Natural Antioxidants as Additional Weapons in the Fight against Malarial Parasite

Page: [2045 - 2067] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Background: All currently available antimalarial drugs are developed from natural product lineages that may be traced back to herbal medicines, including quinine, lapachol, and artemisinin. Natural products that primarily target free radicals or reactive oxygen species, play an important role in treating malaria.

Objectives: This review analyses the role of antioxidative therapy in treating malaria by scavenging or countering free radicals and reviews the importance of natural plant extracts as antioxidants in oxidative therapy of malaria treatment.

Methods: The search for natural antioxidants was conducted using the following databases: ResearchGate, ScienceDirect, Google Scholar, and Bentham Science with the keywords malaria, reactive oxygen species, natural antioxidants, and antiplasmodial.

Conclusion: This study reviewed various literature sources related to natural products employed in antimalarial therapy directly or indirectly by countering/scavenging reactive oxygen species published between 2016 till date. The literature survey made it possible to summarize the natural products used in treating malaria, emphasizing botanical extracts as a single component and in association with other botanical extracts. Natural antioxidants like polyphenols, flavonoids, and alkaloids, have a broad range of biological effects against malaria. This review is pivoted around natural antioxidants obtained from food and medicinal plants and explores their application in restraining reactive oxygen species (ROS). We anticipate this article will provide information for future research on the role of antioxidant therapy in malaria infection.

Keywords: Malaria, Reactive oxygen species, Plant extracts, Oxidative stress, Polyphenols, Flavonoids.

Graphical Abstract

[1]
Talapko, J.; Škrlec, I. Alebić, T.; Jukić, M.; Včev, A. Malaria: The past and the present. Microorganisms, 2019, 7(6), 179.
[http://dx.doi.org/10.3390/microorganisms7060179] [PMID: 31234443]
[2]
WHO. World Malaria Report: 20 years of global progress and challenges. 2020. Available form: https://www.who.int/publications-detail-redirect/9789240015791
[3]
Aly, A.S.; Vaughan, A.M.; Kappe, S.H. Malaria parasite development in the mosquito and infection of the mammalian host. Annu. Rev. Microbiol., 2009, 63, 195-221.
[http://dx.doi.org/10.1146/annurev.micro.091208.073403] [PMID: 19575563]
[4]
Hunt, N.H.; Stocker, R. Oxidative stress and the redox status of malaria-infected erythrocytes. Blood Cells, 1990, 16(2-3), 499-526.
[PMID: 2257324]
[5]
Clark, I.A.; Chaudhri, G.; Cowden, W.B. Some roles of free radicals in malaria. Free Radic. Biol. Med., 1989, 6(3), 315-321.
[http://dx.doi.org/10.1016/0891-5849(89)90058-0] [PMID: 2663664]
[6]
Halliwell, B.; Gutteridge, J.M. Role of free radicals and catalytic metal ions in human disease: An overview. Methods Enzymol., 1990, 186, 1-85.
[http://dx.doi.org/10.1016/0076-6879(90)86093-B] [PMID: 2172697]
[7]
Proctor, P.H.; Reynolds, E.S. Free radicals and disease in man. Physiol. Chem. Phys. Med. NMR, 1984, 16(3), 175-195.
[PMID: 6393156]
[8]
Postma, N.S.; Mommers, E.C.; Eling, W.M.; Zuidema, J. Oxidative stress in malaria; implications for prevention and therapy. Pharm. World Sci., 1996, 18(4), 121-129.
[http://dx.doi.org/10.1007/BF00717727] [PMID: 8873227]
[9]
Syukriah, S.; Faizah, U.; Saragih, H.; Yuneldi, R.; Poerwanto, S. Astuti RRUNW, I.S. The oxidative stress-mediated effects in pregnant mice with Plasmodium berghei infection. Adv. Anim. Vet. Sci., 2022, 10(3), 521-528.
[10]
Eiya, B.O.; Igharo, O.G. Selected biochemical parameters and oxidative stress status of rats administered antimalaria herbal extract–‘agbo’. African Sci., 2022, 21(3), 1406.
[11]
Al-Quraishy, S.; Abdel-Maksoud, M.A.; El-Amir, A.; Abdel-Ghaffar, F.A.; Badr, G. Malarial infection of female BWF1 lupus mice alters the redox state in kidney and liver tissues and confers protection against lupus nephritis. Oxid. Med. Cell. Longev., 2013, 2013, 156562.
[http://dx.doi.org/10.1155/2013/156562]
[12]
Chuljerm, H.; Maneekesorn, S.; Somsak, V.; Ma, Y.; Srichairatanakool, S.; Koonyosying, P. Anti-malarial and anti-lipid peroxidation activities of deferiprone-resveratrol hybrid in Plasmodium berghei-infected mice. Biology (Basel), 2021, 10(9), 911.
[http://dx.doi.org/10.3390/biology10090911] [PMID: 34571788]
[13]
Rahmatin, N.L.; Yulia, R.; Herawati, F. Pathopsiology of cerebral malaria. World J. Pharm. Res., 2022, 11(1), 12-19.
[14]
Egwu, C.O.; Augereau, J-M.; Reybier, K.; Benoit-Vical, F. Reactive oxygen species as the brainbox in malaria treatment. Antioxidants, 2021, 10(12), 1872.
[http://dx.doi.org/10.3390/antiox10121872] [PMID: 34942976]
[15]
Sarkar, A.; Basak, S.; Ghosh, S.; Mahalanobish, S.; Sil, P.C. Insights into the relation between oxidative stress and malaria: A mechanistic and therapeutic approach. React. Oxygen Species, 2021, 11, m26-m41.
[16]
Miglar, A.; Reuling, I.J.; Yap, X.Z.; Färnert, A.; Sauerwein, R.W.; Asghar, M. Biomarkers of cellular aging during a controlled human malaria infection. Sci. Rep., 2021, 11(1), 18733.
[http://dx.doi.org/10.1038/s41598-021-97985-y] [PMID: 34548530]
[17]
Xu, D-P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J-J.; Li, H-B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci., 2017, 18(1), 96.
[http://dx.doi.org/10.3390/ijms18010096] [PMID: 28067795]
[18]
Kamara, A.; Akobundu, I.; Sanginga, N.; Jutzi, S. Effect of mulch from selected multipurpose trees (MPTs) on growth, nitrogen nutrition and yield of maize (Zea mays L.). J. Agron. Crop Sci., 2000, 184(2), 73-80.
[http://dx.doi.org/10.1046/j.1439-037x.2000.00359.x]
[19]
Nnamdi, A.; Ettebong, E.; Davis, K. Antiplasmodial and antioxidant activities of methanolic leaf extract and fractions of Alchornea cordifolia. J. Herb. Med. Pharmacol., 2017, 6(4), 171-177.
