Chronic Systemic Low-Grade Inflammation and Modern Lifestyle: The Dark Role of Gut Microbiota on Related Diseases with a Focus on COVID-19 Pandemic

Page: [5370 - 5396] Pages: 27

  • * (Excluding Mailing and Handling)

Abstract

Inflammation is a physiological, beneficial, and auto-limiting response of the host to alarming stimuli. Conversely, a chronic systemic low-grade inflammation (CSLGI), known as a long-time persisting condition, causes damage to the organs and host tissues, representing a major risk for chronic diseases. Currently, a high global incidence of chronic inflammatory diseases is observed, often linked to the lifestyle-related changes that occurred in the last decade. The main lifestyle-related factors are proinflammatory diet, psychological stress, tobacco smoking, alcohol abuse, physical inactivity, and indoor living and working with its related consequences such as indoor pollution, artificial light exposure, and low vitamin D production. Recent scientific evidence found that gut microbiota (GM) has a main role in shaping the host’s health, particularly as CSLGI mediator. Based on the lastest discoveries regarding the remarkable GM activity, in this manuscript we focus on the elements of actual lifestyle that influence the composition and function of the intestinal microbial community in order to elicit the CSLGI and its correlated pathologies. In this scenario, we provide a broad review of the interplay between modern lifestyle, GM, and CSLGI with a special focus on the COVID symptoms and emerging long-COVID syndrome.

Keywords: Inflammation, gut microbiota, chronic diseases, COVID-19, dietary habits, unhealthy lifestyle, vitamin D.

[1]
Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of antioxidants and natural products in inflammation. Oxid. Med. Cell. Longev., 2016, 2016, 5276130.
[http://dx.doi.org/10.1155/2016/5276130] [PMID: 27803762]
[2]
Costantini, S.; Sharma, A.; Colonna, G. The Value of the Cytokinome Profile; Intechopen, 2011, pp. 103-127.
[3]
Sugimoto, M.A.; Sousa, L.P.; Pinho, V.; Perretti, M.; Teixeira, M.M. Resolution of inflammation: What controls its onset? Front. Immunol., 2016, 7, 160.
[http://dx.doi.org/10.3389/fimmu.2016.00160] [PMID: 27199985]
[4]
Pahwa, R. Chronic inflammation In: StatPearls; Treasure Island (FL), 2021.
[5]
Levin, B.R.; Baquero, F.; Ankomah, P.P.; McCall, I.C. Phagocytes, antibiotics, and self-limiting bacterial infections. Trends Microbiol., 2017, 25(11), 878-892.
[http://dx.doi.org/10.1016/j.tim.2017.07.005] [PMID: 28843668]
[6]
Levin, B.R.; Antia, R. Why we don’t get sick: The within-host population dynamics of bacterial infections. Science, 2001, 292(5519), 1112-1115.
[http://dx.doi.org/10.1126/science.1058879] [PMID: 11352067]
[7]
Gudipaty, S.A.; Conner, C.M.; Rosenblatt, J.; Montell, D.J. Unconventional ways to live and die: Cell death and survival in development, homeostasis, and disease. Annu. Rev. Cell Dev. Biol., 2018, 34, 311-332.
[http://dx.doi.org/10.1146/annurev-cellbio-100616-060748] [PMID: 30089222]
[8]
Liu, X.; Yang, W.; Guan, Z.; Yu, W.; Fan, B.; Xu, N.; Liao, D.J. There are only four basic modes of cell death, although there are many ad-hoc variants adapted to different situations. Cell Biosci., 2018, 8, 6.
[http://dx.doi.org/10.1186/s13578-018-0206-6] [PMID: 29435221]
[9]
Nailwal, H.; Chan, F.K. Necroptosis in anti-viral inflammation. Cell Death Differ., 2019, 26(1), 4-13.
[http://dx.doi.org/10.1038/s41418-018-0172-x] [PMID: 30050058]
[10]
Jorgensen, I.; Miao, E.A. Pyroptotic cell death defends against intracellular pathogens. Immunol. Rev., 2015, 265(1), 130-142.
[http://dx.doi.org/10.1111/imr.12287] [PMID: 25879289]
[11]
Haanen, C.; Vermes, I. Apoptosis and inflammation. Mediators Inflamm., 1995, 4(1), 5-15.
[http://dx.doi.org/10.1155/S0962935195000020] [PMID: 18475609]
[12]
Kourtzelis, I.; Hajishengallis, G.; Chavakis, T. Phagocytosis of apoptotic cells in resolution of inflammation. Front. Immunol., 2020, 11, 553.
[http://dx.doi.org/10.3389/fimmu.2020.00553] [PMID: 32296442]
[13]
Yang, Y.; Jiang, G.; Zhang, P.; Fan, J. Programmed cell death and its role in inflammation. Mil. Med. Res., 2015, 2, 12.
[http://dx.doi.org/10.1186/s40779-015-0039-0] [PMID: 26045969]
[14]
Wagener, F.A.; Carels, C.E.; Lundvig, D.M. Targeting the redox balance in inflammatory skin conditions. Int. J. Mol. Sci., 2013, 14(5), 9126-9167.
[http://dx.doi.org/10.3390/ijms14059126] [PMID: 23624605]
[15]
Minihane, A.M.; Vinoy, S.; Russell, W.R.; Baka, A.; Roche, H.M.; Tuohy, K.M.; Teeling, J.L.; Blaak, E.E.; Fenech, M.; Vauzour, D.; McArdle, H.J.; Kremer, B.H.; Sterkman, L.; Vafeiadou, K.; Benedetti, M.M.; Williams, C.M.; Calder, P.C. Low-grade inflammation, diet composition and health: Current research evidence and its translation. Br. J. Nutr., 2015, 114(7), 999-1012.
[http://dx.doi.org/10.1017/S0007114515002093] [PMID: 26228057]
[16]
Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med., 2010, 49(11), 1603-1616.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[17]
Norde, M.M.; Fisberg, R.M.; Marchioni, D.M.L.; Rogero, M.M. Systemic low-grade inflammation-associated lifestyle, diet, and genetic factors: A population-based cross-sectional study. Nutrition, 2020, 70, 110596.
[http://dx.doi.org/10.1016/j.nut.2019.110596] [PMID: 31743813]
[18]
Rohleder, N. Stimulation of systemic low-grade inflammation by psychosocial stress. Psychosom. Med., 2014, 76(3), 181-189.
[http://dx.doi.org/10.1097/PSY.0000000000000049] [PMID: 24608036]
[19]
Rao, X.; Zhong, J.; Brook, R.D.; Rajagopalan, S. Effect of particulate matter air pollution on cardiovascular oxidative stress pathways. Antioxid. Redox Signal., 2018, 28(9), 797-818.
[http://dx.doi.org/10.1089/ars.2017.7394] [PMID: 29084451]
[20]
Sun, Y.; Huang, J.; Zhao, Y.; Xue, L.; Li, H.; Liu, Q.; Cao, H.; Peng, W.; Guo, C.; Xie, Y.; Liu, X.; Li, B.; Liu, K.; Wu, S.; Zhang, L. Inflammatory cytokines and DNA methylation in healthy young adults exposure to fine particulate matter: A randomized, double-blind crossover trial of air filtration. J. Hazard. Mater., 2020, 398, 122817.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122817] [PMID: 32516725]
[21]
Kopp, W. How western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab. Syndr. Obes., 2019, 12, 2221-2236.
[http://dx.doi.org/10.2147/DMSO.S216791] [PMID: 31695465]
[22]
Gareau, M.G. Cognitive function and the microbiome. Int. Rev. Neurobiol., 2016, 131, 227-246.
[http://dx.doi.org/10.1016/bs.irn.2016.08.001] [PMID: 27793221]
[23]
Chen, M.X.; Wang, S.Y.; Kuo, C.H.; Tsai, I.L. Metabolome analysis for investigating host-gut microbiota interactions. J. Formos. Med. Assoc., 2019, 118(Suppl. 1), S10-S22.
[http://dx.doi.org/10.1016/j.jfma.2018.09.007] [PMID: 30269936]
[24]
Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J., 2017, 474(11), 1823-1836.
[http://dx.doi.org/10.1042/BCJ20160510] [PMID: 28512250]
[25]
Yu, B.; Yu, L.; Klionsky, D.J. Nutrition acquisition by human immunity, transient overnutrition and the cytokine storm in severe cases of COVID-19. Med. Hypotheses, 2021, 155, 110668.
[http://dx.doi.org/10.1016/j.mehy.2021.110668] [PMID: 34467856]
[26]
Yu, L. Restoring good health in elderly with diverse gut microbiome and food intake restriction to combat COVID-19. Indian J. Microbiol., 2021, 61(1), 1-4.
[http://dx.doi.org/10.1007/s12088-020-00913-3] [PMID: 33424043]
[27]
Chassaing, B.; Gewirtz, A.T. Gut microbiota, low-grade inflammation, and metabolic syndrome. Toxicol. Pathol., 2014, 42(1), 49-53.
[http://dx.doi.org/10.1177/0192623313508481] [PMID: 24285672]
[28]
Bernell, S.; Howard, S.W. Use your words carefully: What is a chronic disease? Front. Public Health, 2016, 4, 159.
[http://dx.doi.org/10.3389/fpubh.2016.00159] [PMID: 27532034]
[29]
Robinson, W.H.; Lepus, C.M.; Wang, Q.; Raghu, H.; Mao, R.; Lindstrom, T.M.; Sokolove, J. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol., 2016, 12(10), 580-592.
[http://dx.doi.org/10.1038/nrrheum.2016.136] [PMID: 27539668]
[30]
Iyengar, N.M.; Gucalp, A.; Dannenberg, A.J.; Hudis, C.A. Obesity and cancer mechanisms: Tumor microenvironment and inflammation. J. Clin. Oncol., 2016, 34(35), 4270-4276.
[http://dx.doi.org/10.1200/JCO.2016.67.4283] [PMID: 27903155]
[31]
Burhans, M.S.; Hagman, D.K.; Kuzma, J.N.; Schmidt, K.A.; Kratz, M. Contribution of adipose tissue inflammation to the development of type 2 diabetes mellitus. Compr. Physiol., 2018, 9(1), 1-58.
[http://dx.doi.org/10.1002/cphy.c170040] [PMID: 30549014]
[32]
Zhang, B.; Wang, H.E.; Bai, Y.M.; Tsai, S.J.; Su, T.P.; Chen, T.J.; Wang, Y.P.; Chen, M.H. Inflammatory bowel disease is associated with higher dementia risk: A nationwide longitudinal study. Gut, 2021, 70(1), 85-91.
[http://dx.doi.org/10.1136/gutjnl-2020-320789] [PMID: 32576641]
[33]
Khoury, J.C.; Kleindorfer, D.; Alwell, K.; Moomaw, C.J.; Woo, D.; Adeoye, O.; Flaherty, M.L.; Khatri, P.; Ferioli, S.; Broderick, J.P.; Kissela, B.M. Diabetes mellitus: A risk factor for ischemic stroke in a large biracial population. Stroke, 2013, 44(6), 1500-1504.
[http://dx.doi.org/10.1161/STROKEAHA.113.001318] [PMID: 23619130]
[34]
Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA, 2001, 285(19), 2486-2497.
[http://dx.doi.org/10.1001/jama.285.19.2486] [PMID: 11368702]
[35]
Saltiel, A.R.; Olefsky, J.M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Invest., 2017, 127(1), 1-4.
[http://dx.doi.org/10.1172/JCI92035] [PMID: 28045402]
[36]
Grundy, S.M. Overnutrition, ectopic lipid and the metabolic syndrome. J. Investig. Med., 2016, 64(6), 1082-1086.
