Antitumor and Antiparasitic Activity of Antimicrobial Peptides Derived from Snake Venom: A Systematic Review Approach

Page: [5358 - 5368] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: In a scenario of increased pathogens with multidrug resistance phenotypes, it is necessary to seek new pharmacological options. This fact is responsible for an increase in neoplasms and multiresistant parasitic diseases. In turn, snake venom- derived peptides exhibited cytotoxic action on fungal and bacterial strains, possibly presenting activities in resistant tumor cells and parasites. Therefore, the aim of this work is to verify an antitumor and antiparasitic activity of antimicrobial peptides derived from snake venom.

Methods: For this purpose, searches were performed in the Pubmed, Embase and Virtual Health Library databases by combining the descriptors peptides, venom and snake with antitumor/ antiparasitic agent and in silico. The inclusion criteria: in vitro and in vivo experimental articles in addition to in silico studies. The exclusion criteria: articles that were out of scope, review articles, abstracts, and letters to the reader. Data extracted: peptide name, peptide sequence, semi-maximal inhibitory concentration, snake species, tumor lineage or parasitic strain, cytotoxicity, in vitro and in vivo activity.

Results: In total 164 articles were found, of which 14 were used. A total of ten peptides with antiproliferative activity on tumor cells were identified. Among the articles, seven peptides addressed the antiparasitic activity.

Conclusion: In conclusion, snake venom-derived peptides can be considered as potential pharmacological options for parasites and tumors, however more studies are needed to prove their specific activity.

Keywords: Cancer, protozoan, bioprospecting, venom, vipericidin, peptides.

[1]
Wu, Q.; Yang, Z.; Nie, Y.; Shi, Y.; Fan, D. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett., 2014, 347(2), 159-166.
[http://dx.doi.org/10.1016/j.canlet.2014.03.013] [PMID: 24657660]
[2]
Messaritakis, I.; Christodoulou, V.; Mazeris, A.; Koutala, E.; Vlahou, A.; Papadogiorgaki, S.; Antoniou, M. Drug resistance in natural isolates of Leishmania donovani s.l. promastigotes is dependent of Pgp170 expression. PLoS One, 2013, 8(6), e65467.
[http://dx.doi.org/10.1371/journal.pone.0065467] [PMID: 23776486]
[3]
Schwing, A.; Pomares, C.; Majoor, A.; Boyer, L.; Marty, P.; Michel, G. Leishmania infection: Misdiagnosis as cancer and tumor-promoting potential. Acta Trop., 2019, 197, 104855.
[http://dx.doi.org/10.1016/j.actatropica.2018.12.010] [PMID: 30529443]
[4]
Falcão, C.B.; Radis-Baptista, G. Crotamine and crotalicidin, membrane active peptides from Crotalus durissus terrificus rattlesnake venom, and their structurally-minimized fragments for applications in medicine and biotechnology. Peptides, 2020, 126, 170234.
[http://dx.doi.org/10.1016/j.peptides.2019.170234] [PMID: 31857106]
[5]
Sakunpak, A.; Matsunami, K.; Otsuka, H.; Panichayupakaranant, P. Isolation of new monoterpene coumarins from Micromelum minutum leaves and their cytotoxic activity against Leishmania major and cancer cells. Food Chem., 2013, 139(1-4), 458-463.
[http://dx.doi.org/10.1016/j.foodchem.2013.01.031] [PMID: 23561131]
[6]
Sanhajariya, S.; Duffull, S.B.; Isbister, G.K. Pharmacokinetics of Snake Venom. Toxins (Basel), 2018, 10(2), 73-94.
[http://dx.doi.org/10.3390/toxins10020073] [PMID: 29414889]
[7]
Vyas, V.K.; Brahmbhatt, K.; Bhatt, H.; Parmar, U. Therapeutic potential of snake venom in cancer therapy: Current perspectives. Asian Pac. J. Trop. Biomed., 2013, 3(2), 156-162.
[http://dx.doi.org/10.1016/S2221-1691(13)60042-8] [PMID: 23593597]
[8]
Yacoub, T.; Rima, M.; Karam, M.; Fajloun, J.S.A.Z.; Fajloun, Z. Antimicrobials from venomous animals: An overview. Molecules, 2020, 25(10), 2402-2421.