[20]
Osadebe, P.O.; Okoye, F.B. Anti-inflammatory effects of crude methanolic extract and fractions of Alchornea cordifolia leaves. J. Ethnopharmacol., 2003, 89(1), 19-24.
[http://dx.doi.org/10.1016/S0378-8741(03)00195-8] [PMID: 14522428]
[21]
Chekole, G. Ethnobotanical study of medicinal plants used against human ailments in Gubalafto District, Northern Ethiopia. J. Ethnobiol. Ethnomed., 2017, 13(1), 55.
[http://dx.doi.org/10.1186/s13002-017-0182-7] [PMID: 28978342]
[22]
Amoa Onguéné, P.; Ntie-Kang, F.; Lifongo, L.L.; Ndom, J.C.; Sippl, W.; Mbaze, L.M. The potential of anti-malarial compounds derived from African medicinal plants, part I: A pharmacological evaluation of alkaloids and terpenoids. Malar. J., 2013, 12(1), 449.
[http://dx.doi.org/10.1186/1475-2875-12-449] [PMID: 24330395]
[23]
Misganaw, D.; Engidawork, E.; Nedi, T. Evaluation of the anti-malarial activity of crude extract and solvent fractions of the leaves of Olea europaea (Oleaceae) in mice. BMC Complement. Altern. Med., 2019, 19(1), 171.
[http://dx.doi.org/10.1186/s12906-019-2567-8] [PMID: 31296214]
[24]
Attemene, S.D.D.; Beourou, S.; Tuo, K.; Gnondjui, A.A.; Konate, A.; Toure, A.O.; Kati-Coulibaly, S.; Djaman, J.A. Antiplasmodial activity of two medicinal plants against clinical isolates of Plasmodium falciparum and Plasmodium berghei infected mice. J. Parasit. Dis., 2018, 42(1), 68-76.
[http://dx.doi.org/10.1007/s12639-017-0966-7] [PMID: 29491562]
[25]
Satish, P.V.V.; Sunita, K. Antimalarial efficacy of Pongamia pinnata (L.) pierre against Plasmodium falciparum (3D7 strain) and Plasmodium berghei (ANKA). BMC Complement. Altern. Med., 2017, 17(1), 458.
[http://dx.doi.org/10.1186/s12906-017-1958-y] [PMID: 28893216]
[26]
Teka, T.; Awgichew, T.; Kassahun, H. Antimalarial activity of the leaf latex of Aloe weloensis (aloaceae) against Plasmodium berghei in mice. J. Trop. Med., 2020, 2020, 1397043.
[27]
Amare, G.G.; Degu, A.; Njogu, P.; Kifle, Z.D. Evaluation of the antimalarial activity of the leaf latex of Aloe weloensis (Aloaceae) against Plasmodium parasites. Evid. Based Complement. Alternat. Med., 2021, 2021, 1397043.
[http://dx.doi.org/10.1155/2021/6664711]
[28]
Nafiah, M.; Litaudon, M. 3′, 4′-Dihydronorstephasubine, a new bisbenzylisoquinoline from the bark of Alseodaphne corneri. Heterocycles, 2009, 78(10), 11753.
[29]
Zahari, A.; Ablat, A.; Sivasothy, Y.; Mohamad, J.; Choudhary, M.I.; Awang, K. In vitro antiplasmodial and antioxidant activities of bisbenzylisoquinoline alkaloids from Alseodaphne corneri Kosterm. Asian Pac. J. Trop. Med., 2016, 9(4), 328-332.
[http://dx.doi.org/10.1016/j.apjtm.2016.03.008] [PMID: 27086149]
[30]
Warhurst, D.C.; Craig, J.C.; Adagu, I.S.; Meyer, D.J.; Lee, S.Y. The relationship of physico-chemical properties and structure to the differential antiplasmodial activity of the cinchona alkaloids. Malar. J., 2003, 2(1), 26.
[http://dx.doi.org/10.1186/1475-2875-2-26] [PMID: 14505493]
[31]
Pradines, B.; Rolain, J.M.; Ramiandrasoa, F.; Fusai, T.; Mosnier, J.; Rogier, C.; Daries, W.; Baret, E.; Kunesch, G.; Le Bras, J.; Parzy, D. Iron chelators as antimalarial agents: In vitro activity of dicatecholate against Plasmodium falciparum. J. Antimicrob. Chemother., 2002, 50(2), 177-187.
[http://dx.doi.org/10.1093/jac/dkf104] [PMID: 12161397]
[32]
Kane, N.; Kyama, M.; Nganga, J.; Hassanali, A.; Diallo, M.; Kimani, F. Comparison of phytochemical profiles and antimalarial activities of Artemisia afra plant collected from five countries in Africa. S. Afr. J. Bot., 2019, 125, 126-133.
[http://dx.doi.org/10.1016/j.sajb.2019.07.001]
[33]
Konan, K.V.; Le, T.C.; Mateescu, M.A. Antiplasmodial combined formulation of Artemisinin with Peschiera fuchsiaefolia Bis-Indole Alkaloids. J. Pharm. Sci., 2021, 110(1), 135-145.
[http://dx.doi.org/10.1016/j.xphs.2020.09.033] [PMID: 32987093]
[34]
Hassan, G.M. Antiparasitic activity of Artemether and combination Artemether with Artemisinin against Leishmaniasis, in vitro. Shanghai Ligong Daxue Xuebao, 2022, 24(2), 327-334.
[http://dx.doi.org/10.51201/JUSST/22/0255]
[35]
Ayad, N.; Benaraba, R.; Hemida, H.; Abdellah, F. Biological activities of phenolic extracts from Artemisia herba-alba Asso grown in western Algeria. Eur. J. Biol. Res., 2022, 12(1), 46-61.
[36]
Elazzouzi, H.; Zekri, N.; Zair, T.; El Belghiti, M.A. Total phenolic and flavonoid contents of Artemisia ifranensis J. Didier plant extracts and their antioxidant activity. J. Med. Pharm. Allied Sci., 2022, 11(1), 4419-4123.
[37]
Rehman, S.; Ganie, A.H.; Reshi, Z.A. The therapeutic potential of Artemisia amygdalina decne, an endemic plant species from Kashmir himalaya: A review. Herb. Med. J., 2022, 7(1)
[38]
Rasool, R.; Ganai, B.A.; Kamili, A.N.; Akbar, S. Antioxidant potential in callus culture of Artemisia amygdalina Decne. Nat. Prod. Res., 2012, 26(22), 2103-2106.
[PMID: 21950614]
[39]
Slavkovic, S.; Shoara, A.A.; Churcher, Z.R.; Daems, E.; de Wael, K.; Sobott, F.; Johnson, P.E. DNA binding by the antimalarial compound artemisinin. Sci. Rep., 2022, 12(1), 133.
[http://dx.doi.org/10.1038/s41598-021-03958-6] [PMID: 34997002]
[40]
Li, S.; Li, H.; Zhou, Q.; Zhang, F.; Desneux, N.; Wang, S.; Shi, L. Essential oils from two aromatic plants repel the tobacco whitefly Bemisia tabaci. J. Pest Sci., 2022, 95(2), 971-982.