[http://dx.doi.org/10.1136/jim-2016-000155] [PMID: 27194746]
[37]
Mooradian, A.D.; Thurman, J.E. Glucotoxicity: Potential mechanisms. Clin. Geriatr. Med., 1999, 15(2), 255.
[http://dx.doi.org/10.1016/S0749-0690(18)30058-2] [PMID: 10339632]
[38]
Zheng, H.; Wu, J.; Jin, Z.; Yan, L.J. Protein modifications as manifestations of hyperglycemic glucotoxicity in diabetes and its complications. Biochem. Insights, 2016, 9, 1-9.
[http://dx.doi.org/10.4137/BCI.S36141] [PMID: 27042090]
[39]
van Herpen, N.A.; Schrauwen-Hinderling, V.B. Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol. Behav., 2008, 94(2), 231-241.
[http://dx.doi.org/10.1016/j.physbeh.2007.11.049] [PMID: 18222498]
[40]
Izquierdo, A.G.; Crujeiras, A.B.; Casanueva, F.F.; Carreira, M.C. Leptin, obesity, and leptin resistance: Where are we 25 years later? Nutrients, 2019, 11(11), E2704.
[http://dx.doi.org/10.3390/nu11112704] [PMID: 31717265]
[41]
Su, X.; Cheng, Y.; Chang, D. The important role of leptin in modulating the risk of dermatological diseases. Front. Immunol., 2021, 11, 593564.
[http://dx.doi.org/10.3389/fimmu.2020.593564] [PMID: 33597945]
[42]
Naylor, C.; Petri, W.A., Jr. Leptin regulation of immune responses. Trends Mol. Med., 2016, 22(2), 88-98.
[http://dx.doi.org/10.1016/j.molmed.2015.12.001] [PMID: 26776093]
[43]
Fu, S.; Liu, L.; Han, L.; Yu, Y. Leptin promotes IL-18 secretion by activating the NLRP3 inflammasome in RAW 264.7 cells. Mol. Med. Rep., 2017, 16(6), 9770-9776.
[http://dx.doi.org/10.3892/mmr.2017.7797] [PMID: 29039567]
[44]
Wani, K.; AlHarthi, H.; Alghamdi, A.; Sabico, S.; Al-Daghri, N.M. Role of NLRP3 inflammasome activation in obesity-mediated metabolic disorders. Int. J. Environ. Res. Public Health, 2021, 18(2), E511.
[http://dx.doi.org/10.3390/ijerph18020511] [PMID: 33435142]
[45]
León-Pedroza, J.I.; González-Tapia, L.A.; del Olmo-Gil, E.; Castellanos-Rodríguez, D.; Escobedo, G.; González-Chávez, A. Low-grade systemic inflammation and the development of metabolic diseases: From the molecular evidence to the clinical practice. Cir. Cir., 2015, 83(6), 543-551.
[http://dx.doi.org/10.1016/j.circen.2015.11.008] [PMID: 26159364]
[46]
Bauernfeind, F.; Niepmann, S.; Knolle, P.A.; Hornung, V. Aging-associated TNF production primes inflammasome activation and NLRP3-related metabolic disturbances. J. Immunol., 2016, 197(7), 2900-2908.
[http://dx.doi.org/10.4049/jimmunol.1501336] [PMID: 27566828]
[47]
Yang, Y.; Wang, H.; Kouadir, M.; Song, H.; Shi, F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis., 2019, 10(2), 128.
[http://dx.doi.org/10.1038/s41419-019-1413-8] [PMID: 30755589]
[48]
Mangan, M.S.J.; Olhava, E.J.; Roush, W.R.; Seidel, H.M.; Glick, G.D.; Latz, E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug Discov., 2018, 17(8), 588-606.
[http://dx.doi.org/10.1038/nrd.2018.97] [PMID: 30026524]
[49]
Suganami, T.; Tanaka, M.; Ogawa, Y. Adipose tissue inflammation and ectopic lipid accumulation. Endocr. J., 2012, 59(10), 849-857.
[http://dx.doi.org/10.1507/endocrj.EJ12-0271] [PMID: 22878669]
[50]
Esch, T.; Stefano, G.B.; Fricchione, G.L.; Benson, H. The role of stress in neurodegenerative diseases and mental disorders. Neuroendocrinol. Lett., 2002, 23(3), 199-208.
[PMID: 12080279]
[51]
Zhou, J.Y.; Zhong, H.J.; Yang, C.; Yan, J.; Wang, H.Y.; Jiang, J.X. Corticosterone exerts immunostimulatory effects on macrophages via endoplasmic reticulum stress. Br. J. Surg., 2010, 97(2), 281-293.
[http://dx.doi.org/10.1002/bjs.6820] [PMID: 20069608]
[52]
Coutinho, A.E.; Chapman, K.E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell. Endocrinol., 2011, 335(1), 2-13.
[http://dx.doi.org/10.1016/j.mce.2010.04.005] [PMID: 20398732]
[53]
Busillo, J.M.; Azzam, K.M.; Cidlowski, J.A. Glucocorticoids sensitize the innate immune system through regulation of the NLRP3 inflammasome. J. Biol. Chem., 2011, 286(44), 38703-38713.
[http://dx.doi.org/10.1074/jbc.M111.275370] [PMID: 21940629]
[54]
Dregan, A.; Matcham, F.; Harber-Aschan, L.; Rayner, L.; Brailean, A.; Davis, K.; Hatch, S.; Pariante, C.; Armstrong, D.; Stewart, R.; Hotopf, M. Common mental disorders within chronic inflammatory disorders: A primary care database prospective investigation. Ann. Rheum. Dis., 2019, 78(5), 688-695.
[http://dx.doi.org/10.1136/annrheumdis-2018-214676] [PMID: 30846444]
[55]
Kivimäki, M.; Shipley, M.J.; Batty, G.D.; Hamer, M.; Akbaraly, T.N.; Kumari, M.; Jokela, M.; Virtanen, M.; Lowe, G.D.; Ebmeier, K.P.; Brunner, E.J.; Singh-Manoux, A. Long-term inflammation increases risk of common mental disorder: A cohort study. Mol. Psychiatry, 2014, 19(2), 149-150.
[http://dx.doi.org/10.1038/mp.2013.35] [PMID: 23568195]
[56]
Holmes, C.; Cunningham, C.; Zotova, E.; Woolford, J.; Dean, C.; Kerr, S.; Culliford, D.; Perry, V.H. Systemic inflammation and disease progression in Alzheimer disease. Neurology, 2009, 73(10), 768-774.
[http://dx.doi.org/10.1212/WNL.0b013e3181b6bb95] [PMID: 19738171]
[57]
Yuan, N.; Chen, Y.; Xia, Y.; Dai, J.; Liu, C. Inflammation-related biomarkers in major psychiatric disorders: A cross-disorder assessment of reproducibility and specificity in 43 meta-analyses. Transl. Psychiatry, 2019, 9(1), 233.
[http://dx.doi.org/10.1038/s41398-019-0570-y] [PMID: 31534116]
[58]
Osimo, E.F.; Baxter, L.J.; Lewis, G.; Jones, P.B.; Khandaker, G.M. Prevalence of low-grade inflammation in depression: A systematic review and meta-analysis of CRP levels. Psychol. Med., 2019, 49(12), 1958-1970.
[http://dx.doi.org/10.1017/S0033291719001454] [PMID: 31258105]
[59]
Felger, J.C. Imaging the role of inflammation in mood and anxiety-related disorders. Curr. Neuropharmacol., 2018, 16(5), 533-558.
[http://dx.doi.org/10.2174/1570159X15666171123201142] [PMID: 29173175]
[60]
Miller, B.J.; Goldsmith, D.R. Evaluating the hypothesis that schizophrenia is an inflammatory disorder. Focus Am. Psychiatr. Publ., 2020, 18(4), 391-401.
[http://dx.doi.org/10.1176/appi.focus.20200015] [PMID: 33343251]
[61]
Mongan, D.; Ramesar, M.; Föcking, M.; Cannon, M.; Cotter, D. Role of inflammation in the pathogenesis of schizophrenia: A review of the evidence, proposed mechanisms and implications for treatment. Early Interv. Psychiatry, 2020, 14(4), 385-397.
[http://dx.doi.org/10.1111/eip.12859] [PMID: 31368253]
[62]
Müller, N. COX-2 inhibitors as antidepressants and antipsychotics: Clinical evidence. Curr. Opin. Investig. Drugs, 2010, 11(1), 31-42.
[PMID: 20047157]
[63]
Carloni, S.; Bertocchi, A.; Mancinelli, S.; Bellini, M.; Erreni, M.; Borreca, A.; Braga, D.; Giugliano, S.; Mozzarelli, A.M.; Manganaro, D.; Fernandez Perez, D.; Colombo, F.; Di Sabatino, A.; Pasini, D.; Penna, G.; Matteoli, M.; Lodato, S.; Rescigno, M. Identification of a choroid plexus vascular barrier closing during intestinal inflammation. Science, 2021, 374(6566), 439-448.
[http://dx.doi.org/10.1126/science.abc6108] [PMID: 34672740]
[64]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[65]
Steeland, S.; Gorlé, N.; Vandendriessche, C.; Balusu, S.; Brkic, M.; Van Cauwenberghe, C.; Van Imschoot, G.; Van Wonterghem, E.; De Rycke, R.; Kremer, A.; Lippens, S.; Stopa, E.; Johanson, C.E.; Libert, C.; Vandenbroucke, R.E. Counteracting the effects of TNF receptor-1 has therapeutic potential in Alzheimer’s disease. EMBO Mol. Med., 2018, 10(4), e8300.
[http://dx.doi.org/10.15252/emmm.201708300] [PMID: 29472246]
[66]
Landskron, G.; De la Fuente, M.; Thuwajit, P.; Thuwajit, C.; Hermoso, M.A. Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res., 2014, 2014, 149185.
[http://dx.doi.org/10.1155/2014/149185] [PMID: 24901008]
[67]
Singh, R.; Mishra, M.K.; Aggarwal, H. Inflammation, immunity, and cancer. Mediators Inflamm., 2017, 2017, 6027305.
[http://dx.doi.org/10.1155/2017/6027305] [PMID: 29234189]
[68]
Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med., 2020, 52(2), 192-203.
[http://dx.doi.org/10.1038/s12276-020-0384-2] [PMID: 32060354]
[69]
Kwon, J.; Lee, S.R.; Yang, K.S.; Ahn, Y.; Kim, Y.J.; Stadtman, E.R.; Rhee, S.G. Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc. Natl. Acad. Sci. USA, 2004, 101(47), 16419-16424.
[http://dx.doi.org/10.1073/pnas.0407396101] [PMID: 15534200]
[70]
Thimmulappa, R.K.; Mai, K.H.; Srisuma, S.; Kensler, T.W.; Yamamoto, M.; Biswal, S. Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res., 2002, 62(18), 5196-5203.
[PMID: 12234984]
[71]
Trueba, G.P.; Sánchez, G.M.; Giuliani, A. Oxygen free radical and antioxidant defense mechanism in cancer. Front. Biosci., 2004, 9, 2029-2044.
[http://dx.doi.org/10.2741/1335] [PMID: 15353268]
[72]
Saha, S.K.; Lee, S.B.; Won, J.; Choi, H.Y.; Kim, K.; Yang, G.M.; Dayem, A.A.; Cho, S.G. Correlation between oxidative stress, nutrition, and cancer initiation. Int. J. Mol. Sci., 2017, 18(7), E1544.
[http://dx.doi.org/10.3390/ijms18071544] [PMID: 28714931]
[73]
Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature, 2008, 454(7203), 436-444.