[http://dx.doi.org/10.3390/molecules25102402] [PMID: 32455792]
[9]
Ma, J.Y.; Shao, S.; Wang, G. Antimicrobial peptides: Bridging innate and adaptive immunity in the pathogenesis of psoriasis. Chin. Med. J. (Engl.), 2020, 133(24), 2966-2975.
[http://dx.doi.org/10.1097/CM9.0000000000001240] [PMID: 33237697]
[10]
de Barros, E.; Gonçalves, R.M.; Cardoso, M.H.; Santos, N.C.; Franco, O.L.; Cândido, E.S. Snake venom cathelicidins as natural antimicrobial peptides. Front. Pharmacol., 2019, 10, 1415-1428.
[http://dx.doi.org/10.3389/fphar.2019.01415] [PMID: 31849667]
[11]
Zhao, F.; Lan, X.Q.; Du, Y.; Chen, P.Y.; Zhao, J.; Zhao, F.; Lee, W.H.; Zhang, Y. King cobra peptide OH-CATH30 as a potential candidate drug through clinic drug-resistant isolates. Zool. Res., 2018, 39(2), 87-96.
[http://dx.doi.org/10.24272/j.issn.2095-8137.2018.025] [PMID: 29515090]
[12]
Almeida, J.R.; Mendes, B.; Lancellotti, M.; Marangoni, S.; Vale, N.; Passos, Ó.; Ramos, M.J.; Fernandes, P.A.; Gomes, P.; Da Silva, S.L. A novel synthetic peptide inspired on Lys49 phospholipase A2 from Crotalus oreganus abyssus snake venom active against multidrug-resistant clinical isolates. Eur. J. Med. Chem., 2018, 149, 248-256.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.055] [PMID: 29501945]
[13]
Gomes, V.M.; Carvalho, A.O.; Da Cunha, M.; Keller, M.N.; Bloch, C., Jr; Deolindo, P.; Alves, E.W. Purification and characterization of a novel peptide with antifungal activity from Bothrops jararaca venom. Toxicon, 2005, 45(7), 817-827.
[http://dx.doi.org/10.1016/j.toxicon.2004.12.011] [PMID: 15904677]
[14]
Kim, D.; Soundrarajan, N.; Lee, J.; Cho, H.S.; Choi, M.; Cha, S.Y.; Ahn, B.; Jeon, H.; Le, M.T.; Song, H.; Kim, J.H.; Park, C. Genomewide analysis of the antimicrobial peptides in python bivittatus and characterization of cathelicidins with potent antimicrobial activity and low cytotoxicity. Antimicrob. Agents Chemother., 2017, 61(9), e00530-e17.
[http://dx.doi.org/10.1128/AAC.00530-17] [PMID: 28630199]
[15]
PRISMA guide 2021. http://www. prisma-statement. org/ PRISMAStatement (Accessed on: September 12, 2021).
[16]
National Toxicology Programe. US Department of Human Services. Handbook for Conducting Systematic Reviews for Health Effects Evaluations 2021. Available from: https://ntp.niehs.nih.gov/whatwestudy/assessments/noncancer/handbook/index.html
[17]
Nascimento, F.D.; Sancey, L.; Pereira, A.; Rome, C.; Oliveira, V.; Oliveira, E.B.; Nader, H.B.; Yamane, T.; Kerkis, I.; Tersariol, I.L.; Coll, J.L.; Hayashi, M.A. The natural cell-penetrating peptide crotamine targets tumor tissue in vivo and triggers a lethal calcium-dependent pathway in cultured cells. Mol. Pharm., 2012, 9(2), 211-221.
[http://dx.doi.org/10.1021/mp2000605] [PMID: 22142367]
[18]
Wang, H.; Ke, M.; Tian, Y.; Wang, J.; Li, B.; Wang, Y.; Dou, J.; Zhou, C. BF-30 selectively inhibits melanoma cell proliferation via cytoplasmic membrane permeabilization and DNA-binding in vitro and in B16F10-bearing mice. Eur. J. Pharmacol., 2013, 707(1-3), 1-10.
[http://dx.doi.org/10.1016/j.ejphar.2013.03.028] [PMID: 23541725]
[19]
Conlon, J.M.; Prajeep, M.; Mechkarska, M.; Arafat, K.; Attoub, S.; Adem, A.; Pla, D.; Calvete, J.J. Peptides with in vitro anti-tumor activity from the venom of the Eastern green mamba, Dendroaspis angusticeps (Elapidae). J. Venom Res., 2014, 5, 16-21.