[41]
Mir, S.H. Phytomedicine; Elsevier, 2021, pp. 409-425.
[42]
Fu, L.; Xu, B-T.; Xu, X-R.; Gan, R-Y.; Zhang, Y.; Xia, E-Q.; Li, H-B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem., 2011, 129(2), 345-350.
[http://dx.doi.org/10.1016/j.foodchem.2011.04.079] [PMID: 30634236]
[43]
Larayetan, R.; Ololade, Z.S.; Ogunmola, O.O.; Ladokun, A. Phytochemical constituents, antioxidant, cytotoxicity, antimicrobial, antitrypanosomal, and antimalarial potentials of the crude extracts of Callistemon citrinus. Evid. Based Complement. Alternat. Med., 2019, 2019, 5410923.
[http://dx.doi.org/10.1155/2019/5410923] [PMID: 31558912]
[44]
Adenowo, A.F.; Ilori, M.F.; Balogun, F.O.; Kazeem, M.I. Protective effect of ethanol leaf extract of Carica papaya Linn (Caricaceae) in alloxan-induced diabetic rats. Trop. J. Pharm. Res., 2014, 13(11), 1877-1882.
[http://dx.doi.org/10.4314/tjpr.v13i11.15]
[45]
Deshpande, M.; Parihar, P.S.; Brahma, S.; Shirole, A.; Vahikar, E.; Agarwal, H. Benefits of papaya fruit and its leaves to treat malaria or dengue and various other uses for human health. Int. J. Eng. Technol., 2021, 8(4), 56-72.
[46]
Oraebosi, M.I.; Good, G.M. Carica papaya augments anti-malarial efficacy of artesunate in Plasmodium berghei parasitized mice. Ann. Parasitol., 2021, 67(2), 295-303.
[PMID: 34598401]
[47]
Khor, B-K.; Chear, N.J-Y.; Azizi, J.; Khaw, K-Y. Chemical composition, antioxidant and cytoprotective potentials of Carica papaya leaf extracts: A comparison of supercritical fluid and conventional extraction methods. Molecules, 2021, 26(5), 1489.
[http://dx.doi.org/10.3390/molecules26051489] [PMID: 33803330]
[48]
Nyariki, J.N.; Mokaya, D.; Jillani, N.E.; Nyamweya, N.O.; Isaac, A.O. Oral administration of coenzyme Q10 has the capacity to stimulate innate lymphoid cells class two during experimental cerebral malaria. South Asian J. Parasitol., 2019, 2(2), 1-9.
[49]
Nyariki, J.N.; Mokaya, D.; Jillani, N.E.; Nyamweya, N.O.; Hoerauf, A.; Orina, A. Coenzyme Q10 protect mice against inflammatory responses during Experimental cerebral malaria. Parasitol. Int., 2019, 71, 106-120. Available from: https://www.iiste. org/Journals/index.php/JNSR/article/view/46051
[50]
Jurenka, J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Altern. Med. Rev., 2009, 14(2), 141-153.
[PMID: 19594223]
[51]
Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218.
[http://dx.doi.org/10.1208/s12248-012-9432-8] [PMID: 23143785]
[52]
Abu-Lafi, S.; Akkawi, M.; Abu-Remeleh, Q.; Qutob, M.; Lutgen, P. Curcumin, a natural isolate from Curcuma longa (turmeric) with high β-hematin inhibitory potential. Pharm. Pharmacol. Int. J., 2019, 7(1), 22-26.
[53]
Lemberg, R. Hematin Compounds and Bile Pigments; Interscience Publishers: Geneva, 1949.
[54]
Bicer, N.; Yildiz, E.; Yegani, A.A.; Aksu, F. Synthesis of curcumin complexes with iron (iii) and manganese (ii), and effects of curcumin–iron (iii) on Alzheimer’s disease. New J. Chem., 2018, 42(10), 8098-8104.
[http://dx.doi.org/10.1039/C7NJ04223J]
[55]
Osamudiamen, P.M.; Aiyelaagbe, O.O.; Vaid, S.; Saxena, A.K. Comparative evaluation of the anti-cancer activities of the crude extracts of four Nigerian chewing sticks. J. Biol. Act. Prod. Nat., 2018, 8(3), 201-207.
[http://dx.doi.org/10.1080/22311866.2018.1483268]
[56]
Ayisi, F.; Mensah, C.N.; Borquaye, L.S. Antiplasmodial potential and safety evaluation of the ethanolic stem bark extract of Distemonanthus benthamianus baill. (Leguminosae). Sci. African, 2021, 2021, e00809.
[57]
Kaur, H.; Mukhtar, H.M.; Singh, A.; Mahajan, A. Antiplasmodial medicinal plants: A literature review on efficacy, selectivity and phytochemistry of crude plant extracts. J. Biol. Act. Prod. Nat., 2018, 8(5), 272-294.
[http://dx.doi.org/10.1080/22311866.2018.1526651]
[58]
Evina, J.N.; Bikobo, D.S.N.; Zintchem, A.A.A.; Nyemeck, N.M.; Ndedi, E.D.F.M.; Diboué, P.H.B.; Nyegue, M.A.; Atchadé, A.T.; Pegnyemb, D.E.; Koert, U. In vitro antitubercular activity of extract and constituents from the stem bark of Disthemonanthus benthamianus. Rev. Bras. Farmacogn., 2017, 27, 739-743.
[http://dx.doi.org/10.1016/j.bjp.2017.09.006]
[59]
Couillerot, E.; Caron, C.; Trentesaux, C.; Chenieux, J.; Audran, J. Medicinal and aromatic plants XI. Biotechnol. Agric. For., 1999, 43, 136-156.
[60]
Adefisoye, M.A. AjibadeAko-Nai, K.; Bisi-Johnson, M.A. Phytochemical and antibacterial activity of the extracts of Fagara zanthoxyloides on selected cariogenic and enteric bacterial isolates. J. Complementary Med. Res., 2012, 1(1), 1-6.
[61]
Ahua, K.M.; Ioset, J-R.; Ioset, K.N.; Diallo, D.; Mauël, J.; Hostettmann, K. Antileishmanial activities associated with plants used in the Malian traditional medicine. J. Ethnopharmacol., 2007, 110(1), 99-104.
[http://dx.doi.org/10.1016/j.jep.2006.09.030] [PMID: 17097842]
[62]
Barnabas, B.; Mann, A.; Ogunrinola, T.; Anyanwu, P. Screening for Anthelminthic activities from extracts of Zanthoxylum zanthoxyloides, Neocarya macrophylla and Celosia laxa against ascaris infection in rabbits. Int. J. Appl. Res. Nat. Prod., 2010, 3(4), 1-4.