[http://dx.doi.org/10.1038/nature07205] [PMID: 18650914]
[74]
Sharma, A.; Tiwari, S.; Deb, M.K.; Marty, J.L. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): A global pandemic and treatment strategies. Int. J. Antimicrob. Agents, 2020, 56(2), 106054.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106054] [PMID: 32534188]
[75]
Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review. JAMA, 2020, 324(8), 782-793.
[http://dx.doi.org/10.1001/jama.2020.12839] [PMID: 32648899]
[76]
Ejaz, H.; Alsrhani, A.; Zafar, A.; Javed, H.; Junaid, K.; Abdalla, A.E.; Abosalif, K.O.A.; Ahmed, Z.; Younas, S. COVID-19 and comorbidities: Deleterious impact on infected patients. J. Infect. Public Health, 2020, 13(12), 1833-1839.
[http://dx.doi.org/10.1016/j.jiph.2020.07.014] [PMID: 32788073]
[77]
Soy, M.; Keser, G.; Atagündüz, P. Pathogenesis and treatment of cytokine storm in COVID-19. Turk. J. Biol., 2021, 45(4), 372-389.
[http://dx.doi.org/10.3906/biy-2105-37] [PMID: 34803441]
[78]
Suárez-Reyes, A.; Villegas-Valverde, C.A. Implications of low-grade inflammation in SARS-CoV-2 immunopathology. MEDICC Rev., 2021, 23(2), 42.
[http://dx.doi.org/10.37757/MR2021.V23.N2.4] [PMID: 33974614]
[79]
Pereira, S.S.; Alvarez-Leite, J.I. Low-grade inflammation, obesity, and diabetes. Curr. Obes. Rep., 2014, 3(4), 422-431.
[http://dx.doi.org/10.1007/s13679-014-0124-9] [PMID: 26626919]
[80]
Herold, T.; Jurinovic, V.; Arnreich, C.; Lipworth, B.J.; Hellmuth, J.C.; von Bergwelt-Baildon, M.; Klein, M.; Weinberger, T. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J. Allergy Clin. Immunol., 2020, 146(1), 128-136.e4.
[http://dx.doi.org/10.1016/j.jaci.2020.05.008] [PMID: 32425269]
[81]
Goyal, R.; Faizy, A.F.; Siddiqui, S.S.; Singhai, M. Evaluation of TNF-α and IL-6 levels in obese and non-obese diabetics: Pre- and postinsulin effects. N. Am. J. Med. Sci., 2012, 4(4), 180-184.
[http://dx.doi.org/10.4103/1947-2714.94944] [PMID: 22536561]
[82]
Zhu, L.; She, Z.G.; Cheng, X.; Qin, J.J.; Zhang, X.J.; Cai, J.; Lei, F.; Wang, H.; Xie, J.; Wang, W.; Li, H.; Zhang, P.; Song, X.; Chen, X.; Xiang, M.; Zhang, C.; Bai, L.; Xiang, D.; Chen, M.M.; Liu, Y.; Yan, Y.; Liu, M.; Mao, W.; Zou, J.; Liu, L.; Chen, G.; Luo, P.; Xiao, B.; Zhang, C.; Zhang, Z.; Lu, Z.; Wang, J.; Lu, H.; Xia, X.; Wang, D.; Liao, X.; Peng, G.; Ye, P.; Yang, J.; Yuan, Y.; Huang, X.; Guo, J.; Zhang, B.H.; Li, H. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab., 2020, 31(6), 1068-1077.e3.
[http://dx.doi.org/10.1016/j.cmet.2020.04.021] [PMID: 32369736]
[83]
Zuo, T.; Zhang, F.; Lui, G.C.Y.; Yeoh, Y.K.; Li, A.Y.L.; Zhan, H.; Wan, Y.; Chung, A.C.K.; Cheung, C.P.; Chen, N.; Lai, C.K.C.; Chen, Z.; Tso, E.Y.K.; Fung, K.S.C.; Chan, V.; Ling, L.; Joynt, G.; Hui, D.S.C.; Chan, F.K.L.; Chan, P.K.S.; Ng, S.C. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology, 2020, 159(3), 944-955.e8.
[http://dx.doi.org/10.1053/j.gastro.2020.05.048] [PMID: 32442562]
[84]
Gu, S.; Chen, Y.; Wu, Z.; Chen, Y.; Gao, H.; Lv, L.; Guo, F.; Zhang, X.; Luo, R.; Huang, C.; Lu, H.; Zheng, B.; Zhang, J.; Yan, R.; Zhang, H.; Jiang, H.; Xu, Q.; Guo, J.; Gong, Y.; Tang, L.; Li, L. Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clin. Infect. Dis., 2020, 71(10), 2669-2678.
[http://dx.doi.org/10.1093/cid/ciaa709] [PMID: 32497191]
[85]
Wölfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; Hoelscher, M.; Bleicker, T.; Brünink, S.; Schneider, J.; Ehmann, R.; Zwirglmaier, K.; Drosten, C.; Wendtner, C. Virological assessment of hospitalized patients with COVID-2019. Nature, 2020, 581(7809), 465-469.
[http://dx.doi.org/10.1038/s41586-020-2196-x] [PMID: 32235945]
[86]
Xu, Y.; Li, X.; Zhu, B.; Liang, H.; Fang, C.; Gong, Y.; Guo, Q.; Sun, X.; Zhao, D.; Shen, J.; Zhang, H.; Liu, H.; Xia, H.; Tang, J.; Zhang, K.; Gong, S. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med., 2020, 26(4), 502-505.
[http://dx.doi.org/10.1038/s41591-020-0817-4] [PMID: 32284613]
[87]
Lamers, M.M.; Beumer, J.; van der Vaart, J.; Knoops, K.; Puschhof, J.; Breugem, T.I.; Ravelli, R.B.G.; Paul van Schayck, J.; Mykytyn, A.Z.; Duimel, H.Q.; van Donselaar, E.; Riesebosch, S.; Kuijpers, H.J.H.; Schipper, D.; van de Wetering, W.J.; de Graaf, M.; Koopmans, M.; Cuppen, E.; Peters, P.J.; Haagmans, B.L.; Clevers, H. SARS-CoV-2 productively infects human gut enterocytes. Science, 2020, 369(6499), 50-54.
[http://dx.doi.org/10.1126/science.abc1669] [PMID: 32358202]
[88]
Zhou, J.; Li, C.; Liu, X.; Chiu, M.C.; Zhao, X.; Wang, D.; Wei, Y.; Lee, A.; Zhang, A.J.; Chu, H.; Cai, J.P.; Yip, C.C.; Chan, I.H.; Wong, K.K.; Tsang, O.T.; Chan, K.H.; Chan, J.F.; To, K.K.; Chen, H.; Yuen, K.Y. Infection of bat and human intestinal organoids by SARS-CoV-2. Nat. Med., 2020, 26(7), 1077-1083.
[http://dx.doi.org/10.1038/s41591-020-0912-6] [PMID: 32405028]
[89]
Zuo, T.; Zhan, H.; Zhang, F.; Liu, Q.; Tso, E.Y.K.; Lui, G.C.Y.; Chen, N.; Li, A.; Lu, W.; Chan, F.K.L.; Chan, P.K.S.; Ng, S.C. Alterations in fecal fungal microbiome of patients with COVID-19 during time of hospitalization until discharge. Gastroenterology, 2020, 159(4), 1302-1310.e5.
[http://dx.doi.org/10.1053/j.gastro.2020.06.048] [PMID: 32598884]
[90]
Zuo, T.; Liu, Q.; Zhang, F.; Lui, G.C.; Tso, E.Y.; Yeoh, Y.K.; Chen, Z.; Boon, S.S.; Chan, F.K.; Chan, P.K.; Ng, S.C. Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut, 2021, 70(2), 276-284.
[PMID: 32690600]
[91]
Tao, W.; Zhang, G.; Wang, X.; Guo, M.; Zeng, W.; Xu, Z.; Cao, D.; Pan, A.; Wang, Y.; Zhang, K.; Ma, X.; Chen, Z.; Jin, T.; Liu, L.; Weng, J.; Zhu, S. Analysis of the intestinal microbiota in COVID-19 patients and its correlation with the inflammatory factor IL-18. Med Microecol, 2020, 5, 100023.
[http://dx.doi.org/10.1016/j.medmic.2020.100023] [PMID: 34173452]
[92]
Adelman, M.W.; Woodworth, M.H.; Langelier, C.; Busch, L.M.; Kempker, J.A.; Kraft, C.S.; Martin, G.S. The gut microbiome’s role in the development, maintenance, and outcomes of sepsis. Crit. Care, 2020, 24(1), 278.
[http://dx.doi.org/10.1186/s13054-020-02989-1] [PMID: 32487252]
[93]
Yeoh, Y.K.; Zuo, T.; Lui, G.C.; Zhang, F.; Liu, Q.; Li, A.Y.; Chung, A.C.; Cheung, C.P.; Tso, E.Y.; Fung, K.S.; Chan, V.; Ling, L.; Joynt, G.; Hui, D.S.; Chow, K.M.; Ng, S.S.S.; Li, T.C.; Ng, R.W.; Yip, T.C.; Wong, G.L.; Chan, F.K.; Wong, C.K.; Chan, P.K.; Ng, S.C. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut, 2021, 70(4), 698-706.
[http://dx.doi.org/10.1136/gutjnl-2020-323020] [PMID: 33431578]
[94]
Derrien, M.; van Hylckama Vlieg, J.E. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol., 2015, 23(6), 354-366.
[http://dx.doi.org/10.1016/j.tim.2015.03.002] [PMID: 25840765]
[95]
Zhang, D.; Li, S.; Wang, N.; Tan, H.Y.; Zhang, Z.; Feng, Y. The cross-talk between gut microbiota and lungs in common lung diseases. Front. Microbiol., 2020, 11, 301.
[http://dx.doi.org/10.3389/fmicb.2020.00301] [PMID: 32158441]
[96]
Coperchini, F.; Chiovato, L.; Croce, L.; Magri, F.; Rotondi, M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev., 2020, 53, 25-32.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.003] [PMID: 32446778]
[97]
Keely, S.; Talley, N.J.; Hansbro, P.M. Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunol., 2012, 5(1), 7-18.
[http://dx.doi.org/10.1038/mi.2011.55] [PMID: 22089028]
[98]
Barcik, W.; Boutin, R.C.T.; Sokolowska, M.; Finlay, B.B. The role of lung and gut microbiota in the pathology of asthma. Immunity, 2020, 52(2), 241-255.
[http://dx.doi.org/10.1016/j.immuni.2020.01.007] [PMID: 32075727]
[99]
Donati Zeppa, S.; Agostini, D.; Piccoli, G.; Stocchi, V.; Sestili, P. Gut microbiota status in COVID-19: An unrecognized player? Front. Cell. Infect. Microbiol., 2020, 10, 576551.
[http://dx.doi.org/10.3389/fcimb.2020.576551] [PMID: 33324572]
[100]
Aktas, B.; Aslim, B. Gut-lung axis and dysbiosis in COVID-19. Turk. J. Biol., 2020, 44(3), 265-272.
[http://dx.doi.org/10.3906/biy-2005-102] [PMID: 32595361]
[101]
Zhao, Y.; Cao, Y.; Wang, S.; Cai, K.; Xu, K. COVID-19 and gastrointestinal symptoms. Br. J. Surg., 2020, 107(10), e382-e383.
[http://dx.doi.org/10.1002/bjs.11821] [PMID: 32757447]
[102]
Halpin, S.; O’Connor, R.; Sivan, M. Long COVID and chronic COVID syndromes. J. Med. Virol., 2021, 93(3), 1242-1243.