[PMID: 25035794]
[20]
Falcão, C.B.; Pérez-Peinado, C.; de la Torre, B.G.; Mayol, X.; Zamora-Carreras, H.; Jiménez, M.Á.; Rádis-Baptista, G.; Andreu, D. Structural dissection of crotalicidin, a rattlesnake venom cathelicidin, retrieves a fragment with antimicrobial and antitumor activity. J. Med. Chem., 2015, 58(21), 8553-8563.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01142] [PMID: 26465972]
[21]
Xu, C.; Wang, Y.; Tu, Q.; Zhang, Z.; Chen, M.; Mwangi, J.; Li, Y.; Jin, Y.; Zhao, X.; Lai, R. Targeting surface nucleolin induces autophagy-dependent cell death in pancreatic cancer via AMPK activation. Oncogene, 2019, 38(11), 1832-1844.
[http://dx.doi.org/10.1038/s41388-018-0556-x] [PMID: 30356139]
[22]
Abdel-Ghani, L.M.; Rahmy, T.R.; Tawfik, M.M.; Kaziri, I.; Al-Obaidi, A.; Rowan, E.G.; Plevin, R.; Abdel-Rahman, M.A. Cytotoxicity of Nubein6.8 peptide isolated from the snake venom of Naja nubiae on melanoma and ovarian carcinoma cell lines. Toxicon, 2019, 168, 22-31.
[http://dx.doi.org/10.1016/j.toxicon.2019.06.220] [PMID: 31233771]
[23]
Pérez-Peinado, C.; Valle, J.; Freire, J.M.; Andreu, D. Tumor Cell Attack by Crotalicidin (Ctn) and its fragment Ctn[15-34]: Insights into their dual membranolytic and intracellular targeting mechanism. ACS Chem. Biol., 2020, 15(11), 2945-2957.
[http://dx.doi.org/10.1021/acschembio.0c00596] [PMID: 33021779]
[24]
Macedo, S.R.; de Barros, N.B.; Ferreira, A.S.; Moreira-Dill, L.S.; Calderon, L.A.; Soares, A.M.; Nicolete, R. Biodegradable microparticles containing crotamine isolated from Crotalus durissus terrificus display antileishmanial activity in vitro. Pharmacology, 2015, 95(1-2), 78-86.
[http://dx.doi.org/10.1159/000371391] [PMID: 25633844]
[25]
Dal Mas, C.; Moreira, J.T.; Pinto, S.; Monte, G.G.; Nering, M.B.; Oliveira, E.B.; Gazarini, M.L.; Mori, M.A.; Hayashi, M.A. Anthelmintic effects of a cationic toxin from a South American rattlesnake venom. Toxicon, 2016, 116, 49-55.
[http://dx.doi.org/10.1016/j.toxicon.2015.11.021] [PMID: 26713409]
[26]
El Chamy Maluf, S.; Dal Mas, C.; Oliveira, E.B.; Melo, P.M.; Carmona, A.K.; Gazarini, M.L.; Hayashi, M.A. Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom. Peptides, 2016, 78, 11-16.
[http://dx.doi.org/10.1016/j.peptides.2016.01.013] [PMID: 26806200]
[27]
Mello, C.P.; Lima, D.B.; Menezes, R.R.; Bandeira, I.C.; Tessarolo, L.D.; Sampaio, T.L.; Falcão, C.B.; Rádis-Baptista, G.; Martins, A.M. Evaluation of the antichagasic activity of batroxicidin, a cathelicidin-related antimicrobial peptide found in Bothrops atrox venom gland. Toxicon, 2017, 130, 56-62.
[http://dx.doi.org/10.1016/j.toxicon.2017.02.031] [PMID: 28246023]
[28]
Bandeira, I.C.J.; Bandeira-Lima, D.; Mello, C.P.; Pereira, T.P.; De Menezes, R.R.P.P.B.; Sampaio, T.L.; Falcão, C.B.; Rádis-Baptista, G.; Martins, A.M.C. Antichagasic effect of crotalicidin, a cathelicidin-like vipericidin, found in Crotalus durissus terrificus rattlesnake’s venom gland. Parasitology, 2018, 145(8), 1059-1064.