[63]
Gansane, A.; Sanon, S.; Ouattara, P.; Hutter, S.; Ollivier, E.; Azas, N.; Traore, A.; Traore, A.; Guissou, I.; Nebie, I. Antiplasmodial activity and cytotoxicity of semi purified fractions from Zanthoxylum zanthoxyloïdes Lam. bark of trunk. Int. J. Pharmacol., 2010, 6(6), 921-925.
[http://dx.doi.org/10.3923/ijp.2010.921.925]
[64]
Elujoba, A.A.; Odeleye, O.; Ogunyemi, C. Traditional medicine development for medical and dental primary health care delivery system in Africa. Afr. J. Tradit. Complement. Altern. Med., 2005, 2(1), 46-61.
[65]
Enechi, O.C.; Amah, C.C.; Okagu, I.U.; Ononiwu, C.P.; Azidiegwu, V.C.; Ugwuoke, E.O.; Onoh, A.P.; Ndukwe, E.E. Methanol extracts of Fagara zanthoxyloides leaves possess antimalarial effects and normalizes haematological and biochemical status of Plasmodium berghei-passaged mice. Pharm. Biol., 2019, 57(1), 577-585.
[http://dx.doi.org/10.1080/13880209.2019.1656753] [PMID: 31500475]
[66]
Hapuarachchi, K.; Karunarathna, S.; Raspé, O.; De Silva, K.; Thawthong, A.; Wu, X.; Kakumyan, P.; Hyde, K.; Wen, T. High diversity of Ganoderma and Amauroderma (Ganodermataceae, Polyporales) in Hainan Island, China. Mycosphere, 2018, 9(5), 931-982.
[http://dx.doi.org/10.5943/mycosphere/9/5/1]
[67]
Oluba, O.M.; Josiah, S.J.; Adebisi, K.E.; Ojeaburu, S.I.; Onyeneke, E.C. Antiplasmodial and antioxidant activities of chloroform extract of Ganoderma lucidum fruit body in Plasmodium berghei-infected mice. Orient. Pharm. Exp. Med., 2017, 17(4), 389-395.
[http://dx.doi.org/10.1007/s13596-017-0288-4]
[68]
Erel, O.; Kocyigit, A.; Avci, S.; Aktepe, N.; Bulut, V. Oxidative stress and antioxidative status of plasma and erythrocytes in patients with Vivax malaria. Clin. Biochem., 1997, 30(8), 631-639.
[http://dx.doi.org/10.1016/S0009-9120(97)00119-7] [PMID: 9455617]
[69]
Builders, M.; Wannang, N.; Aguiyi, J. Antiplasmodial activities of Parkia biglobosa leaves: In vivo and in vitro studies. Ann. Biol. Res., 2011, 2(4), 8-20.
[70]
Zhu, M.; Chang, Q.; Wong, L.K.; Chong, F.S.; Li, R.C. Triterpene antioxidants from Ganoderma lucidum. Phytother. Res., 1999, 13(6), 529-531.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199909)13:6<529:AID-PTR481>3.0.CO;2-X] [PMID: 10479768]
[71]
Anwar, J.; Shah, H.U.; Ali, R.; Iqbal, Z.; Khan, S.M.; Khan, S. Antioxidant activity and phytochemical screening of stem bark extracts of Grewia optiva Drummond ex Burret. J. Pharmacogn. Phytochem., 2015, 3(6), 179-182.
[72]
Bari, W.U.; Zahoor, M.; Zeb, A.; Khan, I.; Nazir, Y.; Khan, A.; Rehman, N.U.; Ullah, R.; Shahat, A.A.; Mahmood, H.M. Anticholinesterase, antioxidant potentials, and molecular docking studies of isolated bioactive compounds from Grewia optiva. Int. J. Food Prop., 2019, 22(1), 1386-1396.
[http://dx.doi.org/10.1080/10942912.2019.1650763]
[73]
Mata, R.; del Rayo Camacho, M.; Cervera, E.; Bye, R.; Linares, E. Secondary metabolites from Hintonia latiflora. Phytochemistry, 1990, 29(6), 2037-2040.
[http://dx.doi.org/10.1016/0031-9422(90)85067-P]
[74]
Carrasco-Ramírez, E.; López-Camacho, P.Y.; Zepeda-Rodríguez, A.; Bizarro-Nevares, P.; Malagón-Gutiérrez, F.; Basurto-Islas, G.; Rivera-Fernández, N. Stage-specific changes on Plasmodium yoelii following treatment with Hintonia latiflora stem bark extract and phytochemical-antioxidant evaluation. Pharmacol. Pharm., 2017, 8(12), 381.
[http://dx.doi.org/10.4236/pp.2017.812028]
[75]
Sawadogo, W.R.; Maciuk, A.; Banzouzi, J.T.; Champy, P.; Figadere, B.; Guissou, I.P.; Nacoulma, O.G. Mutagenic effect, antioxidant and anticancer activities of six medicinal plants from Burkina faso. Nat. Prod. Res., 2012, 26(6), 575-579.
[http://dx.doi.org/10.1080/14786419.2010.534737] [PMID: 21809951]
[76]
Edeoga, H.O.; Okwu, D.; Mbaebie, B. Phytochemical constituents of some Nigerian medicinal plants. Afr. J. Biotechnol., 2005, 4(7), 685-688.
[http://dx.doi.org/10.5897/AJB2005.000-3127]
[77]
Nea, F.; Bitchi, M.B.; Genva, M.; Ledoux, A.; Tchinda, A.T.; Damblon, C.; Frederich, M.; Tonzibo, Z.F.; Fauconnier, M-L. Phytochemical investigation and biological activities of Lantana rhodesiensis. Molecules, 2021, 26(4), 846.
[http://dx.doi.org/10.3390/molecules26040846] [PMID: 33562771]
[78]
Jean, B.; Nâg-Tiero, M.; Martin, K.; Germaine, N.; Norma, A. A review on Lantana rhodesiensis Moldenke: Traditional uses, phytochemical constituents and pharmacological activities. Int. J. Phytomed., 2017, 9, 1-9.
[http://dx.doi.org/10.5138/09750185.1941]
[79]
Sawadogo, W.R.; Cerella, C.; Al-Mourabit, A.; Moriou, C.; Teiten, M-H.; Guissou, I.P.; Dicato, M.; Diederich, M. Cytotoxic, antiproliferative and pro-apoptotic effects of 5-hydroxyl-6, 7, 3′, 4′, 5′-pentamethoxyflavone isolated from Lantana ukambensis. Nutrients, 2015, 7(12), 10388-10397.
[http://dx.doi.org/10.3390/nu7125537] [PMID: 26690473]
[80]
McDonald, S.; Prenzler, P.D.; Antolovich, M.; Robards, K. Phenolic content and antioxidant activity of olive extracts. Food Chem., 2001, 73(1), 73-84.