[http://dx.doi.org/10.1002/jmv.26587] [PMID: 33034893]
[103]
Taribagil, P.; Creer, D.; Tahir, H. ‘Long COVID’ syndrome. BMJ Case Rep., 2021, 14(4), e241485.
[http://dx.doi.org/10.1136/bcr-2020-241485] [PMID: 33875508]
[104]
Baig, A.M. Chronic COVID syndrome: Need for an appropriate medical terminology for long-COVID and COVID long-haulers. J. Med. Virol., 2021, 93(5), 2555-2556.
[http://dx.doi.org/10.1002/jmv.26624] [PMID: 33095459]
[105]
Humphreys, H.; Kilby, L.; Kudiersky, N.; Copeland, R. Long COVID and the role of physical activity: A qualitative study. BMJ Open, 2021, 11(3), e047632.
[http://dx.doi.org/10.1136/bmjopen-2020-047632] [PMID: 33692189]
[106]
Wang, Z.; Du, Z.; Zhu, F. Glycosylated hemoglobin is associated with systemic inflammation, hypercoagulability, and prognosis of COVID-19 patients. Diabetes Res. Clin. Pract., 2020, 164, 108214.
[http://dx.doi.org/10.1016/j.diabres.2020.108214] [PMID: 32416121]
[107]
Meftahi, G.H.; Jangravi, Z.; Sahraei, H.; Bahari, Z. The possible pathophysiology mechanism of cytokine storm in elderly adults with COVID-19 infection: The contribution of “inflame-aging”. Inflamm. Res., 2020, 69(9), 825-839.
[http://dx.doi.org/10.1007/s00011-020-01372-8] [PMID: 32529477]
[108]
Mondelli, V.; Pariante, C.M. What can neuroimmunology teach us about the symptoms of long-COVID? Oxf Open Immunol, 2021, 2(1), iqab004.
[http://dx.doi.org/10.1093/oxfimm/iqab004]
[109]
Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol., 2018, 14(10), 576-590.
[http://dx.doi.org/10.1038/s41574-018-0059-4] [PMID: 30046148]
[110]
Sanada, F.; Taniyama, Y.; Muratsu, J.; Otsu, R.; Shimizu, H.; Rakugi, H.; Morishita, R. Source of chronic inflammation in aging. Front. Cardiovasc. Med., 2018, 5, 12.
[http://dx.doi.org/10.3389/fcvm.2018.00012] [PMID: 29564335]
[111]
Barth, E.; Srivastava, A.; Stojiljkovic, M.; Frahm, C.; Axer, H.; Witte, O.W.; Marz, M. Conserved aging-related signatures of senescence and inflammation in different tissues and species. Aging (Albany NY), 2019, 11(19), 8556-8572.
[http://dx.doi.org/10.18632/aging.102345] [PMID: 31606727]
[112]
Egger, G.; Dixon, J. Beyond obesity and lifestyle: A review of 21st century chronic disease determinants. BioMed Res. Int., 2014, 2014, 731685.
[http://dx.doi.org/10.1155/2014/731685] [PMID: 24804239]
[113]
Thomas, K.A. How the NICU environment sounds to a preterm infant. MCN Am. J. Matern. Child Nurs., 1989, 14(4), 249-251.
[http://dx.doi.org/10.1097/00005721-198907000-00007] [PMID: 2473369]
[114]
Wilkins, L.J.; Monga, M.; Miller, A.W. Defining dysbiosis for a cluster of chronic diseases. Sci. Rep., 2019, 9(1), 12918.
[http://dx.doi.org/10.1038/s41598-019-49452-y] [PMID: 31501492]
[115]
Zhu, L.; Yang, Z.; Yao, R.; Xu, L.; Chen, H.; Gu, X.; Wu, T.; Yang, X. Potential mechanism of detoxification of cyanide compounds by gut microbiomes of bamboo-eating pandas. MSphere, 2018, 3(3), e00229-18.
[http://dx.doi.org/10.1128/mSphere.00229-18] [PMID: 29898983]
[116]
Conteville, L.C.; Oliveira-Ferreira, J.; Vicente, A.C.P. Gut microbiome biomarkers and functional diversity within an amazonian semi-nomadic hunter-gatherer group. Front. Microbiol., 2019, 10, 1743.
[http://dx.doi.org/10.3389/fmicb.2019.01743] [PMID: 31417531]
[117]
Krautkramer, K.A.; Fan, J.; Bäckhed, F. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol., 2021, 19(2), 77-94.
[http://dx.doi.org/10.1038/s41579-020-0438-4] [PMID: 32968241]
[118]
Adorisio, S.; Fierabracci, A.; Gigliarelli, G.; Muscari, I.; Cannarile, L.; Liberati, A.M.; Marcotullio, M.C.; Riccardi, C.; Curini, M.; Robles Zepeda, R.E.; Delfino, D.V. The hexane fraction of bursera microphylla a gray induces p21-mediated antiproliferative and proapoptotic effects in human cancer-derived cell lines. Integr. Cancer Ther., 2017, 16(3), 426-435.
[http://dx.doi.org/10.1177/1534735416688413] [PMID: 28110563]
[119]
Ridlon, J.M.; Harris, S.C.; Bhowmik, S.; Kang, D.J.; Hylemon, P.B. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes, 2016, 7(1), 22-39.
[http://dx.doi.org/10.1080/19490976.2015.1127483] [PMID: 26939849]
[120]
Chi, M.; Ma, K.; Wang, J.; Ding, Z.; Li, Y.; Zhu, S.; Liang, X.; Zhang, Q.; Song, L.; Liu, C. The immunomodulatory effect of the gut microbiota in kidney disease. J. Immunol. Res., 2021, 2021, 5516035.
[http://dx.doi.org/10.1155/2021/5516035] [PMID: 34095319]
[121]
Ghosh, S.; Whitley, C.S.; Haribabu, B.; Jala, V.R. Regulation of intestinal barrier function by microbial metabolites. Cell. Mol. Gastroenterol. Hepatol., 2021, 11(5), 1463-1482.
[http://dx.doi.org/10.1016/j.jcmgh.2021.02.007] [PMID: 33610769]
[122]
Schlegel, N.; Boerner, K.; Waschke, J. Targeting desmosomal adhesion and signalling for intestinal barrier stabilization in inflammatory bowel diseases-Lessons from experimental models and patients. Acta Physiol. (Oxf.), 2021, 231(1), e13492.
[http://dx.doi.org/10.1111/apha.13492] [PMID: 32419327]
[123]
Fuke, N.; Nagata, N.; Suganuma, H.; Ota, T. Regulation of gut microbiota and metabolic endotoxemia with dietary factors. Nutrients, 2019, 11(10), E2277.
[http://dx.doi.org/10.3390/nu11102277] [PMID: 31547555]
[124]
Mogensen, T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev., 2009, 22(2), 240-273.
[http://dx.doi.org/10.1128/CMR.00046-08] [PMID: 19366914]
[125]
Gurr, M.I. Diet, nutrition and the prevention of chronic diseases (WHO, 1990). Eur. J. Clin. Nutr., 1991, 45(12), 619-623.
[PMID: 1810722]
[126]
Power, S.E.; O’Toole, P.W.; Stanton, C.; Ross, R.P.; Fitzgerald, G.F. Intestinal microbiota, diet and health. Br. J. Nutr., 2014, 111(3), 387-402.
[http://dx.doi.org/10.1017/S0007114513002560] [PMID: 23931069]
[127]
Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; Sinha, R.; Gilroy, E.; Gupta, K.; Baldassano, R.; Nessel, L.; Li, H.; Bushman, F.D.; Lewis, J.D. Linking long-term dietary patterns with gut microbial enterotypes. Science, 2011, 334(6052), 105-108.
[http://dx.doi.org/10.1126/science.1208344] [PMID: 21885731]
[128]
Locke, A.; Schneiderhan, J.; Zick, S.M. Diets for health: Goals and guidelines. Am. Fam. Physician, 2018, 97(11), 721-728.
[PMID: 30215930]
[129]
Cordain, L.; Eaton, S.B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B.A.; O’Keefe, J.H.; Brand-Miller, J. Origins and evolution of the Western diet: Health implications for the 21st century. Am. J. Clin. Nutr., 2005, 81(2), 341-354.
[http://dx.doi.org/10.1093/ajcn.81.2.341] [PMID: 15699220]
[130]
Statovci, D.; Aguilera, M.; MacSharry, J.; Melgar, S. The impact of western diet and nutrients on the microbiota and immune response at mucosal interfaces. Front. Immunol., 2017, 8, 838.
[http://dx.doi.org/10.3389/fimmu.2017.00838] [PMID: 28804483]
[131]
Christ, A.; Lauterbach, M.; Latz, E. Western diet and the immune system: An inflammatory connection. Immunity, 2019, 51(5), 794-811.
[http://dx.doi.org/10.1016/j.immuni.2019.09.020] [PMID: 31747581]
[132]
Nazni, P. Association of western diet & lifestyle with decreased fertility. Indian J. Med. Res., 2014, 140(Suppl.), S78-S81.
[PMID: 25673548]
[133]
Gaines, S.; van Praagh, J.B.; Williamson, A.J.; Jacobson, R.A.; Hyoju, S.; Zaborin, A.; Mao, J.; Koo, H.Y.; Alpert, L.; Bissonnette, M.; Weichselbaum, R.; Gilbert, J.; Chang, E.; Hyman, N.; Zaborina, O.; Shogan, B.D.; Alverdy, J.C. Western diet promotes intestinal colonization by collagenolytic microbes and promotes tumor formation after colorectal surgery. Gastroenterology, 2020, 158(4), 958-970.e2.
[http://dx.doi.org/10.1053/j.gastro.2019.10.020] [PMID: 31655031]
[134]
Zinöcker, M.K.; Lindseth, I.A. The western diet-microbiome-host interaction and its role in metabolic disease. Nutrients, 2018, 10(3), E365.
[http://dx.doi.org/10.3390/nu10030365] [PMID: 29562591]
[135]
Bibbò, S.; Ianiro, G.; Giorgio, V.; Scaldaferri, F.; Masucci, L.; Gasbarrini, A.; Cammarota, G. The role of diet on gut microbiota composition. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(22), 4742-4749.
[PMID: 27906427]
[136]
Netto Candido, T.L.; Bressan, J.; Alfenas, R.C.G. Dysbiosis and metabolic endotoxemia induced by high-fat diet. Nutr. Hosp., 2018, 35(6), 1432-1440.
[http://dx.doi.org/10.20960/nh.1792] [PMID: 30525859]
[137]
Tsang, P.H.; Roboz, J.P.; Holland, J.F.; Bekesi, J.G. Effector lymphocyte response to homologous tumor antigens in various stages of malignant disease as monitored by leukocyte adherence inhibition--cell mediated immunity (LAI-CMI). Immunol. Lett., 1988, 17(1), 63-70.
[http://dx.doi.org/10.1016/0165-2478(88)90103-4] [PMID: 3280478]
[138]
Rohr, M.W.; Narasimhulu, C.A.; Rudeski-Rohr, T.A.; Parthasarathy, S. Negative effects of a high-fat diet on intestinal permeability: A review. Adv. Nutr., 2020, 11(1), 77-91.
[PMID: 31268137]
[139]
Kaliannan, K.; Wang, B.; Li, X.Y.; Kim, K.J.; Kang, J.X. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Sci. Rep., 2015, 5, 11276.
[http://dx.doi.org/10.1038/srep11276] [PMID: 26062993]
[140]
Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother., 2002, 56(8), 365-379.