[http://dx.doi.org/10.1017/S0031182017001846] [PMID: 29208061]
[29]
Mendes, B.; Almeida, J.R.; Vale, N.; Gomes, P.; Gadelha, F.R.; Da Silva, S.L.; Miguel, D.C. Potential use of 13-mer peptides based on phospholipase and oligoarginine as leishmanicidal agents. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2019, 226, 108612.
[http://dx.doi.org/10.1016/j.cbpc.2019.108612] [PMID: 31454702]
[30]
Valentim Silva, J.R.; de Barros, N.B.; Aragão Macedo, S.R.; Ferreira, A.D.S.; Moreira Dill, L.S.; Zanchi, F.B.; do Nascimento, J.R.; Fernandes do Nascimento, F.R.; Lourenzoni, M.R.; de Azevedo Calderon, L.; Soares, A.M.; Nicolete, R. A natural cell-penetrating nanopeptide combined with pentavalent antimonial as experimental therapy against cutaneous leishmaniasis. Exp. Parasitol., 2020, 217, 107934.
[http://dx.doi.org/10.1016/j.exppara.2020.107934] [PMID: 32698075]
[31]
Dubovskii, P.V.; Efremov, R.G. The role of hydrophobic /hydrophilic balance in the activity of structurally flexible vs rigid cytolytic polypeptides and analogs developed on their basis. Expert Rev. Proteomics, 2018, 15(11), 873-886.
[http://dx.doi.org/10.1080/14789450.2018.1537786] [PMID: 30328726]
[32]
Pérez-Peinado, C.; Defaus, S.; Andreu, D. Hitchhiking with nature: Snake venom peptides to fight cancer and superbugs. Toxins (Basel), 2020, 12(4), 252-278.
[http://dx.doi.org/10.3390/toxins12040255] [PMID: 32326531]
[33]
Cavalcante, C.S.; Falcão, C.B.; Fontenelle, R.O.; Andreu, D.; Rádis-Baptista, G. Anti-fungal activity of Ctn[15-34], the C-terminal peptide fragment of crotalicidin, a rattlesnake venom gland cathelicidin. J. Antibiot. (Tokyo), 2017, 70(3), 231-237.
[http://dx.doi.org/10.1038/ja.2016.135] [PMID: 27876749]
[34]
Pérez-Peinado, C; Dias, S; Domingues, M; Benfield, A; Freire, J; Radis-Baptista, G; Gaspar, D; Castanho, M; Craik, D; Henriques, S; Veiga, A; Andreu, D Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn(15–34), antimicrobial peptides from rattlesnake venom. JBC article, 2018, 293, 1536-1549.
[http://dx.doi.org/10.1074/jbc.RA117.000125]
[35]
Aguiar, F.L.L.; Santos, N.C.; de Paula Cavalcante, C.S.; Andreu, D.; Baptista, G.R.; Gonçalves, S. Antibiofilm activity on Candida albicans and mechanism of action on biomembrane models of the antimicrobial Peptide Ctn[15-34]. Int. J. Mol. Sci., 2020, 21(21), 8339-8354.
[http://dx.doi.org/10.3390/ijms21218339] [PMID: 33172206]
[36]
Wang, Y.; Zhang, Z.; Chen, L.; Guang, H.; Li, Z.; Yang, H.; Li, J.; You, D.; Yu, H.; Lai, R.; Lai, R. Cathelicidin-BF, a snake cathelicidin-derived antimicrobial peptide, could be an excellent therapeutic agent for acne vulgaris. PLoS One, 2011, 6(7), e22120.
[http://dx.doi.org/10.1371/journal.pone.0022120] [PMID: 21789223]
[37]
Xia, X.; Zhang, L.; Wang, Y. The antimicrobial peptide cathelicidin-BF could be a potential therapeutic for Salmonella typhimurium infection. Microbiol. Res., 2015, 171, 45-51.
[http://dx.doi.org/10.1016/j.micres.2014.12.009] [PMID: 25644952]
[38]
Dennison, S.R.; Whittaker, M.; Harris, F.; Phoenix, D.A. Anticancer alpha-helical peptides and structure/function relationships underpinning their interactions with tumour cell membranes. Curr. Protein Pept. Sci., 2006, 7(6), 487-499.