[http://dx.doi.org/10.1016/S0308-8146(00)00288-0]
[81]
Rahayu, P.; Hernaningsih, Y.; Arwati, H. (Morinda citrifolia) towards Parasitemia, Splenomegaly, and Hepatomegaly in Plasmodium berghei ANKA infected mice. Biomol. Health Sci. J., 2021, 4(1), 5-9.
[http://dx.doi.org/10.20473/bhsj.v4i1.26913]
[82]
Tamokou, J.; Mbaveng, A.; Kuete, V. Medicinal spices and vegetables from Africa; Elsevier, 2017, pp. 207-237.
[http://dx.doi.org/10.1016/B978-0-12-809286-6.00008-X]
[83]
Tepe, B.; Daferera, D.; Tepe, A-S.; Polissiou, M.; Sokmen, A. Antioxidant activity of the essential oil and various extracts of Nepeta flavida Hub.-Mor. from Turkey. Food Chem., 2007, 103(4), 1358-1364.
[http://dx.doi.org/10.1016/j.foodchem.2006.10.049]
[84]
Zengin, G.; Mahomoodally, M.F.; Aktumsek, A. Jekő, J.; Cziáky, Z.; Rodrigues, M.J.; Custodio, L.; Polat, R.; Cakilcioglu, U.; Ayna, A.; Gallo, M.; Montesano, D.; Picot-Allain, C. Chemical profiling and biological evaluation of Nepeta baytopii extracts and essential oil: An endemic plant from Turkey. Plants, 2021, 10(6), 1176.
[http://dx.doi.org/10.3390/plants10061176] [PMID: 34207852]
[85]
Ali, L.; Khan, S.; Nazir, M.; Raiz, N.; Naz, S.; Zengin, G.; Mukhtar, M.; Parveen, S.; Shazmeen, N.; Saleem, M. Chemical profiling, in vitro biological activities and Pearson correlation between phenolic contents and antioxidant activities of Caragana brachyantha Rech. f. S. Afr. J. Bot., 2021, 140, 189-193.
[http://dx.doi.org/10.1016/j.sajb.2021.04.009]
[86]
Bibi Sadeer, N.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The versatility of antioxidant assays in food science and safety-Chemistry, applications, strengths, and limitations. Antioxidants, 2020, 9(8), 709.
[http://dx.doi.org/10.3390/antiox9080709] [PMID: 32764410]
[87]
Asase, A.; Oteng-Yeboah, A.A.; Odamtten, G.T.; Simmonds, M.S. Ethnobotanical study of some Ghanaian anti-malarial plants. J. Ethnopharmacol., 2005, 99(2), 273-279.
[http://dx.doi.org/10.1016/j.jep.2005.02.020] [PMID: 15894138]
[88]
Ziblim, I.A.; Timothy, K.A.; Deo-Anyi, E.J. Exploitation and use of medicinal plants, Northern Region, Ghana. J. Med. Plants Res., 2013, 7(27), 1984-1993.
[http://dx.doi.org/10.5897/JMPR12.489]
[89]
Appiah-Opong, R.; Agyemang, K.; Dotse, E.; Atchoglo, P.; Owusu, K.B.-A.; Aning, A.; Sakyiamah, M.; Adegle, R.; Ayertey, F.; Appiah, A.A. Anti-plasmodial, cytotoxic and antioxidant activities of selected Ghanaian Medicinal Plants. J. Evidence-Based Integr. Med., 2022, 27, 2515690X211073709.
[90]
Kartika, I.; Insanu, M.; Safitri, D.; Putri, C.; Adnyana, I. New update: Traditional uses, phytochemical, pharmacological and toxicity review of Peperomia pellucida (L.) Kunth. Pharmacologyonline, 2016, 2, 30-43.
[91]
Angelina, M.; Amelia, P.; Irsyad, M.; Meilawati, L.; Hanafi, M. Karakterisasi ekstrak etanol herba katumpangan air (Peperomia pellucida L. Kunth). Biopropal Industri, 2015, 6(2), 53-61.
[92]
Khan, A.; Rahman, M.; Islam, S. Isolation and bioactivity of a xanthone glycoside from Peperomia pellucida. Life Sci. Med. Res., 2010. Available from: link.gale.com/apps/doc/A259381910/HRCA?u=anon~8ccb011f&sid=googleScholar&xid=4619904a (Accessed on: 16 April 2022).
[93]
Ahmad, I. Isolation of angiotensin converting enzyme (ACE) inhibitory activity quercetin from Peperomia pellucida. Int. J. Pharm. Tech. Res., 2016, 9(7), 115-121.
[94]
Aqil, M.; Rahman, F.; Ahmad, M. A new flavonol glycoside from Peperomia pellucida. Sci. Phys. Sci., 1994, 6(1), 141-143.
[95]
Yunarto, N.; Rossyid, H.M.A.; Lienggonegoro, L.A. Effect of ethanolic leaves extract of Peperomia pellucida (L.) Kunth as antimalarial and antioxidant. MPK, 2018, 28(2), 123-130.
[http://dx.doi.org/10.22435/mpk.v28i2.132]
[96]
Al-Adhroey, A.H.; Nor, Z.M.; Al-Mekhlafi, H.M.; Mahmud, R. Ethnobotanical study on some Malaysian anti-malarial plants: A community based survey. J. Ethnopharmacol., 2010, 132(1), 362-364.
[http://dx.doi.org/10.1016/j.jep.2010.08.006] [PMID: 20723596]
[97]
Phillipson, J.D.; Wright, C.W. Antiprotozoal agents from plant sources. Planta Med, 1991, 57(S 1), S53-S59.
[http://dx.doi.org/10.1055/s-2006-960230]
[98]
Al-Adhroey, A.H.; Nor, Z.M.; Al-Mekhlafi, H.M.; Amran, A.A.; Mahmud, R. Antimalarial activity of methanolic leaf extract of Piper betle L. Molecules, 2010, 16(1), 107-118.
[http://dx.doi.org/10.3390/molecules16010107] [PMID: 21189459]
[99]
Nagabhushan, M.; Amonkar, A.J.; Nair, U.J.; D’Souza, A.V.; Bhide, S.V. Hydroxychavicol: A new anti-nitrosating phenolic compound from betel leaf. Mutagenesis, 1989, 4(3), 200-204.
[http://dx.doi.org/10.1093/mutage/4.3.200] [PMID: 2659937]
[100]
Ganguly, S.; Mula, S.; Chattopadhyay, S.; Chatterjee, M. An ethanol extract of Piper betle Linn. mediates its anti-inflammatory activity via down-regulation of nitric oxide. J. Pharm. Pharmacol., 2007, 59(5), 711-718.
[http://dx.doi.org/10.1211/jpp.59.5.0012] [PMID: 17524237]
[101]
Afridi, M.; Muhammad, I.M.; Ahmad, T.; Hussain, A.; Akram, M.; Ghotekar, S.; Oza, R.; Marasini, B.P. Ethno-medicinal uses of piper betel- A review. Adv. J. Chem., 2021, 3(3), 199-208.