[http://dx.doi.org/10.1016/S0753-3322(02)00253-6] [PMID: 12442909]
[141]
Torres-Castillo, N.; Silva-Gómez, J.A.; Campos-Perez, W.; Barron-Cabrera, E.; Hernandez-Cañaveral, I.; Garcia-Cazarin, M.; Marquez-Sandoval, Y.; Gonzalez-Becerra, K.; Barron-Gallardo, C.; Martinez-Lopez, E. High dietary ω-6:ω-3 pufa ratio is positively associated with excessive adiposity and waist circumference. Obes. Facts, 2018, 11(4), 344-353.
[http://dx.doi.org/10.1159/000492116] [PMID: 30092569]
[142]
Berger, M.E.; Smesny, S.; Kim, S.W.; Davey, C.G.; Rice, S.; Sarnyai, Z.; Schlögelhofer, M.; Schäfer, M.R.; Berk, M.; McGorry, P.D.; Amminger, G.P. Omega-6 to omega-3 polyunsaturated fatty acid ratio and subsequent mood disorders in young people with at-risk mental states: A 7-year longitudinal study. Transl. Psychiatry, 2017, 7(8), e1220.
[http://dx.doi.org/10.1038/tp.2017.190] [PMID: 28850110]
[143]
Miyamoto, J.; Igarashi, M.; Watanabe, K.; Karaki, S.I.; Mukouyama, H.; Kishino, S.; Li, X.; Ichimura, A.; Irie, J.; Sugimoto, Y.; Mizutani, T.; Sugawara, T.; Miki, T.; Ogawa, J.; Drucker, D.J.; Arita, M.; Itoh, H.; Kimura, I. Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids. Nat. Commun., 2019, 10(1), 4007.
[http://dx.doi.org/10.1038/s41467-019-11978-0] [PMID: 31488836]
[144]
Ikeguchi, S.; Izumi, Y.; Kitamura, N.; Kishino, S.; Ogawa, J.; Akaike, A.; Kume, T. Inhibitory effect of the gut microbial linoleic acid metabolites, 10-oxo-trans-11-octadecenoic acid and 10-hydroxy-cis-12-octadecenoic acid, on BV-2 microglial cell activation. J. Pharmacol. Sci., 2018, 138(1), 9-15.
[http://dx.doi.org/10.1016/j.jphs.2018.06.015] [PMID: 30243517]
[145]
Saika, A.; Nagatake, T.; Kunisawa, J. Host- and microbe-dependent dietary lipid metabolism in the control of allergy, inflammation, and immunity. Front. Nutr., 2019, 6, 36.
[http://dx.doi.org/10.3389/fnut.2019.00036] [PMID: 31024921]
[146]
Miyamoto, J.; Mizukure, T.; Park, S.B.; Kishino, S.; Kimura, I.; Hirano, K.; Bergamo, P.; Rossi, M.; Suzuki, T.; Arita, M.; Ogawa, J.; Tanabe, S. A gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially via GPR40-MEK-ERK pathway. J. Biol. Chem., 2015, 290(5), 2902-2918.
[http://dx.doi.org/10.1074/jbc.M114.610733] [PMID: 25505251]
[147]
Rodríguez-Carrio, J.; Salazar, N.; Margolles, A.; González, S.; Gueimonde, M.; de Los Reyes-Gavilán, C.G.; Suárez, A. Free fatty acids profiles are related to gut microbiota signatures and short-chain fatty acids. Front. Immunol., 2017, 8, 823.
[http://dx.doi.org/10.3389/fimmu.2017.00823] [PMID: 28791008]
[148]
Kim, S.; Lim, S.D. Separation and purification of lipase inhibitory peptide from fermented milk by Lactobacillus plantarum Q180. Food Sci. Anim. Resour., 2020, 40(1), 87-95.
[http://dx.doi.org/10.5851/kosfa.2019.e87] [PMID: 31970333]
[149]
Suez, J.; Korem, T.; Zilberman-Schapira, G.; Segal, E.; Elinav, E. Non-caloric artificial sweeteners and the microbiome: Findings and challenges. Gut Microbes, 2015, 6(2), 149-155.
[http://dx.doi.org/10.1080/19490976.2015.1017700] [PMID: 25831243]
[150]
Lohner, S.; Toews, I.; Meerpohl, J.J. Health outcomes of non-nutritive sweeteners: Analysis of the research landscape. Nutr. J., 2017, 16(1), 55.
[http://dx.doi.org/10.1186/s12937-017-0278-x] [PMID: 28886707]
[151]
Bueno-Hernández, N.; Vázquez-Frías, R.; Abreu Y Abreu, A.T.; Almeda-Valdés, P.; Barajas-Nava, L.A.; Carmona-Sánchez, R.I.; Chávez-Sáenz, J.; Consuelo-Sánchez, A.; Espinosa-Flores, A.J.; Hernández-Rosiles, V.; Hernández-Vez, G.; Icaza-Chávez, M.E.; Noble-Lugo, A.; Romo-Romo, A.; Ruiz-Margaín, A.; Valdovinos-Díaz, M.A.; Zárate-Mondragón, F.E. Review of the scientific evidence and technical opinion on noncaloric sweetener consumption in gastrointestinal diseases. Rev. Gastroenterol. Mex., 2019, 84(4), 492-510.
[http://dx.doi.org/10.1016/j.rgmxen.2019.08.001] [PMID: 31564473]
[152]
Bian, X. Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food Chem. Toxicol., 2017, 107(Pt B), 530-539.
[http://dx.doi.org/10.1016/j.fct.2017.04.045]
[153]
Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; Kuperman, Y.; Harmelin, A.; Kolodkin-Gal, I.; Shapiro, H.; Halpern, Z.; Segal, E.; Elinav, E. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature, 2014, 514(7521), 181-186.
[http://dx.doi.org/10.1038/nature13793] [PMID: 25231862]
[154]
Halmos, E.P.; Mack, A.; Gibson, P.R. Review article: Emulsifiers in the food supply and implications for gastrointestinal disease. Aliment. Pharmacol. Ther., 2019, 49(1), 41-50.
[http://dx.doi.org/10.1111/apt.15045] [PMID: 30484878]
[155]
Durand, J.R.; Samples, J.R. Dolichoectasia and cranial nerve palsies. A case report. J. Clin. Neuroophthalmol., 1989, 9(4), 249-253.
[PMID: 2531162]
[156]
Lamas, B.; Martins Breyner, N.; Houdeau, E. Impacts of foodborne inorganic nanoparticles on the gut microbiota-immune axis: Potential consequences for host health. Part. Fibre Toxicol., 2020, 17(1), 19.
[http://dx.doi.org/10.1186/s12989-020-00349-z] [PMID: 32487227]
[157]
Baranowska-Wójcik, E.; Szwajgier, D.; Oleszczuk, P.; Winiarska-Mieczan, A. Effects of titanium dioxide nanoparticles exposure on human health-a review. Biol. Trace Elem. Res., 2020, 193(1), 118-129.
[http://dx.doi.org/10.1007/s12011-019-01706-6] [PMID: 30982201]
[158]
Medina-Reyes, E.I.; Rodríguez-Ibarra, C.; Déciga-Alcaraz, A.; Díaz-Urbina, D.; Chirino, Y.I.; Pedraza-Chaverri, J. Food additives containing nanoparticles induce gastrotoxicity, hepatotoxicity and alterations in animal behavior: The unknown role of oxidative stress. Food Chem. Toxicol., 2020, 146, 111814.
[http://dx.doi.org/10.1016/j.fct.2020.111814] [PMID: 33068655]
[159]
Partearroyo, T.; Samaniego-Vaesken, M.L.; Ruiz, E.; Aranceta-Bartrina, J.; Gil, Á.; González-Gross, M.; Ortega, R.M.; Serra-Majem, L.; Varela-Moreiras, G. Sodium intake from foods exceeds recommended limits in the Spanish population: The ANIBES study. Nutrients, 2019, 11(10), E2451.
[http://dx.doi.org/10.3390/nu11102451] [PMID: 31615065]
[160]
Mugavero, K.; Losby, J.L.; Gunn, J.P.; Levings, J.L.; Lane, R.I. Reducing sodium intake at the community level: The sodium reduction in communities program. Prev. Chronic Dis., 2012, 9, E168.
[http://dx.doi.org/10.5888/pcd9.120081] [PMID: 23171670]
[161]
Lu, X.; Crowley, S.D. Inflammation in salt-sensitive hypertension and renal damage. Curr. Hypertens. Rep., 2018, 20(12), 103.
[http://dx.doi.org/10.1007/s11906-018-0903-x] [PMID: 30377822]
[162]
Wilck, N.; Matus, M.G.; Kearney, S.M.; Olesen, S.W.; Forslund, K.; Bartolomaeus, H.; Haase, S.; Mähler, A.; Balogh, A.; Markó, L.; Vvedenskaya, O.; Kleiner, F.H.; Tsvetkov, D.; Klug, L.; Costea, P.I.; Sunagawa, S.; Maier, L.; Rakova, N.; Schatz, V.; Neubert, P.; Frätzer, C.; Krannich, A.; Gollasch, M.; Grohme, D.A.; Côrte-Real, B.F.; Gerlach, R.G.; Basic, M.; Typas, A.; Wu, C.; Titze, J.M.; Jantsch, J.; Boschmann, M.; Dechend, R.; Kleinewietfeld, M.; Kempa, S.; Bork, P.; Linker, R.A.; Alm, E.J.; Müller, D.N. Salt-responsive gut commensal modulates TH17 axis and disease. Nature, 2017, 551(7682), 585-589.
[http://dx.doi.org/10.1038/nature24628] [PMID: 29143823]
[163]
Yang, S.; Li, X.; Yang, F.; Zhao, R.; Pan, X.; Liang, J.; Tian, L.; Li, X.; Liu, L.; Xing, Y.; Wu, M. Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: Inflammation mechanism, clinical prognostic, and potential as a therapeutic target. Front. Pharmacol., 2019, 10, 1360.
[http://dx.doi.org/10.3389/fphar.2019.01360] [PMID: 31803054]
[164]
Naghipour, S.; Cox, A.J.; Peart, J.N.; Du Toit, E.F.; Headrick, J.P. Trimethylamine N-oxide: Heart of the microbiota-CVD nexus? Nutr. Res. Rev., 2021, 34(1), 125-146.
[http://dx.doi.org/10.1017/S0954422420000177] [PMID: 32718365]
[165]
Mostofsky, E.; Chahal, H.S.; Mukamal, K.J.; Rimm, E.B.; Mittleman, M.A. Alcohol and immediate risk of cardiovascular events: A systematic review and dose-response meta-analysis. Circulation, 2016, 133(10), 979-987.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.019743] [PMID: 26936862]
[166]
Neuman, M.G.; French, S.W.; Zakhari, S.; Malnick, S.; Seitz, H.K.; Cohen, L.B.; Salaspuro, M.; Voinea-Griffin, A.; Barasch, A.; Kirpich, I.A.; Thomes, P.G.; Schrum, L.W.; Donohue, T.M., Jr; Kharbanda, K.K.; Cruz, M.; Opris, M. Alcohol, microbiome, life style influence alcohol and non-alcoholic organ damage. Exp. Mol. Pathol., 2017, 102(1), 162-180.
[http://dx.doi.org/10.1016/j.yexmp.2017.01.003] [PMID: 28077318]
[167]
Duryee, M.J.; Willis, M.S.; Freeman, T.L.; Kuszynski, C.A.; Tuma, D.J.; Klassen, L.W.; Thiele, G.M. Mechanisms of alcohol liver damage: Aldehydes, scavenger receptors, and autoimmunity. Front. Biosci., 2004, 9, 3145-3155.
