuronal differentiation of neural stem and progenitor cells through Akt/GSK-3β/β-catenin pathway. Eur. J. Pharmacol., 2016, 786, 72-84.
[http://dx.doi.org/10.1016/j.ejphar.2016.05.017] [PMID: 27179990]
[229]
Ding, S.; Wu, T.Y.H.; Brinker, A.; Peters, E.C.; Hur, W.; Gray, N.S.; Schultz, P.G. Synthetic small molecules that control stem cell fate. Proc. Natl. Acad. Sci. USA, 2003, 100(13), 7632-7637.
[http://dx.doi.org/10.1073/pnas.0732087100] [PMID: 12794184]
[230]
Redzic, Z. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: Similarities and differences. Fluids Barriers CNS, 2011, 8(1), 3.
[http://dx.doi.org/10.1186/2045-8118-8-3] [PMID: 21349151]
[231]
Pardridge, W.M. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx, 2005, 2(1), 3-14.
[http://dx.doi.org/10.1602/neurorx.2.1.3] [PMID: 15717053]
[232]
Banks, W.A. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol., 2009, 9(1)(Suppl. 1), S3.
[http://dx.doi.org/10.1186/1471-2377-9-S1-S3] [PMID: 19534732]
[233]
Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S.K. Drug delivery systems: An updated review. Int. J. Pharm. Investig., 2012, 2(1), 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[234]
Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol., 2015, 6, 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[235]
Markoutsa, E.; Papadia, K.; Giannou, A.D.; Spella, M.; Cagnotto, A.; Salmona, M.; Stathopoulos, G.T.; Antimisiaris, S.G. Mono and dually decorated nanoliposomes for brain targeting, in vitro and in vivo studies. Pharm. Res., 2014, 31(5), 1275-1289.
[http://dx.doi.org/10.1007/s11095-013-1249-3] [PMID: 24338512]
[236]
Helms, H.C.; Abbott, N.J.; Burek, M.; Cecchelli, R.; Couraud, P-O.; Deli, M.A.; Förster, C.; Galla, H.J.; Romero, I.A.; Shusta, E.V.; Stebbins, M.J.; Vandenhaute, E.; Weksler, B.; Brodin, B. In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. J. Cereb. Blood Flow Metab., 2016, 36(5), 862-890.
[http://dx.doi.org/10.1177/0271678X16630991] [PMID: 26868179]
[237]
Zhang, L.; Zhang, Q.; Wang, X.; Zhang, W.; Lin, C.; Chen, F.; Yang, X.; Pan, W. Drug-in-cyclodextrin-in-liposomes: A novel drug delivery system for flurbiprofen. Int. J. Pharm., 2015, 492(1-2), 40-45.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.011] [PMID: 26162980]
[238]
Wong, K.H.; Riaz, M.K.; Xie, Y.; Zhang, X.; Liu, Q.; Chen, H.; Bian, Z.; Chen, X.; Lu, A.; Yang, Z. Review of current strategies for delivering Alzheimer’s disease drugs across the blood-brain barrier. Int. J. Mol. Sci., 2019, 20(2), 381.
[http://dx.doi.org/10.3390/ijms20020381] [PMID: 30658419]