[102]
Idoko, S.; Assa, E.; Gbande, S. Marketing and utilization of Prosopis africana condiment in makurdi, Benue state, Nigeria. J. Res. For. Wildl. Environ., 2013, 5(1), 63-73.
[103]
Abubakar, F.; Oloyede, O. Prosopis africana stem bark extract: Effects on parasitaemia and haematological parameters of Plasmodium berghei-infected mice. Biokemistri, 2021, 32(3), 177-184.
[104]
Sharifi-Rad, J.; Kobarfard, F.; Ata, A.; Ayatollahi, S.A.; Khosravi-Dehaghi, N.; Jugran, A.K.; Tomas, M.; Capanoglu, E.; Matthews, K.R. Popović-Djordjević, J.; Kostić A.; Kamiloglu, S.; Sharopov, F.; Choudhary, M.I.; Martins, N. Prosopis plant chemical composition and pharmacological attributes: Targeting clinical studies from preclinical evidence. Biomolecules, 2019, 9(12), 777.
[http://dx.doi.org/10.3390/biom9120777] [PMID: 31775378]
[105]
Oguntibeju, O.O.; Esterhuyse, A.J.; Truter, E.J. Red palm oil: Nutritional, physiological and therapeutic roles in improving human wellbeing and quality of life. Br. J. Biomed. Sci., 2009, 66(4), 216-222.
[http://dx.doi.org/10.1080/09674845.2009.11730279] [PMID: 20095133]
[106]
Adeleke, T.D.; Adejumobi, O. Potential role of red palm oil supplemented diet on oxidative stress enzymes in Plasmodium berghei induced malaria. bioRxiv, 2021, 2021, 435769.
[http://dx.doi.org/10.1101/2021.03.18.435769]
[107]
Halliwell, B.; Gutteridge, J.M.; Cross, C.E. Free radicals, antioxidants, and human disease: Where are we now? J. Lab. Clin. Med., 1992, 119(6), 598-620.
[PMID: 1593209]
[108]
Ifeanyi, O.E. A review on palm oil supplemented diet and enzymatic antioxidants in aging. Int. J. Curr. Res. Med. Sci., 2018, 4(4), 43-52.
[109]
Pant Manu, S.P. Brahma Kamal–the spiritually revered, scientifically ignored medicinal plant. Curr. Sci., 2013, 104(6), 685.
[110]
Semwal, P.; Painuli, S. Antioxidant, antimicrobial, and GC-MS profiling of Saussurea obvallata (Brahma Kamal) from Uttarakhand Himalaya. Clin. Phytosci., 2019, 5(1), 1-11.
[http://dx.doi.org/10.1186/s40816-019-0105-3]
[111]
Qiu, J.; Xue, X.; Chen, F.; Li, C.; Bolat, N.; Wang, X.; Baima, Y.; Zhao, Q.; Zhao, D.; Ma, F. Quality evaluation of snow lotus (Saussurea): Quantitative chemical analysis and antioxidant activity assessment. Plant Cell Rep., 2010, 29(12), 1325-1337.
[http://dx.doi.org/10.1007/s00299-010-0919-4] [PMID: 20842365]
[112]
Semwal, P.; Anthwal, P.; Kapoor, T.; Thapliyal, A. Preliminary investigation of phytochemicals of Saussurea obvallata (Brahm Kamal) and Pittosporum eriocarpum (Agni): Two endangered medicinal plant species of Uttarakhand. Int. J. Pharmacogn., 2014, 1(4), 266-269.
[113]
Ali, S. Significance of flora with special reference to Pakistan. Pak. J. Bot., 2008, 40(3), 967-971.
[114]
Ali, S.I.; Qaiser, M. A phytogeographical analysis of the phanerogams of Pakistan and Kashmir.Proc. R. Soc. Edinburgh, Sect. B: Biol. Sci; , 1986, 89, pp. 89-101.
[http://dx.doi.org/10.1017/S0269727000008939]
[115]
Kim, W-S.; Choi, W.J.; Lee, S.; Kim, W.J.; Lee, D.C.; Sohn, U.D.; Shin, H-S.; Kim, W. Anti-inflammatory, antioxidant and antimicrobial effects of artemisinin extracts from Artemisia annua L. Korean J. Physiol. Pharmacol., 2015, 19(1), 21-27.
[http://dx.doi.org/10.4196/kjpp.2015.19.1.21] [PMID: 25605993]
[116]
Zamarrud, F.; Shaukat, S.; Ali, I.; Ali, S.; Qaiser, M. Antioxidant Activity of Seriphidium leucotrichum: An anti-malarial plant from minapin valley, District Hunza-Nagar, Pakistan. Pak. J. Bot., 2022, 54(2), 639-644.
[117]
Tajuddin, Z.F.; Shaukat, S.S.; Naz, F.; Ahmed, W.; Noor, N. Allelopathic potential of Seriphidium leucotrichum: A weed of the family Asteraceae from Skardu region, Pakistan. Int. J. Biol. Biotechnol., 2018, 4, 743-749.
[118]
Birhan, Y.S.; Kitaw, S.L.; Alemayehu, Y.A.; Mengesha, N.M. Ethnobotanical study of medicinal plants used to treat human diseases in Enarj Enawga district, East Gojjam zone, Amhara region, Ethiopia. J. Med. Plants Stud., 2017, 1(1), 1-9.
[http://dx.doi.org/10.36876/smjmps.1006]
[119]
Atsbha, G.H.; Balasubramanian, R.; Gebre, A.K. Antimalarial Effect of the Root of Silene macrosolen A. Rich (Caryophyllaceae) on Plasmodium-berghei-Infected Mice. J. Evidence-Based Complement. Altern. Med., 2021, 2021, 8833865.
[http://dx.doi.org/10.1155/2021/8833865]
[120]
Toma, A.; Deyno, S.; Eyado, S.; Fikru, A. In vivo antimalarial activity of solvent fractions of Echinops kebericho roots against Plasmodium berghei infected mice. EC Microbiol., 2017, 12(5), 204-212.
[121]
Adugna, M.; Feyera, T.; Taddese, W.; Admasu, P. In vivo antimalarial activity of crude extract of aerial part of Artemisia abyssinica against Plasmodium berghei in mice. Glob. J. Pharmacol., 2014, 8(3), 460-468.
[122]
Lindner, S.E.; Miller, J.L.; Kappe, S.H. Malaria parasite pre-erythrocytic infection: Preparation meets opportunity. Cell. Microbiol., 2012, 14(3), 316-324.
[http://dx.doi.org/10.1111/j.1462-5822.2011.01734.x] [PMID: 22151703]
[123]
Krishna, P.M. KNV, R.; Banji, D. A review on phytochemical, ethnomedical and pharmacological studies on genus Sophora, Fabaceae. Rev. Bras. Farmacogn., 2012, 22(5), 1145-1154.