[http://dx.doi.org/10.2741/1467] [PMID: 15353344]
[168]
Rocco, A.; Compare, D.; Angrisani, D.; Sanduzzi Zamparelli, M.; Nardone, G. Alcoholic disease: Liver and beyond. World J. Gastroenterol., 2014, 20(40), 14652-14659.
[http://dx.doi.org/10.3748/wjg.v20.i40.14652] [PMID: 25356028]
[169]
Mutlu, E.A.; Gillevet, P.M.; Rangwala, H.; Sikaroodi, M.; Naqvi, A.; Engen, P.A.; Kwasny, M.; Lau, C.K.; Keshavarzian, A. Colonic microbiome is altered in alcoholism. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 302(9), G966-G978.
[http://dx.doi.org/10.1152/ajpgi.00380.2011] [PMID: 22241860]
[170]
Bishehsari, F.; Magno, E.; Swanson, G.; Desai, V.; Voigt, R.M.; Forsyth, C.B.; Keshavarzian, A. Alcohol and gut-derived inflammation. Alcohol Res., 2017, 38(2), 163-171.
[PMID: 28988571]
[171]
Bull-Otterson, L.; Feng, W.; Kirpich, I.; Wang, Y.; Qin, X.; Liu, Y.; Gobejishvili, L.; Joshi-Barve, S.; Ayvaz, T.; Petrosino, J.; Kong, M.; Barker, D.; McClain, C.; Barve, S. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PLoS One, 2013, 8(1), e53028.
[http://dx.doi.org/10.1371/journal.pone.0053028] [PMID: 23326376]
[172]
Leclercq, S.; De Saeger, C.; Delzenne, N.; de Timary, P.; Stärkel, P. Role of inflammatory pathways, blood mononuclear cells, and gut-derived bacterial products in alcohol dependence. Biol. Psychiatry, 2014, 76(9), 725-733.
[http://dx.doi.org/10.1016/j.biopsych.2014.02.003] [PMID: 24629538]
[173]
Salaspuro, M. Microbial metabolism of ethanol and acetaldehyde and clinical consequences. Addict. Biol., 1997, 2(1), 35-46.
[http://dx.doi.org/10.1080/13556219772840] [PMID: 26735439]
[174]
van Bussel, B.C.T.; Henry, R.M.A.; Schalkwijk, C.G.; Dekker, J.M.; Nijpels, G.; Feskens, E.J.M.; Stehouwer, C.D.A. Alcohol and red wine consumption, but not fruit, vegetables, fish or dairy products, are associated with less endothelial dysfunction and less low-grade inflammation: The Hoorn Study. Eur. J. Nutr., 2018, 57(4), 1409-1419.
[http://dx.doi.org/10.1007/s00394-017-1420-4] [PMID: 28349255]
[175]
Prickett, C.D.; Lister, E.; Collins, M.; Trevithick-Sutton, C.C.; Hirst, M.; Vinson, J.A.; Noble, E.; Trevithick, J.R. Alcohol: Friend or foe? alcoholic beverage hormesis for cataract and atherosclerosis is related to plasma antioxidant activity. Nonlinearity Biol. Toxicol. Med., 2004, 2(4), 353-370.
[http://dx.doi.org/10.1080/15401420490900272] [PMID: 19330151]
[176]
Anderson, J.W.; Baird, P.; Davis, R.H., Jr; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev., 2009, 67(4), 188-205.
[http://dx.doi.org/10.1111/j.1753-4887.2009.00189.x] [PMID: 19335713]
[177]
Katagiri, R.; Goto, A.; Sawada, N.; Yamaji, T.; Iwasaki, M.; Noda, M.; Iso, H.; Tsugane, S. Dietary fiber intake and total and cause-specific mortality: The Japan Public Health Center-based prospective study. Am. J. Clin. Nutr., 2020, 111(5), 1027-1035.
[http://dx.doi.org/10.1093/ajcn/nqaa002] [PMID: 31990973]
[178]
Stephen, A.M.; Champ, M.M.; Cloran, S.J.; Fleith, M.; van Lieshout, L.; Mejborn, H.; Burley, V.J. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev., 2017, 30(2), 149-190.
[http://dx.doi.org/10.1017/S095442241700004X] [PMID: 28676135]
[179]
Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.; Terrapon, N.; Muller, A.; Young, V.B.; Henrissat, B.; Wilmes, P.; Stappenbeck, T.S.; Núñez, G.; Martens, E.C. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell, 2016, 167(5), 1339-1353.e21.
[http://dx.doi.org/10.1016/j.cell.2016.10.043] [PMID: 27863247]
[180]
Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol., 2019, 10, 277.
[http://dx.doi.org/10.3389/fimmu.2019.00277] [PMID: 30915065]
[181]
Machate, D.J.; Figueiredo, P.S.; Marcelino, G.; Guimarães, R.C.A.; Hiane, P.A.; Bogo, D.; Pinheiro, V.A.Z.; Oliveira, L.C.S.; Pott, A. Fatty acid diets: Regulation of gut microbiota composition and obesity and its related metabolic dysbiosis. Int. J. Mol. Sci., 2020, 21(11), E4093.
[http://dx.doi.org/10.3390/ijms21114093] [PMID: 32521778]
[182]
Frampton, J.; Murphy, K.G.; Frost, G.; Chambers, E.S. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat. Metab., 2020, 2(9), 840-848.
[http://dx.doi.org/10.1038/s42255-020-0188-7] [PMID: 32694821]
[183]
Chambers, E.S.; Morrison, D.J.; Frost, G. Control of appetite and energy intake by SCFA: What are the potential underlying mechanisms? Proc. Nutr. Soc., 2015, 74(3), 328-336.
[http://dx.doi.org/10.1017/S0029665114001657] [PMID: 25497601]
[184]
Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(8), 461-478.
[http://dx.doi.org/10.1038/s41575-019-0157-3] [PMID: 31123355]
[185]
Li, Q.; Wu, T.; Liu, R.; Zhang, M.; Wang, R. Soluble dietary fiber reduces trimethylamine metabolism via gut microbiota and co-regulates host AMPK pathways. Mol. Nutr. Food Res., 2017, 61(12), 00473.
[http://dx.doi.org/10.1002/mnfr.201700473] [PMID: 28884952]
[186]
Niccolai, E.; Baldi, S.; Ricci, F.; Russo, E.; Nannini, G.; Menicatti, M.; Poli, G.; Taddei, A.; Bartolucci, G.; Calabrò, A.S.; Stingo, F.C.; Amedei, A. Evaluation and comparison of short chain fatty acids composition in gut diseases. World J. Gastroenterol., 2019, 25(36), 5543-5558.
[http://dx.doi.org/10.3748/wjg.v25.i36.5543] [PMID: 31576099]
[187]
Russo, E.; Giudici, F.; Fiorindi, C.; Ficari, F.; Scaringi, S.; Amedei, A. Immunomodulating activity and therapeutic effects of short chain fatty acids and tryptophan post-biotics in inflammatory bowel disease. Front. Immunol., 2019, 10, 2754.
[http://dx.doi.org/10.3389/fimmu.2019.02754] [PMID: 31824517]
[188]
Basson, M.D.; Emenaker, N.J.; Hong, F. Differential modulation of human (Caco-2) colon cancer cell line phenotype by short chain fatty acids. Proc. Soc. Exp. Biol. Med., 1998, 217(4), 476-483.
[http://dx.doi.org/10.3181/00379727-217-44261] [PMID: 9521097]
[189]
Pylkas, A.M.; Juneja, L.R.; Slavin, J.L. Comparison of different fibers for in vitro production of short chain fatty acids by intestinal microflora. J. Med. Food, 2005, 8(1), 113-116.
[http://dx.doi.org/10.1089/jmf.2005.8.113] [PMID: 15857221]
[190]
Leeming, E.R.; Johnson, A.J.; Spector, T.D.; Le Roy, C.I. Effect of diet on the gut microbiota: Rethinking intervention duration. Nutrients, 2019, 11(12), E2862.
[http://dx.doi.org/10.3390/nu11122862] [PMID: 31766592]
[191]
Zou, J.; Chassaing, B.; Singh, V.; Pellizzon, M.; Ricci, M.; Fythe, M.D.; Kumar, M.V.; Gewirtz, A.T. Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring il-22-mediated colonic health. Cell Host Microbe, 2018, 23(1), 41-53.e4.
[http://dx.doi.org/10.1016/j.chom.2017.11.003] [PMID: 29276170]
[192]
Chambers, E.S.; Byrne, C.S.; Morrison, D.J.; Murphy, K.G.; Preston, T.; Tedford, C.; Garcia-Perez, I.; Fountana, S.; Serrano-Contreras, J.I.; Holmes, E.; Reynolds, C.J.; Roberts, J.F.; Boyton, R.J.; Altmann, D.M.; McDonald, J.A.K.; Marchesi, J.R.; Akbar, A.N.; Riddell, N.E.; Wallis, G.A.; Frost, G.S. Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: A randomised cross-over trial. Gut, 2019, 68(8), 1430-1438.
[http://dx.doi.org/10.1136/gutjnl-2019-318424] [PMID: 30971437]
[193]
Blume, C.; Garbazza, C.; Spitschan, M. Effects of light on human circadian rhythms, sleep and mood. Somnologie (Berl.), 2019, 23(3), 147-156.
[http://dx.doi.org/10.1007/s11818-019-00215-x] [PMID: 31534436]
[194]
Xiang, F.; Jiang, J.; Li, H.; Yuan, J.; Yang, R.; Wang, Q.; Zhang, Y. High prevalence of vitamin D insufficiency in pregnant women working indoors and residing in Guiyang, China. J. Endocrinol. Invest., 2013, 36(7), 503-507.
[PMID: 23324526]
[195]
Lucattini, L.; Poma, G.; Covaci, A.; de Boer, J.; Lamoree, M.H.; Leonards, P.E.G. A review of semi-volatile organic compounds (SVOCs) in the indoor environment: Occurrence in consumer products, indoor air and dust. Chemosphere, 2018, 201, 466-482.
[http://dx.doi.org/10.1016/j.chemosphere.2018.02.161] [PMID: 29529574]
[196]
Gardner, C.M. Exposures to semivolatile organic compounds in indoor environments and associations with the gut microbiomes of children. Environ. Sci. Technol. Lett., 2021, 8(1), 73-79.
[http://dx.doi.org/10.1021/acs.estlett.0c00776]
[197]
Wang, G.; Chen, Q.; Tian, P.; Wang, L.; Li, X.; Lee, Y.K.; Zhao, J.; Zhang, H.; Chen, W. Gut microbiota dysbiosis might be responsible to different toxicity caused by Di-(2-ethylhexyl) phthalate exposure in murine rodents. Environ. Pollut., 2020, 261, 114164.
[http://dx.doi.org/10.1016/j.envpol.2020.114164] [PMID: 32088434]
[198]
Xiong, Z.; Zeng, Y.; Zhou, J.; Shu, R.; Xie, X.; Fu, Z. Exposure to dibutyl phthalate impairs lipid metabolism and causes inflammation via disturbing microbiota-related gut-liver axis. Acta Biochim. Biophys. Sin. (Shanghai), 2020, 52(12), 1382-1393.
[http://dx.doi.org/10.1093/abbs/gmaa128] [PMID: 33167028]
[199]
Van de Wiele, T.; Vanhaecke, L.; Boeckaert, C.; Peru, K.; Headley, J.; Verstraete, W.; Siciliano, S. Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites. Environ. Health Perspect., 2005, 113(1), 6-10.
[http://dx.doi.org/10.1289/ehp.7259] [PMID: 15626640]
[200]
Robinson, J.M.; Cameron, R.; Parker, B. The effects of anthropogenic sound and artificial light exposure on microbiomes: Ecological and public health implications. Front. Ecol. Evolut., 2021, 9(321), 662588.