[http://dx.doi.org/10.2174/138920306779025611] [PMID: 17168782]
[39]
Costa, T.R.; Menaldo, D.L.; Oliveira, C.Z.; Santos-Filho, N.A.; Teixeira, S.S.; Nomizo, A.; Fuly, A.L.; Monteiro, M.C.; de Souza, B.M.; Palma, M.S.; Stábeli, R.G.; Sampaio, S.V.; Soares, A.M. Myotoxic phospholipases A(2) isolated from Bothrops brazili snake venom and synthetic peptides derived from their C-terminal region: Cytotoxic effect on microorganism and tumor cells. Peptides, 2008, 29(10), 1645-1656.
[http://dx.doi.org/10.1016/j.peptides.2008.05.021] [PMID: 18602430]
[40]
Prinholato da Silva, C.; Costa, T.R.; Paiva, R.M.; Cintra, A.C.; Menaldo, D.L.; Antunes, L.M.; Sampaio, S.V. Antitumor potential of the myotoxin BthTX-I from Bothrops jararacussu snake venom: Evaluation of cell cycle alterations and death mechanisms induced in tumor cell lines. J. Venom. Anim. Toxins Incl. Trop. Dis., 2015, 21, 44.
[http://dx.doi.org/10.1186/s40409-015-0044-5] [PMID: 26539212]
[41]
Rádis-Baptista, G.; Kerkis, A.; Prieto-Silva, A.; Hayashi, M.; Kerkis, I.; Tetsuo, Y. Membrane-translocating peptides and toxins: From nature to bedside. J. Braz. Chem. Soc., 2008, 19, 221-225.
[http://dx.doi.org/10.1590/S0103-50532008000200004]
[42]
Hayashi, M.A.; Nascimento, F.D.; Kerkis, A.; Oliveira, V.; Oliveira, E.B.; Pereira, A.; Rádis-Baptista, G.; Nader, H.B.; Yamane, T.; Kerkis, I.; Tersariol, I.L. Cytotoxic effects of crotamine are mediated through lysosomal membrane permeabilization. Toxicon, 2008, 52(3), 508-517.
[http://dx.doi.org/10.1016/j.toxicon.2008.06.029] [PMID: 18662711]
[43]
Kerkis, I.; Hayashi, M.A.; Prieto da Silva, A.R.; Pereira, A.; De Sá Júnior, P.L.; Zaharenko, A.J.; Rádis-Baptista, G.; Kerkis, A.; Yamane, T. State of the art in the studies on crotamine, a cell penetrating peptide from South American rattlesnake. BioMed Res. Int., 2014, 2014, 675985.
[http://dx.doi.org/10.1155/2014/675985] [PMID: 24551848]
[44]
Dematei, A.; Nunes, J.B.; Moreira, D.C.; Jesus, J.A.; Laurenti, M.D.; Mengarda, A.C.A.; Vieira, M.S.; do Amaral, C.P.; Domingues, M.M.; de Moraes, J.; Passero, L.F.D.; Brand, G.; Bessa, L.J.; Wimmer, R.; Kückelhaus, S.A.S.; Tomás, A.M.; Santos, N.C.; Plácido, A.; Eaton, P.; Leite, J.R.S.A. Mechanistic Insights into the Leishmanicidal and Bactericidal Activities of Batroxicidin, a Cathelicidin-Related Peptide from a South American Viper (Bothrops atrox). J. Nat. Prod., 2021, 84(6), 1787-1798.
[http://dx.doi.org/10.1021/acs.jnatprod.1c00153] [PMID: 34077221]
[45]
Wang, L.; Chan, J.Y.; Rêgo, J.V.; Chong, C.M.; Ai, N.; Falcão, C.B.; Rádis-Baptista, G.; Lee, S.M. Rhodamine B-conjugated encrypted vipericidin nonapeptide is a potent toxin to zebrafish and associated with in vitro cytotoxicity. Biochim. Biophys. Acta, 2015, 1850(6), 1253-1260.
[http://dx.doi.org/10.1016/j.bbagen.2015.02.013] [PMID: 25731980]
[46]
De Araújo Cruz, J.; Moreira, I.; Alves, M.; Oliveira, H.; Oliveira Filho, A.; Alves, M. Análise da atividade farmacológica e toxicológica do monoterpeno relacionado à Odontologia: Estudo in silico. Arch Health Invest., 2019, 8, v8i11.4314.
[http://dx.doi.org/10.21270/archi.v8i11.4314]