[http://dx.doi.org/10.1590/S0102-695X2012005000043]
[124]
Kaewdana, K.; Chaniad, P.; Jariyapong, P.; Phuwajaroanpong, A.; Punsawad, C. Antioxidant and antimalarial properties of Sophora exigua Craib. root extract in Plasmodium berghei-infected mice. Trop. Med. Health, 2021, 49(1), 24.
[http://dx.doi.org/10.1186/s41182-021-00314-2] [PMID: 33741053]
[125]
Riaz, T.; Abbasi, A.M.; Shahzadi, T.; Ajaib, M.; Khan, M.K. Phytochemical screening, free radical scavenging, antioxidant activity and phenolic content of Dodonaea viscosa. J. Serb. Chem., 2012, 77(4), 423-435.
[http://dx.doi.org/10.2298/JSC110621183R]
[126]
Quadros, H.C.; Silva, M.C.B.; Moreira, D.R.M. The role of the iron protoporphyrins heme and hematin in the antimalarial activity of endoperoxide drugs. Pharmaceuticals (Basel), 2022, 15(1), 60.
[http://dx.doi.org/10.3390/ph15010060] [PMID: 35056117]
[127]
Zhu, P.; Zhou, B. The antagonizing role of heme in the antimalarial function of artemisinin: Elevating intracellular free heme negatively impacts artemisinin activity in Plasmodium falciparum. Molecules, 2022, 27(6), 1755.
[http://dx.doi.org/10.3390/molecules27061755] [PMID: 35335120]
[128]
Alkandahri, M.Y.; Berbudi, A.; Vicahyani Utami, N.; Subarnas, A. Antimalarial activity of extract and fractions of Castanopsis costata (Blume) A.DC. Avicenna J. Phytomed., 2019, 9(5), 474-481.
[PMID: 31516861]
[129]
Tajuddeen, N.; Van Heerden, F.R. Antiplasmodial natural products: An update. Malar. J., 2019, 18(1), 404.
[http://dx.doi.org/10.1186/s12936-019-3026-1] [PMID: 31805944]
[130]
Ntie-Kang, F.; Onguéné, P.A.; Lifongo, L.L.; Ndom, J.C.; Sippl, W.; Mbaze, L.M. The potential of anti-malarial compounds derived from African medicinal plants, part II: A pharmacological evaluation of non-alkaloids and non-terpenoids. Malar. J., 2014, 13(1), 81.
[http://dx.doi.org/10.1186/1475-2875-13-81] [PMID: 24602358]
[131]
Chanphen, R.; Thebtaranonth, Y.; Wanauppathamkul, S.; Yuthavong, Y. Antimalarial principles from Artemisia indica. J. Nat. Prod., 1998, 61(9), 1146-1147.
[http://dx.doi.org/10.1021/np980041x] [PMID: 9748386]
[132]
Burkill, H.M. The useful plants of West Tropical Africa. Econ. Bot., 1986, 40, 176.
[133]
Orabueze, C.I.; Ota, D.A.; Coker, H.A. Antimalarial potentials of Stemonocoleus micranthus Harms (leguminoseae) stem bark in Plasmodium berghei infected mice. J. Tradit. Complement. Med., 2019, 10(1), 70-78.
[http://dx.doi.org/10.1016/j.jtcme.2019.03.001] [PMID: 31956560]
[134]
Laphookhieo, S.; Maneerat, W.; Koysomboon, S. Antimalarial and cytotoxic phenolic compounds from Cratoxylum maingayi and Cratoxylum cochinchinense. Molecules, 2009, 14(4), 1389-1395.
[http://dx.doi.org/10.3390/molecules14041389] [PMID: 19384270]
[135]
Melariri, P.; Campbell, W.; Etusim, P.; Smith, P. In vitro and in vivo antimalarial activity of linolenic and linoleic acids and their methyl esters. Adv. Stud. Biol., 2012, 4(7), 333-349.
[136]
Okokon, J.E.; Augustine, N.B.; Mohanakrishnan, D. Antimalarial, antiplasmodial and analgesic activities of root extract of Alchornea laxiflora. Pharm. Biol., 2017, 55(1), 1022-1031.
[http://dx.doi.org/10.1080/13880209.2017.1285947] [PMID: 28183236]
[137]
Parihar, S.; Sharma, D. Navagraha (nine planets) plants: The traditional uses and the therapeutic potential of nine sacred plants of india that symbolises nine planets. Int. J. Res. Anal., 2021, 8(4), 96-108.
[138]
Bhurat, M.R.; Bavaskar, S.R.; Agrawal, A.D.; Bagad, Y.M. Swietenia mahagoni Linn.–A phytopharmacological review. Asian J. Pharm. Res, 2011, 1(1), 1-4.
[139]
Chaudhary, K.; Parihar, S.; Sharma, D. A critical review on nanoscience advancement: In treatment of viral infection. J. Drug Deliv. Ther., 2021, 11(6), 225-237.
[http://dx.doi.org/10.22270/jddt.v11i6.5030]
[140]
Telrandhe, U.B.; Kosalge, S.B.; Parihar, S.; Sharma, D.; Lade, S.N. Phytochemistry and pharmacological activities of Swietenia macrophylla king (meliaceae). Sch. Acad. J. Pharm., 2022, 1, 6-12.
[http://dx.doi.org/10.36347/sajp.2022.v11i01.002]
[141]
Sahgal, G.; Ramanathan, S.; Sasidharan, S.; Mordi, M.N.; Ismail, S.; Mansor, S.M. Phytochemical and antimicrobial activity of Swietenia mahagoni crude methanolic seed extract. Trop. Biomed., 2009, 26(3), 274-279.
[PMID: 20237441]
[142]
Traore, M.S.; Diane, S.; Diallo, M.S.T.; Balde, E.S.; Balde, M.A.; Camara, A.; Diallo, A.; Keita, A.; Cos, P.; Maes, L.; Pieters, L.; Balde, A.M. In vitro antiprotozoal and cytotoxic activity of ethnopharmacologically selected guinean plants. Planta Med., 2014, 80(15), 1340-1344.
[http://dx.doi.org/10.1055/s-0034-1383047] [PMID: 25180493]
[143]
Haidara, M.; Haddad, M.; Denou, A.; Marti, G.; Bourgeade-Delmas, S.; Sanogo, R.; Bourdy, G.; Aubouy, A. In vivo validation of anti-malarial activity of crude extracts of Terminalia macroptera, a Malian medicinal plant. Malar. J., 2018, 17(1), 68.
[http://dx.doi.org/10.1186/s12936-018-2223-7] [PMID: 29402267]
[144]
Camara, A.; Haddad, M.; Reybier, K.; Traoré, M.S.; Baldé, M.A.; Royo, J.; Baldé, A.O.; Batigne, P.; Haidara, M.; Baldé, E.S.; Coste, A.; Baldé, A.M.; Aubouy, A. Terminalia albida treatment improves survival in experimental cerebral malaria through reactive oxygen species scavenging and anti-inflammatory properties. Malar. J., 2019, 18(1), 431.