[http://dx.doi.org/10.3389/fevo.2021.662588]
[201]
Zhong, C.; Franklin, M.; Wiemels, J.; McKean-Cowdin, R.; Chung, N.T.; Benbow, J.; Wang, S.S.; Lacey, J.V., Jr.; Longcore, T. Outdoor artificial light at night and risk of non-Hodgkin lymphoma among women in the California Teachers Study cohort. Cancer Epidemiol., 2020, 69, 101811.
[http://dx.doi.org/10.1016/j.canep.2020.101811] [PMID: 33002844]
[202]
Urbano, T.; Vinceti, M.; Wise, L.A.; Filippini, T. Light at night and risk of breast cancer: A systematic review and dose-response meta-analysis. Int. J. Health Geogr., 2021, 20(1), 44.
[http://dx.doi.org/10.1186/s12942-021-00297-7] [PMID: 34656111]
[203]
Tosini, G.; Ferguson, I.; Tsubota, K. Effects of blue light on the circadian system and eye physiology. Mol. Vis., 2016, 22, 61-72.
[PMID: 26900325]
[204]
Macchi, M.M.; Bruce, J.N. Human pineal physiology and functional significance of melatonin. Front. Neuroendocrinol., 2004, 25(3-4), 177-195.
[http://dx.doi.org/10.1016/j.yfrne.2004.08.001] [PMID: 15589268]
[205]
Hardeland, R. Melatonin and inflammation-Story of a double-edged blade. J. Pineal Res., 2018, 65(4), e12525.
[http://dx.doi.org/10.1111/jpi.12525] [PMID: 30242884]
[206]
Tarocco, A.; Caroccia, N.; Morciano, G.; Wieckowski, M.R.; Ancora, G.; Garani, G.; Pinton, P. Melatonin as a master regulator of cell death and inflammation: Molecular mechanisms and clinical implications for newborn care. Cell Death Dis., 2019, 10(4), 317.
[http://dx.doi.org/10.1038/s41419-019-1556-7] [PMID: 30962427]
[207]
Xu, P.; Wang, J.; Hong, F.; Wang, S.; Jin, X.; Xue, T.; Jia, L.; Zhai, Y. Melatonin prevents obesity through modulation of gut microbiota in mice. J. Pineal Res., 2017, 62(4), 12399.
[http://dx.doi.org/10.1111/jpi.12399] [PMID: 28199741]
[208]
Yin, J.; Li, Y.; Han, H.; Chen, S.; Gao, J.; Liu, G.; Wu, X.; Deng, J.; Yu, Q.; Huang, X.; Fang, R.; Li, T.; Reiter, R.J.; Zhang, D.; Zhu, C.; Zhu, G.; Ren, W.; Yin, Y. Melatonin reprogramming of gut microbiota improves lipid dysmetabolism in high-fat diet-fed mice. J. Pineal Res., 2018, 65(4), e12524.
[http://dx.doi.org/10.1111/jpi.12524] [PMID: 30230594]
[209]
Gao, T.; Wang, Z.; Dong, Y.; Cao, J.; Lin, R.; Wang, X.; Yu, Z.; Chen, Y. Role of melatonin in sleep deprivation-induced intestinal barrier dysfunction in mice. J. Pineal Res., 2019, 67(1), e12574.
[http://dx.doi.org/10.1111/jpi.12574] [PMID: 30929267]
[210]
Dusso, A.S.; Brown, A.J.; Slatopolsky, E. Vitamin D. Am. J. Physiol. Renal Physiol., 2005, 289(1), F8-F28.
[http://dx.doi.org/10.1152/ajprenal.00336.2004] [PMID: 15951480]
[211]
El-Sharkawy, A.; Malki, A. Vitamin D Signaling in inflammation and cancer: Molecular mechanisms and therapeutic implications. Molecules, 2020, 25(14), E3219.
[http://dx.doi.org/10.3390/molecules25143219] [PMID: 32679655]
[212]
Garbossa, S.G.; Folli, F. Vitamin D, sub-inflammation and insulin resistance. A window on a potential role for the interaction between bone and glucose metabolism. Rev. Endocr. Metab. Disord., 2017, 18(2), 243-258.
[http://dx.doi.org/10.1007/s11154-017-9423-2] [PMID: 28409320]
[213]
Autier, P.; Boniol, M.; Pizot, C.; Mullie, P. Vitamin D status and ill health: A systematic review. Lancet Diabetes Endocrinol., 2014, 2(1), 76-89.
[http://dx.doi.org/10.1016/S2213-8587(13)70165-7] [PMID: 24622671]
[214]
Fakhoury, H.M.A.; Kvietys, P.R.; AlKattan, W.; Anouti, F.A.; Elahi, M.A.; Karras, S.N.; Grant, W.B. Vitamin D and intestinal homeostasis: Barrier, microbiota, and immune modulation. J. Steroid Biochem. Mol. Biol., 2020, 200, 105663.
[http://dx.doi.org/10.1016/j.jsbmb.2020.105663] [PMID: 32194242]
[215]
Battistini, C.; Ballan, R.; Herkenhoff, M.E.; Saad, S.M.I.; Sun, J. Vitamin D modulates intestinal microbiota in inflammatory bowel diseases. Int. J. Mol. Sci., 2020, 22(1), E362.
[http://dx.doi.org/10.3390/ijms22010362] [PMID: 33396382]
[216]
Schneiderman, N.; Ironson, G.; Siegel, S.D. Stress and health: Psychological, behavioral, and biological determinants. Annu. Rev. Clin. Psychol., 2005, 1, 607-628.
[http://dx.doi.org/10.1146/annurev.clinpsy.1.102803.144141] [PMID: 17716101]
[217]
Gilan, D.; Röthke, N.; Blessin, M.; Kunzler, A.; Stoffers-Winterling, J.; Müssig, M.; Yuen, K.S.L.; Tüscher, O.; Thrul, J.; Kreuter, F.; Sprengholz, P.; Betsch, C.; Stieglitz, R.D.; Lieb, K. Psychomorbidity, resilience, and exacerbating and protective factors during the SARS-CoV-2 pandemic. Dtsch. Arztebl. Int., 2020, 117(38), 625-630.
[http://dx.doi.org/10.3238/arztebl.2020.0625] [PMID: 33200744]
[218]
Rajkumar, R.P. COVID-19 and mental health: A review of the existing literature. Asian J. Psychiatr., 2020, 52, 102066.
[http://dx.doi.org/10.1016/j.ajp.2020.102066] [PMID: 32302935]
[219]
Medda, E. The COVID-19 pandemic in Italy: Depressive symptoms immediately before and after the first lockdown. J. Affect. Disord., 2021, 298(Pt A), 202-208.
[220]
Delmastro, M.; Zamariola, G. Depressive symptoms in response to COVID-19 and lockdown: A cross-sectional study on the Italian population. Sci. Rep., 2020, 10(1), 22457.
[http://dx.doi.org/10.1038/s41598-020-79850-6] [PMID: 33384427]
[221]
Tona, F.; Plebani, M.; Gregori, D.; Carretta, G.; Lorenzoni, G.; Donato, D.; Iliceto, S. “Stay home stay safe?” Systemic inflammation in subjects undergoing routine hematology tests during the lockdown period of COVID-19. Clin. Chem. Lab. Med., 2020, 58(12), e315-e316.
[http://dx.doi.org/10.1515/cclm-2020-1016] [PMID: 32809951]
[222]
Cattaneo, A.; Riva, M.A. Stress-induced mechanisms in mental illness: A role for glucocorticoid signalling. J. Steroid Biochem. Mol. Biol., 2016, 160, 169-174.
[http://dx.doi.org/10.1016/j.jsbmb.2015.07.021] [PMID: 26241031]
[223]
Tsolaki, M.; Kounti, F.; Karamavrou, S. Severe psychological stress in elderly individuals: A proposed model of neurodegeneration and its implications. Am. J. Alzheimers Dis. Other Demen., 2009, 24(2), 85-94.
[http://dx.doi.org/10.1177/1533317508329813] [PMID: 19193610]
[224]
Molina-Torres, G. Stress and the gut microbiota-brain axis. Behav. Pharmacol., 2019, 30(2 and 3-Spec Issue), 187-200.
[http://dx.doi.org/10.1097/FBP.0000000000000478]
[225]
Gao, X.; Cao, Q.; Cheng, Y.; Zhao, D.; Wang, Z.; Yang, H.; Wu, Q.; You, L.; Wang, Y.; Lin, Y.; Li, X.; Wang, Y.; Bian, J.S.; Sun, D.; Kong, L.; Birnbaumer, L.; Yang, Y. Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response. Proc. Natl. Acad. Sci. USA, 2018, 115(13), E2960-E2969.
[http://dx.doi.org/10.1073/pnas.1720696115] [PMID: 29531080]
[226]
Li, N.; Wang, Q.; Wang, Y.; Sun, A.; Lin, Y.; Jin, Y.; Li, X. Fecal microbiota transplantation from chronic unpredictable mild stress mice donors affects anxiety-like and depression-like behavior in recipient mice via the gut microbiota-inflammation-brain axis. Stress, 2019, 22(5), 592-602.
[http://dx.doi.org/10.1080/10253890.2019.1617267] [PMID: 31124390]
[227]
Westfall, S.; Iqbal, U.; Sebastian, M.; Pasinetti, G.M. Gut microbiota mediated allostasis prevents stress-induced neuroinflammatory risk factors of Alzheimer’s disease. Prog. Mol. Biol. Transl. Sci., 2019, 168, 147-181.
[http://dx.doi.org/10.1016/bs.pmbts.2019.06.013] [PMID: 31699313]
[228]
Kelly, J.R.; Kennedy, P.J.; Cryan, J.F.; Dinan, T.G.; Clarke, G.; Hyland, N.P. Breaking down the barriers: The gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front. Cell. Neurosci., 2015, 9, 392.
[http://dx.doi.org/10.3389/fncel.2015.00392] [PMID: 26528128]
[229]
Mathur, N.; Pedersen, B.K. Exercise as a mean to control low-grade systemic inflammation. Mediators Inflamm., 2008, 2008, 109502.
[http://dx.doi.org/10.1155/2008/109502] [PMID: 19148295]
[230]
Beavers, K.M.; Brinkley, T.E.; Nicklas, B.J. Effect of exercise training on chronic inflammation. Clin. Chim. Acta, 2010, 411(11-12), 785-793.
[http://dx.doi.org/10.1016/j.cca.2010.02.069] [PMID: 20188719]
[231]
Campbell, K.L.; Campbell, P.T.; Ulrich, C.M.; Wener, M.; Alfano, C.M.; Foster-Schubert, K.; Rudolph, R.E.; Potter, J.D.; McTiernan, A. No reduction in C-reactive protein following a 12-month randomized controlled trial of exercise in men and women. Cancer Epidemiol. Biomarkers Prev., 2008, 17(7), 1714-1718.
[http://dx.doi.org/10.1158/1055-9965.EPI-08-0088] [PMID: 18628422]
[232]
Leal, L.G.; Lopes, M.A.; Batista, M.L., Jr. Physical exercise-induced myokines and muscle-adipose tissue crosstalk: A review of current knowledge and the implications for health and metabolic diseases. Front. Physiol., 2018, 9, 1307.
[http://dx.doi.org/10.3389/fphys.2018.01307] [PMID: 30319436]
[233]
Collao, N.; Rada, I.; Francaux, M.; Deldicque, L.; Zbinden-Foncea, H. Anti-Inflammatory effect of exercise mediated by toll-like receptor regulation in innate immune cells - a review. Int. Rev. Immunol., 2020, 39(2), 39-52.
[http://dx.doi.org/10.1080/08830185.2019.1682569] [PMID: 31682154]
[234]
Monda, V.; Villano, I.; Messina, A.; Valenzano, A.; Esposito, T.; Moscatelli, F.; Viggiano, A.; Cibelli, G.; Chieffi, S.; Monda, M.; Messina, G. Exercise modifies the gut microbiota with positive health effects. Oxid. Med. Cell. Longev., 2017, 2017, 3831972.
[http://dx.doi.org/10.1155/2017/3831972] [PMID: 28357027]
[235]
Cerdá, B.; Pérez, M.; Pérez-Santiago, J.D.; Tornero-Aguilera, J.F.; González-Soltero, R.; Larrosa, M. Gut microbiota modification: Another piece in the puzzle of the benefits of physical exercise in health? Front. Physiol., 2016, 7, 51.
[http://dx.doi.org/10.3389/fphys.2016.00051] [PMID: 26924990]
[236]
Donati Zeppa, S.; Agostini, D.; Gervasi, M.; Annibalini, G.; Amatori, S.; Ferrini, F.; Sisti, D.; Piccoli, G.; Barbieri, E.; Sestili, P.; Stocchi, V. Mutual interactions among exercise, sport supplements and microbiota. Nutrients, 2019, 12(1), E17.
[http://dx.doi.org/10.3390/nu12010017] [PMID: 31861755]
[237]
Axelrod, C.L.; Brennan, C.J.; Cresci, G.; Paul, D.; Hull, M.; Fealy, C.E.; Kirwan, J.P. UCC118 supplementation reduces exercise-induced gastrointestinal permeability and remodels the gut microbiome in healthy humans. Physiol. Rep., 2019, 7(22), e14276.
[http://dx.doi.org/10.14814/phy2.14276] [PMID: 31758610]
[238]
Castell, L.M.; Nieman, D.C.; Bermon, S.; Peeling, P. Exercise-induced illness and inflammation: Can immunonutrition and iron help? Int. J. Sport Nutr. Exerc. Metab., 2019, 29(2), 181-188.
[http://dx.doi.org/10.1123/ijsnem.2018-0288] [PMID: 30507260]
[239]
Speyer, C.B.; Costenbader, K.H. Cigarette smoking and the pathogenesis of systemic lupus erythematosus. Expert Rev. Clin. Immunol., 2018, 14(6), 481-487.
[http://dx.doi.org/10.1080/1744666X.2018.1473035] [PMID: 29724134]
[240]
Gallo, V.; Vineis, P.; Cancellieri, M.; Chiodini, P.; Barker, R.A.; Brayne, C.; Pearce, N.; Vermeulen, R.; Panico, S.; Bueno-de-Mesquita, B.; Vanacore, N.; Forsgren, L.; Ramat, S.; Ardanaz, E.; Arriola, L.; Peterson, J.; Hansson, O.; Gavrila, D.; Sacerdote, C.; Sieri, S.; Kühn, T.; Katzke, V.A.; van der Schouw, Y.T.; Kyrozis, A.; Masala, G.; Mattiello, A.; Perneczky, R.; Middleton, L.; Saracci, R.; Riboli, E. Exploring causality of the association between smoking and Parkinson’s disease. Int. J. Epidemiol., 2019, 48(3), 912-925.
[PMID: 30462234]
[241]
Williams, S.R.; Proctor, E.; Allen, K.; Gadian, D.G.; Crockard, H.A. Quantitative estimation of lactate in the brain by 1H NMR. Magn. Reson. Med., 1988, 7(4), 425-431.
[http://dx.doi.org/10.1002/mrm.1910070405] [PMID: 3173057]
[242]
Yasue, H.; Hirai, N.; Mizuno, Y.; Harada, E.; Itoh, T.; Yoshimura, M.; Kugiyama, K.; Ogawa, H. Low-grade inflammation, thrombogenicity, and atherogenic lipid profile in cigarette smokers. Circ. J., 2006, 70(1), 8-13.
[http://dx.doi.org/10.1253/circj.70.8] [PMID: 16377917]
[243]
Stewart, C.J. Effects of tobacco smoke and electronic cigarette vapor exposure on the oral and gut microbiota in humans: A pilot study. PeerJ, 2018, 6, e4693.
[http://dx.doi.org/10.7717/peerj.4693]
[244]
Benjamin, J.L.; Hedin, C.R.; Koutsoumpas, A.; Ng, S.C.; McCarthy, N.E.; Prescott, N.J.; Pessoa-Lopes, P.; Mathew, C.G.; Sanderson, J.; Hart, A.L.; Kamm, M.A.; Knight, S.C.; Forbes, A.; Stagg, A.J.; Lindsay, J.O.; Whelan, K. Smokers with active Crohn’s disease have a clinically relevant dysbiosis of the gastrointestinal microbiota. Inflamm. Bowel Dis., 2012, 18(6), 1092-1100.
[http://dx.doi.org/10.1002/ibd.21864] [PMID: 22102318]
[245]
Sublette, M.G.; Cross, T.L.; Korcarz, C.E.; Hansen, K.M.; Murga-Garrido, S.M.; Hazen, S.L.; Wang, Z.; Oguss, M.K.; Rey, F.E.; Stein, J.H. Effects of smoking and smoking cessation on the intestinal microbiota. J. Clin. Med., 2020, 9(9), E2963.
[http://dx.doi.org/10.3390/jcm9092963] [PMID: 32937839]
[246]
Yan, S.; Ma, Z.; Jiao, M.; Wang, Y.; Li, A.; Ding, S. Effects of smoking on inflammatory markers in a healthy population as analyzed via the gut microbiota. Front. Cell. Infect. Microbiol., 2021, 11, 633242.
[http://dx.doi.org/10.3389/fcimb.2021.633242] [PMID: 34368009]
[247]
Noh, K.; Kang, Y.R.; Nepal, M.R.; Shakya, R.; Kang, M.J.; Kang, W.; Lee, S.; Jeong, H.G.; Jeong, T.C. Impact of gut microbiota on drug metabolism: An update for safe and effective use of drugs. Arch. Pharm. Res., 2017, 40(12), 1345-1355.
[http://dx.doi.org/10.1007/s12272-017-0986-y] [PMID: 29181640]
[248]
Curini, L.; Amedei, A. Cardiovascular diseases and pharmacomicrobiomics: A perspective on possible treatment relevance. Biomedicines, 2021, 9(10), 1338.
[http://dx.doi.org/10.3390/biomedicines9101338]
[249]
Vich Vila, A.; Collij, V.; Sanna, S.; Sinha, T.; Imhann, F.; Bourgonje, A.R.; Mujagic, Z.; Jonkers, D.M.A.E.; Masclee, A.A.M.; Fu, J.; Kurilshikov, A.; Wijmenga, C.; Zhernakova, A.; Weersma, R.K. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun., 2020, 11(1), 362.
[http://dx.doi.org/10.1038/s41467-019-14177-z] [PMID: 31953381]
[250]
Zimmermann, P.; Curtis, N. The effect of antibiotics on the composition of the intestinal microbiota - a systematic review. J. Infect., 2019, 79(6), 471-489.
[http://dx.doi.org/10.1016/j.jinf.2019.10.008] [PMID: 31629863]
[251]
Garrido-Mesa, N.; Zarzuelo, A.; Gálvez, J. Minocycline: Far beyond an antibiotic. Br. J. Pharmacol., 2013, 169(2), 337-352.
[http://dx.doi.org/10.1111/bph.12139] [PMID: 23441623]
[252]
Minter, M.R.; Zhang, C.; Leone, V.; Ringus, D.L.; Zhang, X.; Oyler-Castrillo, P.; Musch, M.W.; Liao, F.; Ward, J.F.; Holtzman, D.M.; Chang, E.B.; Tanzi, R.E.; Sisodia, S.S. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci. Rep., 2016, 6, 30028.
[http://dx.doi.org/10.1038/srep30028] [PMID: 27443609]
[253]
Zhang, X.; Huang, Z.; Hu, Y.; Liu, L. Knockdown of Myosin 6 inhibits proliferation of oral squamous cell carcinoma cells. J. Oral Pathol. Med., 2016, 45(10), 740-745.
[http://dx.doi.org/10.1111/jop.12448] [PMID: 27561828]
[254]
Dethlefsen, L.; Relman, D.A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. USA, 2011, 108(Suppl. 1), 4554-4561.
[http://dx.doi.org/10.1073/pnas.1000087107] [PMID: 20847294]
[255]
Tanaka, M.; Nakayama, J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol. Int., 2017, 66(4), 515-522.
[http://dx.doi.org/10.1016/j.alit.2017.07.010] [PMID: 28826938]
[256]
Al Nabhani, Z.; Eberl, G. Imprinting of the immune system by the microbiota early in life. Mucosal Immunol., 2020, 13(2), 183-189.
[http://dx.doi.org/10.1038/s41385-020-0257-y] [PMID: 31988466]
[257]
Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol., 2020, 180, 114147.
[http://dx.doi.org/10.1016/j.bcp.2020.114147] [PMID: 32653589]
[258]
Bjarnason, I.; Scarpignato, C.; Holmgren, E.; Olszewski, M.; Rainsford, K.D.; Lanas, A. Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti-inflammatory drugs. Gastroenterology, 2018, 154(3), 500-514.
[http://dx.doi.org/10.1053/j.gastro.2017.10.049] [PMID: 29221664]
[259]
Crusz, S.M.; Balkwill, F.R. Inflammation and cancer: Advances and new agents. Nat. Rev. Clin. Oncol., 2015, 12(10), 584-596.
[http://dx.doi.org/10.1038/nrclinonc.2015.105] [PMID: 26122183]
[260]
Johnson, D.A.; Katz, P.O.; Armstrong, D.; Cohen, H.; Delaney, B.C.; Howden, C.W.; Katelaris, P.; Tutuian, R.I.; Castell, D.O. The safety of appropriate use of over-the-counter proton pump inhibitors: An evidence-based review and delphi consensus. Drugs, 2017, 77(5), 547-561.
[http://dx.doi.org/10.1007/s40265-017-0712-6] [PMID: 28233274]
[261]
Imhann, F.; Bonder, M.J.; Vich Vila, A.; Fu, J.; Mujagic, Z.; Vork, L.; Tigchelaar, E.F.; Jankipersadsing, S.A.; Cenit, M.C.; Harmsen, H.J.; Dijkstra, G.; Franke, L.; Xavier, R.J.; Jonkers, D.; Wijmenga, C.; Weersma, R.K.; Zhernakova, A. Proton pump inhibitors affect the gut microbiome. Gut, 2016, 65(5), 740-748.
[http://dx.doi.org/10.1136/gutjnl-2015-310376] [PMID: 26657899]
[262]
Lundgren, D.; Eklöf, V.; Palmqvist, R.; Hultdin, J.; Karling, P. Proton pump inhibitor use is associated with elevated faecal calprotectin levels. A cross-sectional study on subjects referred for colonoscopy. Scand. J. Gastroenterol., 2019, 54(2), 152-157.
[http://dx.doi.org/10.1080/00365521.2019.1566493] [PMID: 30676120]
[263]
Neglia, J.P.; Wielinski, C.L.; Warwick, W.J. Cancer risk among patients with cystic fibrosis. J. Pediatr., 1991, 119(5), 764-766.
[http://dx.doi.org/10.1016/S0022-3476(05)80296-3] [PMID: 1941382]
[264]
Paule, A.; Frezza, D.; Edeas, M. Microbiota and phage therapy: Future challenges in medicine. Med. Sci. (Basel), 2018, 6(4), E86.
[http://dx.doi.org/10.3390/medsci6040086] [PMID: 30301167]