[http://dx.doi.org/10.1186/s12936-019-3071-9] [PMID: 31852507]
[145]
Zeb, A. Ellagic acid in suppressing in vivo and in vitro oxidative stresses. Mol. Cell. Biochem., 2018, 448(1-2), 27-41.
[http://dx.doi.org/10.1007/s11010-018-3310-3] [PMID: 29388153]
[146]
a) Komane, B.M.; Olivier, E.I.; Viljoen, A.M. Trichilia emetica (Meliaceae) -A review of traditional uses, biological activities and phytochemistry. Phytochem. Lett., 2011, 4(1), 1-9.
[http://dx.doi.org/10.1016/j.phytol.2010.11.002];
b)) Peters, W.; Robinson, B. The chemotherapy of rodent malaria. XLVII. Studies on pyronaridine and other Mannich base antimalarials. Ann. Trop. Med. Parasitol., 1992, 86(5), 455-465.
[147]
Nana, O.; Momeni, J.; Nzangué Tepongning, R.; Ngassoum, M. Phythochemical screening, antioxIdant and antiplasmodial activities of extracts from Trichilia roka and Sapium ellipticum. J. Phytopharm., 2013, 2(4), 22-29.
[148]
Nana, O.; Momeni, J.; Boyom, F.F.; Njintang, N.Y.; Ngassoum, M.B. Microwave-assisted extraction as an advanced technique for optimisation of limonoid yields and antioxidant potential from Trichilia roka (Meliaceae). Curr. Opin. Green Sustain. Chem., 2021, 4, 100147.
[http://dx.doi.org/10.1016/j.crgsc.2021.100147]
[149]
Hermans, M.; Akoègninou, A.; van der Maesen, J. Medicinal plants used to treat malaria in southern Benin. Econ. Bot., 2004, 58(1), S239-S252.
[http://dx.doi.org/10.1663/0013-0001(2004)58[S239:MPUTTM]2.0.CO;2]
[150]
Odugbemi, T.O.; Akinsulire, O.R.; Aibinu, I.E.; Fabeku, P.O. Medicinal plants useful for malaria therapy in Okeigbo, Ondo State, Southwest Nigeria. Afr. J. Tradit. Complement. Altern. Med., 2006, 4(2), 191-198.
[PMID: 20162091]
[151]
Olanlokun, J.O.; Adetutu, J.A.; Olorunsogo, O.O. ln vitro inhibition of beta-hematin formation and in vivo effects of Diospyros mespiliformis and Mondia whitei methanol extracts on chloroquine-susceptible Plasmodium berghei-induced malaria in mice. Interv. Med. Appl. Sci., 2021, 11(4), 197-206.
[http://dx.doi.org/10.1556/1646.2020.00001]
[152]
Gakunga, N.; Sembajwe, L.; Kateregga, J.; Vudriko, P. Phytochemical screening and antidiarrheal activity of ethanolic fresh root bark extract of Mondia whitei. J. Pharm. Sci. Innovation, 2013, 2(6), 1-6.
[http://dx.doi.org/10.7897/2277-4572.02683]
[153]
Van der Walt, A.; Loots, D.; Ibrahim, M.; Bezuidenhout, C. Minerals, trace elements and antioxidant phytochemicals in wild African dark-green leafy vegetables (morogo). S. Afr. J. Sci., 2009, 105(11), 444-448.
[154]
Borek, C. Cancer prevention by natural dietary antioxidants in developing countries. In: Molecular and Therapeutic Aspects of Redox Biochemistry;; OICA International (UK) Limited: London, 2003; pp. 259-269.
[155]
Baruah, A.M.; Borah, S. An investigation on sources of potential minerals found in traditional vegetables of North-east India. Int. J. Food Sci. Nutr., 2009, 60(sup4), 111-115.
[http://dx.doi.org/10.1080/09637480802524179]
[156]
Adetutu, A.; Olorunnisola, O.S.; Owoade, A.O.; Adegbola, P. Inhibition of in vivo growth of Plasmodium berghei by Launaea taraxacifolia and Amaranthus viridis in mice. Malar. Res. Treat., 2016, 2016
[http://dx.doi.org/10.1155/2016/9248024]
[157]
Okwu, D. Phytochemical and vitamin content of indigenous spices of South Eastern Nigeria. J. Sustain. Agric. Environ., 2004, 6, 30-34.
[158]
Aherne, S.; Daly, T.; O'Connor, T.; O'Brien, N. Immunomodulatory effects of β-sitosterol on human Jurkat T cells. Planta Med., 2007, 73(09), 011.
[http://dx.doi.org/10.1055/s-2007-986793]
[159]
Amoateng, P.; Woode, E.; Kombian, S.B. Anticonvulsant and related neuropharmacological effects of the whole plant extract of Synedrella nodiflora (L.) Gaertn (Asteraceae). J. Pharm. Bioallied Sci., 2012, 4(2), 140-148.
[http://dx.doi.org/10.4103/0975-7406.94816] [PMID: 22557925]
[160]
Laosinwattana, C.; Wichittrakarn, P.; Teerarak, M. Chemical composition and herbicidal action of essential oil from Tagetes erecta L. leaves. Ind. Crops Prod., 2018, 126, 129-134.
[http://dx.doi.org/10.1016/j.indcrop.2018.10.013]
[161]
Paço, A.; Brás, T.; Santos, J.O.; Sampaio, P.; Gomes, A.C.; Duarte, M.F. anti-inflammatory and immunoregulatory action of sesquiterpene lactones. Molecules, 2022, 27(3), 1142.
[http://dx.doi.org/10.3390/molecules27031142] [PMID: 35164406]
[162]
Panda, S.K.; Luyten, W. Antiparasitic activity in Asteraceae with special attention to ethnobotanical use by the tribes of Odisha, India. Parasite, 2018, 25, 10.
[http://dx.doi.org/10.1051/parasite/2018008] [PMID: 29528842]
[163]
Chaniad, P.; Techarang, T.; Phuwajaroanpong, A.; Na-Ek, P.; Viriyavejakul, P.; Punsawad, C. In vivo antimalarial activity and toxicity study of extracts of Tagetes erecta L. and Synedrella nodiflora (L.) Gaertn. from the Asteraceae family. Evid. Based Complement. Alternat. Med., 2021, 2021, 1270902.
[http://dx.doi.org/10.1155/2021/1270902] [PMID: 34306134]
[164]
Wang, W.; Xu, H.; Chen, H.; Tai, K.; Liu, F.; Gao, Y. In vitro antioxidant, anti-diabetic and antilipemic potentials of quercetagetin extracted from marigold (Tagetes erecta L.) inflorescence residues. J. Food Sci. Technol., 2016, 53(6), 2614-2624.
[http://dx.doi.org/10.1007/s13197-016-2228-6] [PMID: 27478217]